Thin Film Investigation of Silver Doped Zinc Oxide as Electrode Material

Abstract

Thin film materials for the production of low energy density devices such as supercacitors are very attractive because of the positive impact on the environment. Metal oxides thin films materials are widely used due to their unique properties unlike single structured metal oxide thin films which amy suffer from low efficiency under visible light. In this study the doping of ZnO thin films with Ag form a composite material with new properties due to synergetic effect. The synthesis of ZnO thin film was by electrodeposition technique after which the optical properties were characterized using UV-VIS spectrometer. A slight shift in the absorption spectra to the higher wave length was observed in all the samples. It can be seen that the optical transmission of pure ZnO is about 47 % at 1026 nm in the visible region and after doping it increased to 71 % at 950 nm due to the presence of impurity; negative reflectance spectra shown by most samples is an indication of the incident and refracted wave travelling in the same direction. The optical energy gap of the doped samples ranges from 3.32-3.43 eV, these observations show that the Ag behavior as a p-type dopant of ZnO is good for the realization of low energy density devices such as supercapacitors.

Cisssan Sylvanus (2022) Thin Film Investigation of Silver Doped Zinc Oxide as Electrode Material, European Journal of Material Science, 9, (1), 44-63

 

Keywords: Electrode, Material, Thin Film, oxide, silver doped zinc

DOI: https://doi.org/10.37745/ejms.2014/vol9n14462

Article Review Status: Published

Pages: 44-62 (Download PDF)

Creative Commons Licence
This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License