
 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

172

PostgreSQL Configuration: Best Practices

for Performance and Security

Ravi Babu Vellanki
Tek Dallas Inc, USA

doi: https://doi.org/10.37745/ejcsit.2013/vol13n47172182 Published July 02, 2025

Citation: Vellanki RB (2025) PostgreSQL Configuration: Best Practices for Performance and Security, European

Journal of Computer Science and Information Technology, 13(47),172-182

Abstract: PostgreSQL configuration significantly impacts database performance and security, yet default

settings often prioritize compatibility over optimization. This article presents a comprehensive framework

for PostgreSQL configuration, addressing critical aspects including memory allocation, query planning,

security hardening, and monitoring. By examining the interdependencies between configuration

parameters and their effects on system behavior under various workloads, the article provides a structured

approach to database optimization. Memory allocation strategies focus on shared buffers, work memory,

and background writer settings to maximize performance while preventing resource contention. Query

performance optimization encompasses planner configuration, autovacuum tuning, and parallel execution

capabilities to enhance throughput and reduce latency. Security hardening measures include network

protection, authentication controls, privilege management, and vulnerability mitigation techniques to

safeguard data while maintaining functionality. Comprehensive logging and monitoring strategies enable

proactive identification of performance bottlenecks and security threats. Together, these best practices

enable organizations to implement secure, high-performance PostgreSQL environments tailored to their

specific requirements.

Keywords: PostgreSQL, database optimization, memory allocation, security hardening, performance

monitoring

INTRODUCTION

PostgreSQL has emerged as one of the most robust and feature-rich open-source relational database

management systems, powering critical applications across diverse industries. The default configuration of

PostgreSQL is designed for broad compatibility rather than optimal performance or security in specific

deployment scenarios. This configuration approach ensures that PostgreSQL can run in various

environments, but often results in suboptimal performance for specific use cases [1]. The default parameters

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

173

are intentionally conservative to ensure stability across different hardware configurations and workloads,

which necessitates customization for production environments.

Improper configuration can lead to performance bottlenecks, security vulnerabilities, and system instability.

Configuration parameters affect multiple aspects of database behavior, including memory utilization, disk

I/O patterns, query execution strategies, and connection management. These parameters interact in complex

ways, making optimization challenging without a structured approach [1]. Research has shown that the

relationship between configuration parameters is non-linear, with changes to one parameter potentially

requiring adjustments to several others to maintain system stability.

Performance tuning requires understanding both the database architecture and the specific workload

characteristics. The performance impact of configuration changes can vary significantly based on factors

such as query patterns, data volume, concurrent users, and hardware specifications [2]. Configuration

optimization should therefore be approached methodically, with changes implemented incrementally and

their effects measured through appropriate benchmarking techniques. The configuration process involves

identifying bottlenecks, analyzing resource utilization, implementing targeted changes, and validating the

results.

Security hardening through configuration is equally important but often overlooked in database

deployments. Proper configuration can mitigate common threats such as unauthorized access, data

exfiltration, and denial-of-service attacks [1]. Security-related parameters govern authentication

mechanisms, network access controls, encryption settings, and privilege management. These settings must

be carefully balanced against performance requirements; as overly restrictive security measures can

sometimes impact functionality or performance.

This paper addresses the crucial need for systematic guidance on PostgreSQL configuration, presenting

research-based best practices that balance performance optimization with security hardening. The

interdependencies between configuration parameters and their impact on system behavior under various

workloads are examined through empirical analysis [2]. Through this structured approach to PostgreSQL

configuration, organizations can implement secure, high-performance database environments tailored to

their specific requirements. Proper configuration enables improved query response times, reduced resource

consumption, enhanced system stability, and stronger security posture in production environments.

Memory and Resource Allocation

Shared Buffers Configuration

The shared_buffers parameter represents PostgreSQL's primary memory allocation for caching data pages.

This parameter determines how much memory PostgreSQL dedicates to storing recently accessed data

blocks, significantly affecting read performance. Optimal settings typically range between 25-40% of total

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

174

system memory, with diminishing returns observed beyond this threshold [3]. For systems with large

memory capacities (>64GB), a ceiling for shared_buffers prevents excessive memory pressure while

maintaining performance benefits. This limitation helps avoid disproportionate checkpoint duration and

system instability that can occur when shared buffers consume excessive memory resources [4].

PostgreSQL relies on both the database's buffer cache and the operating system's page cache for data access

operations. The shared_buffers parameter must be balanced against other memory needs, including work

memory, maintenance operations, and operating system requirements. The configuration becomes

particularly critical in high-throughput environments where inefficient memory allocation can lead to

increased disk I/O and degraded performance [3].

Work Memory Parameters

Maintenance Work Memory

The maintenance_work_mem parameter controls memory allocation for maintenance operations such as

VACUUM, CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. These operations benefit

significantly from increased memory allocation compared to typical query processing [4]. For systems

performing frequent maintenance operations, allocating sufficient maintenance work memory is essential

for optimal performance, particularly on systems with substantial RAM resources [3].

The optimal configuration depends on database size and maintenance frequency. Systems with larger

databases or high transaction volumes benefit most from increased maintenance_work_mem allocations.

However, administrators should exercise caution, as setting this value too high can lead to memory pressure

during concurrent maintenance operations, particularly when multiple maintenance processes run

simultaneously [4].

Work Memory and Parallel Workers

The work_mem parameter determines the memory allocated for sort operations and hash tables within

query execution plans. Optimizing work_mem requires careful consideration of concurrent connections, as

memory is allocated per operation rather than per connection [3]. Complex queries may use multiple

work_mem allocations simultaneously, creating potential memory pressure during peak loads if improperly

configured [4].

The relationship between work_mem and parallel worker settings is particularly important, as each parallel

worker may allocate its own work_mem, potentially multiplying memory consumption. The

max_parallel_workers_per_gather and max_parallel_workers parameters control the degree of parallelism

allowed for individual queries and across the entire system, directly affecting both performance and

memory utilization patterns [3].

Background Writer Settings

The PostgreSQL background writer process manages the writing of dirty shared buffers to disk, reducing

checkpoint I/O spikes. The background writer helps distribute write operations more evenly, preventing

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

175

performance degradation during checkpoint operations [4]. Proper tuning of these parameters becomes

increasingly important in write-intensive workloads and systems with limited I/O capacity [3].

The bgwriter_delay parameter controls how frequently the background writer activates, with shorter delays

increasing CPU usage but providing more consistent I/O patterns. The bgwriter_lru_maxpages parameter

limits the number of pages written per round, preventing the background writer from consuming excessive

I/O bandwidth. The bgwriter_lru_multiplier parameter dynamically adjusts the number of pages written

based on recent buffer allocation patterns, adapting to changing workloads [4].

Table 1: PostgreSQL Memory Parameter Performance Impact [3,4]

Parameter Performance Impact

Shared_buffers Improves read performance

Maintenance_work_mem Faster VACUUM and index creation

Work_mem Eliminates disk-based sorting

Max_parallel_workers Increases multi-core utilization

Bgwriter parameters Reduces checkpoint I/O spikes

Query Performance Optimization

Planner Configuration

Statistics Collection

The query planner relies on accurate statistical information about tables and indexes to generate efficient

execution plans. The default_statistics_target parameter controls the level of detail in column statistics

gathered during ANALYZE operations, directly influencing the query planner's ability to select optimal

execution strategies [5]. This parameter represents a trade-off between planning quality and the

computational cost of collecting and storing statistics. Higher values increase the number of distinct values

tracked for each column, enabling more precise selectivity estimates but requiring more processing time

during ANALYZE operations and more storage in the pg_statistic system catalog [6].

Cost Parameters

The PostgreSQL query planner uses cost estimates to evaluate different execution plans. Key parameters

include random_page_cost, seq_page_cost, cpu_tuple_cost, and cpu_index_tuple_cost, which should

reflect actual hardware characteristics [5]. The random_page_cost parameter represents the estimated cost

of non-sequential disk access relative to sequential access. Modern storage technologies such as SSDs have

significantly different performance characteristics compared to traditional hard drives, warranting

adjustments to these parameters. Similarly, effective_cache_size influences the planner's understanding of

available system memory for caching data, affecting its decisions about index usage versus sequential scans

[6].

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

176

Autovacuum Tuning

PostgreSQL's MVCC architecture requires regular maintenance through vacuum operations to reclaim

space and update statistics. The autovacuum feature automates this maintenance, with several configuration

parameters controlling its behavior [5]. The autovacuum_max_workers parameter determines the number

of concurrent maintenance processes, while autovacuum_naptime controls how frequently the system

checks for tables needing maintenance. The vacuum threshold and scale factor parameters determine when

tables become eligible for maintenance based on the number of modified tuples [6].

Without proper autovacuum configuration, databases can experience performance degradation over time

due to bloat and outdated statistics. Tables with frequent updates require more aggressive autovacuum

settings to prevent excessive bloat, while rarely modified tables can use more conservative settings to

reduce maintenance overhead. The balance between timely maintenance and system resource utilization

depends on workload characteristics and available system resources [5].

Parallel Query Execution

PostgreSQL can utilize multiple CPU cores for query execution through its parallel query features. Several

configuration parameters control when and how parallelism is employed [5]. The

max_parallel_workers_per_gather parameter limits worker processes for a single gather operation, while

max_parallel_workers sets a system-wide limit. The parallel cost parameters (parallel_setup_cost and

parallel_tuple_cost) influence when the planner considers parallel execution worthwhile [6].

The minimum size thresholds for parallel operations (min_parallel_table_scan_size and

min_parallel_index_scan_size) prevent the system from using parallelism for small operations where the

overhead would outweigh the benefits. Effective parallelism configuration depends on available CPU

resources, query complexity, and data volume. Analytical workloads involving large data scans typically

benefit most from parallel execution, while OLTP workloads with short, simple queries may see minimal

improvements or even performance degradation from parallelism overhead [5].

Table 2: PostgreSQL Query Optimization Parameters [5,6]

Parameter Effect

Default_statistics_target Improves plan accuracy

Random_page_cost Optimizes index usage

Autovacuum_max_workers Prevents database bloat

Autovacuum_naptime Controls maintenance frequency

Max_parallel_workers Enhances analytical query speed

Security Hardening

Security hardening represents a critical aspect of PostgreSQL configuration that is often overlooked in favor

of performance optimization. A comprehensive security strategy for PostgreSQL deployments must address

multiple layers of protection, from network access controls to authentication mechanisms, privilege

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

177

management, and vulnerability mitigation. Proper security configuration significantly reduces the risk of

unauthorized access, data breaches, and service disruptions while maintaining required functionality for

legitimate users.

The PostgreSQL Security Hardening Framework in figure below illustrates the four essential components

of database security and their interconnected nature in creating a defense-in-depth approach.

Fig 1: PostgreSQL Security Hardening Framework [7,8]

Network and Connection Security

Connection Settings

Restricting network access by configuring listen addresses and setting appropriate maximum connections

represents a fundamental security measure [7]. The listen_addresses parameter controls which network

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

178

interfaces PostgreSQL binds to, directly affecting the database's network exposure. Limiting this parameter

prevents remote connections entirely, while configuring it to specific IP addresses restricts access to known

networks. Additionally, implementing proper firewall rules at the operating system level provides an

essential layer of defense beyond PostgreSQL's internal security mechanisms [8].

SSL Configuration

Implementing SSL with appropriate certificate files, key files, CA files, and cipher specifications enhances

communication security and prevents eavesdropping [7]. Properly configured SSL not only encrypts data

in transit but also provides client authentication mechanisms through certificate validation. Common

implementation errors include using self-signed certificates without proper validation, failing to enforce

SSL for all connections, and neglecting certificate renewal processes [8].

Authentication and Authorization

Authentication Methods

The pg_hba.conf file should implement a principle of least privilege, using appropriate authentication

methods for different connection types and sources [7]. PostgreSQL supports various authentication

methods ranging from basic password authentication to integration with external authentication systems

like LDAP, RADIUS, or PAM. External authentication systems can provide centralized user management

and advanced security features such as multi-factor authentication, though they add complexity to the

configuration and potentially expand the attack surface if not properly secured [8].

Password Policy

Using strong password encryption methods protects against credential theft and brute force attacks [7].

Modern PostgreSQL installations should use secure password hashing algorithms rather than obsolete

methods. Beyond the database configuration, organizations should implement comprehensive password

policies including minimum length requirements, complexity rules, and regular rotation schedules.

Password policies should be enforced at both the database and application levels to provide defense in depth

[8].

Privilege Management

Implementing role-based access control by revoking public schema privileges and creating specific roles

with minimal required permissions enhances database security [8]. One of the most common security

mistakes in PostgreSQL deployments is using superuser accounts for routine operations or application

connections. Creating purpose-specific roles with minimal necessary privileges significantly reduces the

potential damage from compromised credentials or SQL injection attacks. Regular privilege audits should

be conducted to identify and remediate permission drift over time [7].

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

179

Common Vulnerabilities and Mitigations

SQL Injection Prevention

Implementing prepared statements with parameterized queries rather than string concatenation prevents

SQL injection attacks [8]. While query parameterization is primarily an application-level concern, database

administrators can reduce risk by limiting privileges, implementing row-level security policies, and using

views to restrict data access. Additionally, proper error handling configuration prevents information leakage

that could assist attackers in refining injection attempts [7].

Protection Against Information Disclosure

Configuring appropriate logging levels and disabling debug information prevents sensitive information

exposure while maintaining operational visibility [8]. Default PostgreSQL installations often include

verbose error messages and logging that may expose sensitive information such as table structures, query

patterns, or even data fragments. Database administrators must balance the need for operational monitoring

with security considerations, ensuring that logs capture sufficient information for troubleshooting without

creating additional security risks [7].

Logging and Monitoring

Effective logging and monitoring form the foundation of PostgreSQL database maintenance, performance

optimization, and troubleshooting. A properly configured logging system captures critical information

about database operations while maintaining reasonable log volumes and performance overhead. When

combined with systematic analysis methodologies, these logs provide invaluable insights into database

behavior and potential issues before they impact production systems. The PostgreSQL Logging and

Monitoring Framework in the figure below illustrates the four interconnected components that form a

comprehensive observability strategy for database environments.

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

180

Fig 2: PostgreSQL Logging and Monitoring Framework [9,10]

Logging Configuration

A comprehensive logging configuration forms the foundation of effective database monitoring and

troubleshooting. The log_destination parameter determines where PostgreSQL sends log output, with

options including stderr, csvlog, syslog, and eventlog [9]. When the logging_collector is enabled,

PostgreSQL captures log messages and writes them to files according to the configured parameters. Setting

appropriate log_directory and log_filename values ensures logs are stored in accessible locations with

meaningful names, while log_rotation_age and log_rotation_size parameters prevent excessive disk

consumption by automatically rotating logs based on time or size thresholds [10].

Performance Monitoring

Effective performance monitoring requires visibility into database activities, resource utilization, and query

execution. The track_activities parameter enables the collection of information about executing statements,

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

181

providing visibility into current database operations [9]. Additional parameters such as track_counts,

track_io_timing, and track_functions allow administrators to collect increasingly detailed statistics about

database performance at the cost of slightly higher overhead. These parameters should be configured based

on monitoring requirements, with more detailed tracking enabled during troubleshooting periods and

potentially reduced during peak load times [10].

Statement Logging

Selective statement logging provides detailed visibility into database activity while managing performance

overhead and log volume. The log_statement parameter controls which SQL statements are logged, with

options ranging from none to all statements [9]. For performance analysis, log_min_duration_statement is

particularly valuable as it captures only statements exceeding a specified execution time threshold.

Additional parameters such as log_checkpoints, log_connections, log_disconnections, and log_lock_waits

provide visibility into specific database events that can impact performance or security. Properly configured

statement logging enables identification of problematic queries while maintaining reasonable log volumes

[10].

Analyzing Performance Issues

Effective performance analysis requires both a structured methodology and appropriate tools for log data

processing. A systematic approach to log analysis integrates database logs with system-level metrics to

provide comprehensive visibility into the database environment [10]. The analysis process typically

includes identifying slow queries through log_min_duration_statement logs, examining lock contention

through log_lock_waits entries, and monitoring checkpoint behavior through log_checkpoints data. These

logs provide insights into database performance patterns that might otherwise remain hidden [9].

For advanced analysis, log formats should be configured to include contextual information such as

timestamps, session identifiers, and application names through the log_line_prefix parameter. This

contextual data enables correlation between related events and facilitates tracing transaction flows through

the system. Log analysis tools can then process this structured data to identify patterns, anomalies, and

trends that indicate performance bottlenecks or potential issues before they significantly impact users [10].

CONCLUSION

Effective PostgreSQL configuration represents a critical but often overlooked aspect of database

management. The structured approach presented balances performance optimization with security

hardening across key configuration domains. Adopting these best practices can yield significant

performance improvements while simultaneously enhancing security posture. The configuration parameters

discussed should be viewed as starting points that require empirical validation and adjustment based on

specific workload patterns, hardware configurations, and security requirements. Future directions include

exploring the impact of emerging storage technologies on optimal PostgreSQL configuration, developing

machine learning approaches to automate configuration tuning, and investigating the security implications

 European Journal of Computer Science and Information Technology, 13(47),172-182, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

182

of PostgreSQL's newer features. As PostgreSQL continues to evolve, ongoing refinement of configuration

best practices remains essential for maintaining optimal database performance and security.

REFERENCES

[1] Elizabeth Inersjo, "Comparing database optimisation techniques in PostgreSQL," KTH, 2021.

[Online]. Available: https://www.diva-portal.org/smash/get/diva2:1621796/FULLTEXT01.pdf

[2] Ibrar Ahmed, "PostgreSQL Performance Tuning: Optimizing Database Parameters for Maximum

Efficiency," Percona, 2023. [Online]. Available: https://www.percona.com/blog/tuning-

postgresql-database-parameters-to-optimize-performance

[3] Shiv Iyer, "Optimizing PostgreSQL Performance: Configuring Memory Settings for Reduced Disk I/O

and Improved Thread Pool Efficiency," LinkedIn, 2023. [Online]. Available:

https://www.linkedin.com/pulse/optimizing-postgresql-performance-configuring-memory-

settings-iyer-0a8tc/

[4] Sunny Srinidhi, "A Complete Guide to PostgreSQL Performance Tuning: Key Optimization Tips

DBAs Should Know," Sematext, 2025. [Online]. Available:

https://sematext.com/blog/postgresql-performance-tuning/

[5] Postgres Pro, "Chapter 19. Server Configuration," [Online]. Available:

https://postgrespro.com/docs/enterprise/10/runtime-config-query

[6] Egor Rogov, "PostgreSQL 14 Internals," Postgres Professional, 2022. [Online]. Available:

https://edu.postgrespro.com/postgresql_internals-14_parts1-2_en.pdf

[7] Ibrar Ahmed, "PostgreSQL Database Security: External Server-Based Authentication," Percona, 2023.

[Online]. Available: https://www.percona.com/blog/postgresql-database-security-external-server-

based-authentication/

[8] Hans-Jürgen Schönig, "PostgreSQL Security: 12 rules for database hardening," Cybertec, 2023.

[Online]. Available: https://www.cybertec-postgresql.com/en/postgresql-security-things-to-avoid-

in-real-life/

[9] PostgreSQL, "19.8. Error Reporting and Logging: Chapter 19. Server Configuration," [Online].

Available: https://www.postgresql.org/docs/current/runtime-config-logging.html

[10] Daniel de Oliveira, "PostgreSQL Logs: Logging Setup and Troubleshooting," 2024. [Online].

Available: https://www.loggly.com/use-cases/postgresql-logs-logging-setup-and-troubleshooting/

https://www.diva-portal.org/smash/get/diva2:1621796/FULLTEXT01.pdf
https://www.percona.com/blog/tuning-postgresql-database-parameters-to-optimize-performance/
https://www.percona.com/blog/tuning-postgresql-database-parameters-to-optimize-performance/
https://www.linkedin.com/pulse/optimizing-postgresql-performance-configuring-memory-settings-iyer-0a8tc/
https://www.linkedin.com/pulse/optimizing-postgresql-performance-configuring-memory-settings-iyer-0a8tc/
https://sematext.com/blog/postgresql-performance-tuning/
https://postgrespro.com/docs/enterprise/10/runtime-config-query
https://edu.postgrespro.com/postgresql_internals-14_parts1-2_en.pdf
https://www.percona.com/blog/postgresql-database-security-external-server-based-authentication/
https://www.percona.com/blog/postgresql-database-security-external-server-based-authentication/
https://www.percona.com/blog/postgresql-database-security-external-server-based-authentication/
https://www.cybertec-postgresql.com/en/postgresql-security-things-to-avoid-in-real-life/
https://www.cybertec-postgresql.com/en/postgresql-security-things-to-avoid-in-real-life/
https://www.cybertec-postgresql.com/en/postgresql-security-things-to-avoid-in-real-life/
https://www.postgresql.org/docs/current/runtime-config-logging.html
https://www.loggly.com/use-cases/postgresql-logs-logging-setup-and-troubleshooting/

