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Abstract: We formulated a discrete time delay mathematical model to investigate the yellow fever 

disease's transmission pattern. We established the stability of the delay system by identifying the 

equilibrium point that is both endemic and free of yellow fever through analytical investigations. 

Stability was also determined by computing the basic reproduction number using the next 

generation matrix method. We then conducted numerical simulation and results show that time 

delay plays a significant role in the case of stability of the endemic equilibrium point as equilibrium 

is quickly achieved for smaller time delays and vice versa. The basic reproduction number 

obtained using the model parameter is 0.68876; which shows that the yellow fever free equilibrium 

point is locally asymptotically stable. The implication of the boundedness is that the disease is 

controllable. 
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INTRODUCTION 

 

Yellow fever (YF), a hemorrhagic fever caused by a Flavivirus, of the Flaviviridae family [26]. 

The virus was first isolated in 1927 in a male patient. Transmission is primarily by mosquitoes 

with an incubation period of 3 to 6 days. Yellow fever can cause the onset of clinical features 

which is characterized by fever, chills, loss of appetite, nausea, muscle pains particularly in the 

back and (Jaundice or Hemorrhagic symptom). It is characterized by fever, chills, loss of appetite, 

nausea, muscle pains particularly in the back, and headaches [33]. There are more than 200,000 

infections and 30,000 deaths every year [33]. About 90% of YF cases occur in Africa (Tolle, 2009), 

and a billion people live in an area of the world where the disease is common. It also affects tropical 

areas of South America, but not Asia [2]. The number of cases of yellow fever has been increasing 

in the last 30 years [33,4], probably due to fewer people being immune, more people living in 

cities, people moving frequently, and changing climate. The origin of the disease is Africa, from 

where it spread in South America through the slave trade in the17th century [29]. The yellow fever 

virus was one of the first human virus discovered [21], and its family comprises approximately 70 

viruses, most of which are transmitted by arthropod insects (hence the name arthropod borne 
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viruses or arboviruses). A safe and effective vaccine against yellow fever exists and some countries 

require vaccinations for travelers [33]. In rare cases (less than one in 200,000 to 300,000 doses), 

the vaccination can cause yellow fever vaccine-associated viscerotropic disease (YEL-AVD), 

which is fatal in 60% of cases, probably due to the genetic morphology of the immune system. 

Another possible side effect is an infection of the nervous system, which occurs in one in 200,000 

to 300,000 cases, causing yellow fever vaccine-associated neurotropic disease (YEL-AND), which 

can lead to meningoencephalitis, fatal in less than 5% of cases. The control of Yellow fever has 

been achieved through various methods, including vector control (using insecticide-treated bed 

nets and indoor residual spraying), chemoprevention, and case management (early diagnosis and 

prompt treatment).  

 

Mathematical modelling has proven to be essential in understanding the dynamics of infectious 

diseases. A direct application of mathematical models to data has been of enormous help in having 

more knowledge about the infection and control of diseases [30]. In recent times, there has been 

much concern about vector-borne transmission such as malaria and yellow fever, which spread 

rapidly with high cases of infection still recorded across nations [34].  

 [28] modelled the impact of information transmission on epidemic outbreak. Results from their 

study unveil some crucial threshold parameters which should be considered (for proper attention) 

in the design of YF control measures and vaccinations schedules in order to halt the spread of the 

disease, particularly in its endemic areas. Also, [36] modelled the recent YF outbreak in Luanda, 

Angola. Their model prediction fitted very well with weekly reported incidence and mortality 

resulting from the epidemic. One outstanding contribution from their work is that it gives a 

guideline for assessing future outbreaks while also equipping the decision makers with likely 

action to take in order to minimize the attendant casualties. In addition, their findings provide 

criteria for evaluating future vaccination program. 

The use of mathematical and computational models to help vaccine development is not new. In 

fact, several works use computational tools to aid vaccine design. For example, epitope-mapping 

algorithms have been used for vaccine design since the 1980s [9]. Since then, new computational 

tools have been used for selection of vaccine targets. Most works focus on using mathematical and 

computational tools to predict epitopes [19] or to develop virtual screening approaches (i.e, the 

identification of relevant antigens) [15]. This traditional use of computational vaccinology is 

related to pre-clinical development. 

[6] tried to qualitatively validate a simplified mathematical-computational model of the immune 

response to the YF vaccine which is based on a live, attenuated viral strain. The model uses 

Ordinary Differential Equations (ODEs) to model the main cells and molecules related to adaptive 

immune response. Another work by [20] uses an ODE-based approach to model the human 

immune response to vaccination against both YF and smallpox using distinct data and equations 

sets, one for each disease. The aim of the authors was to primarily evaluate the dynamics of CD8+ 

T cells. 
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[8] modeled the immune response to the YF virus from infection of epithelial cells to secretion of 

antibodies, considering various populations of cells and molecules, in different stages and 

compartments. There were 19 ODEs divided into two compartments: one representing the tissue 

where the virus proliferates and the other the lymph nodes. 

[18] have proposed transmission laws that include nonlinearity, such as the Holling typeII 

functional, Crowley–Martin functional, Beddington–DeAngelis functional, etc., to study the 

dynamics of infectious diseases. The general incidence rate was suggested by [22] and used by 

numerous authors in their models.  

[10] formulated a mathematical model to study the effect of sterile insect technique to control the 

vectors Aedes aegypti responsible for yellow fever. This technique aims at displacing the wild 

insects from the habitat. The factors like mating competitiveness and spread of males that are 

sterilized by the technique were incorporated in model. Immigration of females was also 

considered. [27] studied yellow fever dynamics with vaccine as a control measure. [14] developed 

mathematical model for yellow fever epidemic. The effect of treatment of standing water on 

mosquito population was investigated. [35] formulated a deterministic model with multiple control 

measures for yellow fever outbreak. It was found that outbreak can be controlled if chemical and 

biological tools control mosquito population. Transmission parameters, travel rates, local evidence 

are a few important factors to know the probability or risk of yellow fever spread in an urban 

outbreak. In the finding of [36], it was found that the basic reproduction number lies between 2.6 

and 3.4 in the period of December 2015 and August 2016 for outbreak of yellow fever in Angola. 

[29] estimated the number of Chinese workers who were unvaccinated in an outbreak in Angola. 

The same study was also done by [17] for an outbreak for Democratic Republic of the Congo 2015 

− 16. Many researchers have studied yellow fever with effect of vaccine. [4] studied the availability 

of live attenuated vaccine 17D strain. It was suggested that occasional supply or insufficient supply 

of vaccine should be taken care of. 

[1] formulated a model of yellow fever epidemics, which involves the interactions of two principal 

communities; hosts (humans) and Vectors (aedes aegypti mosquitoes). The host community was 

divided into three compartments of Susceptible S(t), Infected I(t) and Recovered R(t) while the 

vector community was partitioned into two compartments of Susceptible N(t) and Infective or 

virus carriers M (t) where t  0 is the time. They analyzed the local stability of the model using 

Jacobian matrix and implicit function. [11] formulated a model and incorporated the biology of 

the urban vector of yellow fever, the mosquito Aedes aegypti, and the stages of the disease in the 

host (humans). From the epidemiological point of view, the mosquito follows a SEI sequence 

(Susceptible, Exposed, and Infective). In their, model the adult populations are subdivided 

according to their status with respect to the virus. They assumed that there is no vertical 

transmission of the virus and eggs, larvae, pupae and non-parous adults are always susceptible. 

The humans are subdivided in sub-populations according to their status with respect to the illness 

as susceptible (S), exposed (E), infective (I), in remission (r), toxic (T) and recovered (R). [32] 

considered an epidemic model of a vector-borne disease which has direct mode of transmission in 

addition to the vector-mediated transmission. The incidence term is assumed to be of the bilinear 

mass-action form. They include both a baseline ordinary differential equation (ODE) version of 
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the model, and, a differential-delay model with a discrete time delay. The delay in the differential-

delay model accounts for the incubation time the vectors need to become infectious. They studied 

the effect of that delay on the stability of the equilibria. 

A lot of work has been done on the epidemiology of yellow fever but to our knowledge, there is 

no model for yellow fever that has incorporated delay in infection into the model equations. In this 

paper, we have formulated a compartmental model for yellow fever to study the effect of delay in 

infection of the disease. 

1. Mathematical Model Formulation 

The mathematical model described below addresses the transmission dynamics of an infectious 

agent in a homogeneous population. We consider a nonlinear system of ordinary differential 

equations involving the human and the vector- mosquitoes and their eggs populations. The term 

“eggs” also includes the intermediate stages, such as larvae and pupae. It is also worth highlighting 

that the model proposed here is based on previous paper [3] and we updated the model originally 

developed by [23] to include time delay in infection. 

 

 

 

 

 

 

 

 

 

 

 

All variables and parameters in the human system will carry the subscript 𝐻, while those in the 

vector system will carry one of the subscripts 𝑀 (mosquitoes) or 𝐸 (eggs). In our model the total 

human population, denoted by HN , is split into four subclasses which are susceptible humans ,HS

infected humans HI , and recovered (and immune) humans HR , so that H H H HN S I R   .The 

total vector population, which is formed by both total mosquito population, denoted by MN ,and 

the total eggs population, denoted is by EN , infected and infectious mosquitoes MI , and non-

infected eggs ES , so that M M MN S I   and .E EN S A flow diagram of the model is depicted in 

Figure 1: Flow diagram of model 
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Figure 1, and the associated variables and parameters are described in Table below, where some 

values are realistic assumptions and the rest taken from [23]. The model supposes a homogeneous 

mixing of human and mosquito population based on the idea that the mosquito has a human biting 

habit, so that each mosquito bite has an equal probability of transmitting the virus to the susceptible 

human in the population or acquiring infection from an infected human. The equations are derived 

based on the fact that, the presence of yellow fever in the population, both mosquitoes and humans 

can infect each other upon contact. While an infected mosquito remains infected until death, it is 

assumed that infected humans can recover from the disease [25]. We define a logistic recruitment 

rate of humans, mosquitoes, and eggs, and all new born humans and newly emerged mosquitoes 

are susceptible with no vertical transmission [25]. Susceptible humans become infected through 

the bite by an infected mosquito and the susceptible mosquitoes become latent infected as result 

of biting infectious humans. Upon acquiring infection, the susceptible individuals move into the 

infected compartment. The incidence of new infections is given by the standard incidence [12]. 

Deaths can occur amongst the human population, mosquitoes, and eggs, naturally. In contrast, in 

the presence of the yellow fever, the human population can either die due to the additional effects 

of the disease or recover. It is also assumed that recovered human individuals acquire immunity 

against reinfection, so that they do not acquire yellow fever for a second time. We will introduce 

the delay in the transmission. We will use the assumption that a susceptible after contact with an 

infective takes the delay time to become infective itself [16, 13]. That is, a newly exposed 

susceptible stays as a susceptible until a time equal to the delay elapses and only then it turns into 

an infective. Combining the above formulation and assumption, it follows that the model for the 

transmission dynamics of the yellow fever disease is given by the following system of nonlinear 

ordinary differential equations: 
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where the time lag τ>0 represents the incubation period of the disease, defined as a fixed time 

during which the infectious agent develops in the vector; only after this time can the infected vector 

infect a susceptible individual. 
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Parameter description 

 Description 

a Average daily biting rate 

b Fraction of actually infective bites 

H  
Human natural mortality rate 

H  
Yellow fever mortality rate in 

humans 

Hr  
Birth rate of humans 

H  
Human recovery rate 

p  Susceptible egg hatching rate 

M  
Mosquitoes natural mortality rate 

c  A. aegypti susceptibility to yellow 

fever 

sc
 

Climatic factor 

 

Let   3,0 ,C    denote the Banach space of continuous functions, mapping the interval [−τ, 

0] to 3  with the topology of uniform convergence. It is well known from the fundamental theory 

of functional differential equations that the model described by Equations (1) – (5) admits a unique 

solution  , , , ,H H H M MS I R S I  with initial data  0 0 0 0 0, , , ,H H H M MS I R S I C . For biological 

reasons, the initial conditions of the model described by Equations (1) – (5) are nonnegative 

continuous functions, 

   

   

   

0 0

0 0

0

0, 0,

0, 0,

0, ,0

H H

H M

M

S I

R S

I

 

 

  

 

 

  

           (6) 

For ecological reasons, it is assumed that all the parameters in table 1 are positive. It is therefore 

important to show that all state variables with nonnegative initial data will remain nonnegative and 

bounded for all time. Thus, we prove the following theorem: 

Theorem 1: All state variables of the system of Equations (1) – (5), subject to the condition (6) 

remain nonnegative and bounded for all t ≥0. 

Proof: We define 

H H H HN S I R    and M M MN S I 

   
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   H
H H H H H H H H H

dN
r N N I t r N

dt
        

 

   
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M
s E M M s E

dN
pc N N pc N
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    

Therefore, bounded and nonnegative. 

2. Analytical Solution (Equilibria and Stability) 

 

The model system of Equations (1)– (5) has two equilibria, which are obtained from the system of 

equations. We shall categorize the equilibrium points as the yellow fever free equilibrium point 

(YFEP) and the yellow fever endemic equilibrium point (YEEP) which are denoted by 0E  and 1E  

respectively. It is well known that a system has a stable equilibrium if its neighborhood trajectory 

approaches the point asymptotically at 𝑡 → ∞ and same is applicable to a system with a time delay. 

Thus, we obtain the equilibrium for the system (1)–(5) by setting 
 

0,
HdS t

dt
  

 
0,

HdI t

dt
  

   
0, 0

H MdR t dS t

dt dt
   and 

 
0.

MdI t

dt
  

A. Yellow Fever  Free Equilibrium Point and stability analysis 

The YFEP occur when we set 0, 0H HI R   and 0MI   in the system (1)–(5), we get 

0 H H
H

H

r N
S


 and 0 .s E

M

M

pc N
S


  

Therefore, 

 0 0 0,0,0, ,0 ,0,0, ,0 .s EH H
H M

H M

pc Nr N
E S S

 

 
   

 
 

In order to establish stability of the YFEP, we compute the basic reproduction number of the 

proposed model. 

Theorem 2:  The yellow fever free equilibrium point is locally asymptotically stable whenever 

the basic reproduction number 0 1.R   

Proof: d Let    terms that contain secondary infection (disease class) and   terms that do not 

contain secondary infection (non-disease class) 
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At yellow fever free equilibrium, we have, 
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B. Yellow Fever   Endemic Equilibrium Point and stability 
The yellow fever endemic equilibrium point is obtained when all compartments in the model are 

non zero positive. We get, 
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From equation (10), 
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Substitute equation (12) into equation (11), we get, 
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Substitute equation (13) into equation (8), we get, 
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Substitute equation (16) into equation (14), we get, 

 2

1 2 3

2
* 1 2 3 2 32

1 1 2

H H H

H
H

H

ac k r N k k

k k k k k ack
S

k k k ac







 
 
  

  
 

 
 

           (17) 

 

Substitute equations (16) and (17) into equation (8), we get, 
*

* 3

*

H H
M

H

k I N
I

abS
            (18) 
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Substitute equation (16) into equation (9), we get, 

 

 
*

* H H
H

H

I
R




            (19) 

 

We study the stability of the equilibria through the linearization of the system. We shall do this 

by defining   ˆ ˆˆ ˆ ˆ, , , ,H H H M MY S I R S I  as the equilibrium of our delayed system (1) to (5). Then 

by setting  

 

1 2

3 4

ˆ ˆ( ) ( ) , ( ) ( ) ,

ˆˆ( ) ( ) , ( ) ( )

H H H H

H H M M

S t y t S I t y t I

R t y t R S t y t S

   

   
 

and 5
ˆ( ) ( ) ,M MI t y t I   then the linearized system is obtained by computing the Jacobian matrix 

given as; 

 

 

 

ˆˆ 0 0 0

ˆˆ 0 0

00 0 0

ˆ ˆ0 0 0

ˆ ˆ0 0

M H H

H H

M H H H H

H H

H H

M H M

H H

M H M

H H

ab ab
I e S e

N N

ab ab
I e S e

N N

J I

ac ac
S e I e

N N

ac ac
S e I e

N N

 

 

 

 

 

   

   

 

 

 

 

 

 

   

   

   

   

 

 

On simplifying, we get, 

 

   

5 4 3 2 4 3 2

1 2 3 4 5 1 2 3 4 5

3 2 2 2 3

1 2 3 4 1 2 3

0
k k k k k p p p p p e

q q q q e r r r e



 

        

    



 

         
 
      


         

(20) 

 

 

 

Where, 

1 2 3H M H Hk           
2 2

2 3 2

2 6 2

M H H M

M H M H H H

k    

     

  

  
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2 2 2 2 3

3

2 2

3

6 4 4

M H M H M H H H H

H H H M M H H M H H

k         

         

    

   
  

3 2 2 2

4

2 2 2

2 3 2

2 2 2

H M M H H H M

M H H H H M M H H

k       

        

  

  
  

2 3 2 2 2 2

5 M H H M H M H Hk          
  

 1
ˆ ˆ
M H

H

a
p bI cI

N
 

  

 

 

2

ˆ
3

ˆ
2 2

H
H H H M

H

M
H H H M

H

acI
p

N

abI

N

   

   

   

   

  

3

2

2

2 3
ˆ

2
3

ˆ 2

4 2

M H
H H

HH H

H H MH
M

H H

H M H H HM

H M H H M M H M

ac I
p

N

abI

N

 
 



  


 

    

      

 
  

 
 
   
 

  
       

  

2

4

2

ˆ 3

2 2

ˆ 2 2

2 2

H H H H H M HH H

H H M M H H M

H M H H HM M

H M H H H H M

ac I
p

N

ab I

N

      

     

    

     

   
  

   

  
  

   

  

 
2 2

5

ˆ ˆ
M H H M H M

H H H

H H

ac I ab I
p

N N

   
  

 
    

    

 
2

1 2
ˆ ˆˆ ˆ

H M M H

H

a bc
q I I S S

N
 

  
2

2 2

ˆ ˆˆ ˆ ˆ ˆ2 2

ˆ ˆˆ ˆ ˆ ˆ

H H M H M H H H M

H H H M M H M M M H

I I S S I Ia bc
q

N I I I I S S

  

  

  
  

    
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2

22

3 2

ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ2

H M H H M M H

H H M M H H M

H H H H M H H H M

H M H M M H H M

S S S S

I I I Ia bc
q

N I I I I

I I I I

  

  

   

   

 
 
  

  
  
 
  

  

2

4 2

ˆ ˆˆ ˆ

ˆ ˆ ˆ ˆ

H H M H M HH M

H H H M H H M

I I S Sa bc
q

N I I I I

  

 

 
  

   

  

3 2

1 3

2 ˆ ˆ ˆ
M H M

H

a b c
r S S I

N


  

 
3 2

2 3

ˆ ˆ ˆ2 M H M
H M

H

a b cS S I
r

N
  

  
3 2

3 3

2 ˆ ˆ ˆH M
M H M

H

a b c
r S S I

N

 


  

By substituting the yellow fever endemic equilibrium point  1 * * * * *, , , ,H H H M ME S I R S I  into the 

equation 21, we get, 

 

 

 

5 4 3 2

1 2 3 4 5

4 3 2

1 2 3 4 5

3 2 2

1 2 3 4

2 3

1 2 3

0

k k k k k

p p p p p e

q q q q e

r r r e







    

   

  

 







    


     
 

    


   

    (21) 

If 𝜏 = 0, then  

   

   

5 4 3

1 1 2 2 1

2

3 3 2 1 4 4 3 2

5 5 4 3

( ) k p k p q

k p q r k p q r

k p q r

    

 

     

       

   

 

Since the model parameters are all positives, then the roots ( )   have negative real parts which 

implies that it is asymptotically stable. For 0   corollary 2.4 from [18] ensures that, if the yellow 

fever endemic equilibrium 1E  is unstable for a particular value of the delay parameter, then roots 

of the characteristic equation (21) must intersect the imaginary axis. Thus, to prove the stability of 

the YFEP, we use the contradictory assumption; i.e., we assume that λ =iω, ω > 0 is the root of 

Equation (21). Putting i   into Equation (20) yields 
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         

          

        

      

5 4 3 2

1 2 3 4 5

4 3 2

1 2 3 4 5

3 2 2

1 2 3 4

2 3

1 2 3 0

i

i

i

i k i k i k i k i k

p i p i p i p i p e

q i q i q i q e

r i r i r e

 

 

 

    

   

  

 







    

    

   

   

 

Separating the real and imaginary part, we get, 

 

   

   

   

   

   

 

4 2 4

1 3 5 1

2

3 5

3

2 4

2

2 4

3

1 3

2

1 3

2

cos

cos cos

sin sin

sin 2 cos 2

sin 2 sin 2

cos 3 cos 3

sin 3

k k k p

p p

p p

q q

q q

r r

r

   

  

   

  

   

  

 

   

 

 

 

 

 



        (22) 

 

 

   

   

   

   

   

 

5 3 3

2 4 2

4

4 1

2

3 5

3

1 3

2

2 4

2

2 1

3

cos

cos sin

sin sin

cos 2 cos 2

sin 2 sin 2

cos 3 sin 3

sin 3

k k p

p p

p p

q q

q q

r r

r

    

   

  

   

  

   



  

 

 

 

 

 



         (23) 

Squaring and adding equation (22) and (23), we get, 

     
2 2

4 2 5 3

1 3 5 2 4k k k k k H          
  

The expansion of the right hand side of equation (22) and (23) is cumbersome, therefore we 

represent it with   ,H   however, the computation is done on MATLAB and expressed in the 

appendix. 

 

 

   

   

 

10 2 8 2 6

1 2 4 2 1 3

2 4 2 2

1 5 2 4 3 4 3 5

2

5

2 2 2

2 2 2

0

k k k k k k

k k k k k k k k

k H

  

 



    

    

  

         (24) 

If 2 ,   then (24) becomes 

 5 4 3 2

1 2 3 4 5 0m m m m m H                (25) 

Where,  
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2

1 1 2

2

2 4 2 1 3

2

3 1 5 2 4 3

2

4 4 3 4

2

5 5

2

2 2

2 2

2

m k k

m k k k k

m k k k k k

m k k k

m k

 


   


   


  
 

         (26) 

Clearly, if 1 2 3 40, 0, 0, 0m m m m     and 5 0m   and  5m H  are satisfied simultaneously, 

then by the Routh–Hurwitz criterion, equation (25) will always have roots with negative real part. 

This contradicts our assumption for instability that λ = iω is a root of equation (21). Hence, the 

yellow fever endemic equilibrium of the system is locally asymptotically stable for τ>0. This 

completes the proof. 

 

population in figure 4.1, the infected human population in figure 4.2, the susceptible mosquito 

population in figure 4.3 and the infected mosquito population in figure 4.4, for different time 

delays. We also compared some parameters in the model in figures 4.5 to 4.7. We took the history 

to be integer values for all compartments. In essence, we choose 

10, 0, 0, 20,H H H MS I R S     100,  50E HN N   and 0.MI   

 

Parameters Values 

A 0.5 (assumed) 

B 0.6 

H  0.035(assumed) 

H  0.000035(assumed) 

Hr  0.0095(assumed) 

H  0.143 

p  0.15 

M  0.09 

c  0.8 

sc  0.07 

 

Computation of basic reproduction number 

 

The basic reproduction number (R0) is a term that describes the expected number of infections 

generated by one case in a susceptible population. R0 is a threshold for stability of the yellow fever 

free equilibrium point. In order to compute the R0, we substitute the parameter values in table with 

initial values for the variables 100  and  50E HN N  into equation 3.27, we get 
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     

  0

0.6 0.8 0.15 100 0.0095 0.070.5

0.09 50 0.035 0.035 0.000035 0.143
R 

 
 

0 0.68876R 
  

Successful computation gives 0.68876. This shows that the yellow fever free equilibrium point is 

locally asymptotically stable. Therefore, a few infected species introduced into a completely 

susceptible population will, on average fail to reproduce themselves, and the disease will not 

spread. 

 

Recommendations and Future work 

The difference between our proposed model and a non-time delayed model is in the precision of 

stability. A non-delay model does not pay attention or ignores the time difference between a 

susceptible human and an infected human.   

We can also use a distributed delay by introducing the delay after exposure 1 , the delay due to 

the minimum duration of the disease 2  and the delay due to the minimum time with immunity 3
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