Automation of Irrigation Systems and Design of Automated Irrigation Systems

Abstract

Canada is a world leader in the production of many agricultural crops, especially wheat and other cereal grains and irrigation necessary to compensate for insufficient precipitation during the critical portions of the growing season in order to avoid a decrease in productivity. Current irrigation systems are unable to determine when the crops have received sufficient water during and even after irrigation, are not easy to use, require user input, manual connection to the water supply and some level of technical expertise before they can be used successfully, and they are not automated. This paper presents a novel automated irrigation system that does not have any of these limitations. The automated irrigation system works by continuously monitoring the soil moisture content and wirelessly activating the pipeline valves to open when the moisture level drops below the minimum threshold for the cultivated crop, causing the land to be irrigated. When the moisture level rises above the maximum threshold, the system deactivates the irrigation pipeline valves, causing them to close and ceasing land irrigation. This automated irrigation system is customizable and can also be used to upgrade existing drip irrigation systems, surface irrigation systems, and sprinkler irrigation systems to overcome their existing limitations.

Keywords: : Irrigation, automated irrigation system, crop moisture requirement

Article Review Status: Published

Pages: 11-27 (Download PDF)

Creative Commons Licence
This work by European American Journals is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License