
 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

104

The Evolution of User Interface Development

in Salesforce: From Visualforce to Lightning

Web Components

Chakra Dhari Gadige

Independent Researcher, USA

doi: https://doi.org/10.37745/ejcsit.2013/vol13n40104114 Published June 15, 2025

Citation: Gadige CD (2025) The Evolution of User Interface Development in Salesforce: From Visualforce to

Lightning Web Components, European Journal of Computer Science and Information Technology, 13(40), 104-114

Abstract: This article examines the evolutionary trajectory of Salesforce's user interface development

frameworks, from Visualforce to Lightning Web Components. Through comparative analysis of

architecture, performance characteristics, and development paradigms, the article illustrates how this

evolution mirrors broader trends in web development standards and component-based software

engineering. The transition represents a significant shift from server-centric rendering to client-side

processing that embraces modern web standards, resulting in enhanced performance, improved developer

experience, and greater alignment with contemporary software development practices. Each framework

generation addresses specific technological challenges while responding to changing enterprise

requirements and user expectations, demonstrating how platform technologies adapt to remain relevant in

a rapidly evolving digital ecosystem.

Keywords: component-based architecture, web standards, enterprise UI frameworks, client-side

processing, developer experience

INTRODUCTION

The evolution of enterprise software interfaces reflects broader technological shifts in computing

paradigms, development methodologies, and user expectations. Modern enterprise applications face

increasing demands for high performance, responsiveness, and intuitive user experiences while operating

across diverse platforms. The journey through three distinct generations of user interface frameworks—

Visualforce, Aura Components, and Lightning Web Components—provides an illuminating case study of

this evolution in cloud-based customer relationship management platforms.

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

105

Enterprise applications have increasingly adopted component-based approaches to UI development,

moving away from monolithic architectures as organizations seek to improve developer productivity and

user experience. According to industry research, the adoption of modern UI frameworks enables

organizations to deliver consistent experiences across desktop and mobile devices while reducing

development complexity [1]. The strategic importance of framework selection has grown as enterprise

applications must support increasing numbers of concurrent users with expectations shaped by consumer-

grade applications.

This progression demonstrates a fundamental shift from server-rendered pages to component-based

architectures utilizing modern web standards. User interface performance improvements remain critical as

studies show that page load times directly impact user satisfaction and productivity in enterprise contexts.

The migration from traditional server-rendered frameworks to modern component-based systems reflects

wider industry trends toward distributed processing models and enhanced interactivity [1].

The transition between frameworks incorporates important performance considerations beyond just the

framework selection itself. Component design patterns, data-fetching strategies, and rendering

optimizations play crucial roles in delivering responsive interfaces. When implementing component-based

frameworks, organizations must carefully manage component initialization costs, network request

optimization, and application structure to maximize performance benefits [2]. Best practices for framework

utilization evolve alongside the frameworks themselves, with performance optimization techniques

becoming increasingly sophisticated.

The transformation from monolithic page-based architectures to modular, component-based systems

leverages client-side processing capabilities while addressing the inherent challenges of complex enterprise

applications. These challenges include handling large datasets, maintaining state across component

hierarchies, and optimizing rendering performance. Framework evolution has progressively addressed these

concerns through improved isolation, more efficient rendering cycles, and better integration with modern

development tooling [2].

This article examines the architectural characteristics, technical foundations, and development paradigms

of each framework generation, highlighting how each represented a strategic response to changing

technological landscapes and developer expectations. The increasing focus on component reusability,

architecture standardization, and performance optimization reflects broader industry recognition of the

importance of maintainable, scalable user interface architectures in enterprise applications.

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

106

The Visualforce Era: Server-Centric Foundation

Architectural Overview

Visualforce, introduced in the late 2000s, established an initial approach to custom user interface

development within enterprise platforms. This framework emerged during a period when service-oriented

architectures were gaining prominence in enterprise systems. Built on a server-centric model, Visualforce

utilized a tag-based markup language syntactically similar to HTML, combined with a controller-based

processing model implemented in a proprietary programming language. This approach aligned with

contemporary enterprise architecture principles that emphasized centralized processing and standardized

interfaces across organizational boundaries [3].

The framework's implementation followed the four-layer enterprise architecture model prevalent during

this era, with clear separation between presentation, business logic, data access, and storage layers. This

architectural pattern supported the governance requirements of enterprise applications while allowing for

customization within defined constraints. The tag-based approach provided developers with familiar syntax

while maintaining platform-specific capabilities for enterprise data management and security enforcement.

Technical Characteristics

Visualforce pages operated primarily through server-side processing, with most rendering and business

logic executed on servers before delivering completed HTML to the client browser. The MVC (Model-

View-Controller) design pattern implementation segregated data representation from visual presentation,

enabling maintainable code organization across complex enterprise applications. Server-side rendering

ensured consistent output across diverse browser environments, which was a significant concern during the

framework's initial development period.

This technical approach prioritized backend integration over frontend performance, reflecting enterprise

priorities of the late 2000s. The architecture focused on data integrity and process consistency rather than

interaction speed, an appropriate tradeoff for enterprise applications of that era. Web framework evaluation

studies have demonstrated that server-rendered frameworks typically excel in maintainability metrics while

sacrificing some responsiveness compared to client-side alternatives [4]. The strong integration with

backend services facilitated direct binding to database objects and enterprise authentication systems with

minimal client-side code.

Limitations and Challenges

While revolutionary for its time, Visualforce faced increasing limitations as web development standards

evolved toward more dynamic interfaces. Performance constraints stemming from server-round trips

became problematic as application complexity grew and user expectations shifted. Each user interaction

typically generated complete request-response cycles, creating perceivable latency that contrasted

unfavorably with emerging client-centric frameworks.

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

107

The framework demonstrated limited responsiveness for complex interactive interfaces as modern web

applications began adopting asynchronous processing models. Research on framework selection indicates

that evaluation criteria for enterprise web technologies shifted significantly between 2010 and 2015, with

increased emphasis on mobile compatibility, rendering performance, and development productivity [4].

These changing priorities highlighted the architectural limitations of server-centric approaches.Challenges

in mobile adaptation became increasingly apparent as responsive design principles gained prominence. The

server-rendered HTML required additional optimization for different screen sizes and touch interfaces. The

architecture's page lifecycle model created particular difficulties for implementing single-page application

patterns, which became industry standard approaches by the mid-2010s. As enterprise architecture evolved

toward more modular, component-based structures, the framework's monolithic page approach represented

an increasingly outdated development paradigm [3].

Table 1: Visualforce Architecture: Server-Centric Characteristics and Development Impact [3,4]

Framework Characteristic Impact on Development

Server-Centric Processing High Backend Integration, Lower Frontend Performance

MVC Design Pattern Implementation Improved Code Organization and Maintainability

Page-Based Architecture Limited Component Reusability and Modularity

Full Request-Response Cycles Increased Latency for User Interactions

Limited Mobile Optimization Challenges with Responsive Design Implementation

Aura Components: Transition to Component-Based Architecture

Paradigm Shift

The introduction of Aura Components in 2014 represented a significant response to the emergent

component-based UI development paradigm transforming enterprise applications. This transition embraced

a fundamentally different architectural approach that aligned with evolving web standards and user

expectations for more responsive interfaces. Component-based architecture with encapsulated functionality

formed the cornerstone of this new approach, enabling developers to create reusable UI elements with self-

contained logic and presentation. This architectural pattern supported modern software engineering

principles like separation of concerns and information hiding, facilitating more maintainable codebases

across complex enterprise implementations [5].

Event-driven communication between components established a more flexible interaction model compared

to previous monolithic frameworks. This pattern enabled loose coupling between UI elements, with events

passing data and triggering actions without components needing direct knowledge of one another's

implementation details. Increased client-side rendering and processing represented a fundamental shift from

server-centric models, leveraging improved browser capabilities to enhance user experience. The

framework included enhanced support for responsive design patterns, allowing applications to adapt

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

108

gracefully to different screen sizes and device capabilities without requiring separate implementations for

mobile and desktop experiences.

Technical Implementation

Aura introduced a proprietary component model with specific patterns and conventions that governed

development. This architecture represented a modular approach where each component became a self-

contained building block with its own lifecycle, properties, methods, and events. The ability to build

complex systems from simple, interchangeable parts is one of the core advantages of component-based

architecture in enterprise systems [5]. Custom markup for component definition provided developers with

a declarative syntax for defining component structure and behavior. This approach created a familiar entry

point for developers transitioning from traditional markup languages while introducing component-specific

extensions.

Client-side JavaScript controllers and helpers managed component logic and user interactions directly in

the browser. This approach distributes processing between server and client, with the framework handling

aspects like data binding, event propagation, and component lifecycle management. Component bundles

containing markup, controller, helper, and style resources provided a cohesive organization pattern that

encapsulated all resources needed for a component's operation within a single logical unit. The framework-

specific event system for component communication established patterns for both component-to-

component interaction and system-level notifications, enabling complex interaction patterns while

maintaining loose coupling.

Advanced Capabilities and Limitations

Aura significantly advanced UI capabilities while introducing new complexities that organizations needed

to navigate. Enhanced interactivity through client-side processing created more engaging user experiences

that approached the responsiveness of native applications. Improved component reusability represented a

significant advancement in development efficiency, allowing organizations to establish component libraries

that could be leveraged across different applications. This reusability is a critical factor in enterprise

application development, where consistency and efficiency are paramount concerns [6].

Specialized framework learning requirements presented adoption challenges, as developers needed to

master framework-specific patterns and conventions. The proprietary nature of the framework created a

steeper learning curve compared to approaches that more closely aligned with standard web development

practices. Performance limitations with complex component hierarchies emerged as applications scaled,

particularly when applications contained deeply nested component structures or managed large datasets.

According to enterprise application research, framework selection has significant implications for long-

term application maintainability and performance characteristics [6].

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

109

Proprietary patterns divergent from mainstream web development created challenges for integration with

external libraries and tools, as adapters or wrappers were often required to bridge between framework-

specific and standard web approaches. This limitation became increasingly significant as the broader web

ecosystem continued to evolve rapidly, with new tools and approaches emerging that could not be easily

incorporated into the framework's proprietary architecture.

Table 2: Aura Components: Key Architectural Features and Development Implications [5,6]

Architectural Feature Development Impact

Component-Based Architecture Improved Reusability and Maintainability

Event-Driven Communication Enhanced Loose Coupling Between Components

Client-Side Processing Increased Responsiveness and User Experience

Proprietary Component Model Steeper Learning Curve for Developers

Component Bundling Cohesive Organization of Related Resources

Lightning Web Components: Embracing Web Standards

Fundamental Reorientation

Lightning Web Components, introduced in 2019, represented a strategic realignment with modern web

standards in enterprise application development. This framework leverages native web components

specifications and modern ECMAScript features, fundamentally changing the developer experience and

performance profile. The transition marked a deliberate shift away from proprietary development patterns

toward alignment with broader web ecosystem practices. By building on standardized technologies, the

framework enabled development teams to leverage widely applicable skills rather than requiring specialized

knowledge unique to a specific platform [7].

This reorientation facilitated more sustainable application architectures that could evolve alongside web

platform advancements rather than depending on proprietary roadmaps. The standards-based approach

improved talent acquisition possibilities for organizations by broadening the pool of qualified developers.

With components built using modern web standards, the framework positioned applications to benefit

automatically from ongoing browser performance optimizations without requiring custom implementation.

The architecture established a foundation for progressive enhancement that would allow applications to

incorporate new platform capabilities as they became available in future browser releases.

Technical Foundations

LWC is built on several key modern web technologies that collectively establish a standards-compliant

foundation. Web Components specifications, including Custom Elements and Shadow DOM, form the core

architectural structure. These specifications enable the creation of encapsulated, reusable UI components

with controlled rendering contexts that prevent style and markup conflicts in complex applications. This

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

110

approach aligns with modern development practices where component boundaries are clearly defined and

interactions occur through well-documented public APIs [8].

Modern JavaScript (ECMAScript 6+) features provide significant developer productivity enhancements

through capabilities like classes, modules, arrow functions, and async/await patterns. These language

features enable more expressive, maintainable code while improving runtime performance through

optimizations in contemporary JavaScript engines. Decorators for property and event handling represent a

declarative approach to component API definition that reduces boilerplate code while documenting

component interfaces. This pattern simplifies development by automatically generating the necessary

infrastructure for property change detection and event dispatching [7].

Native DOM APIs enable direct interaction with browser capabilities without intermediary abstraction

layers, reducing framework overhead and improving performance by eliminating unnecessary translation

between proprietary representations and browser-native structures. This direct approach minimizes the

processing required between user interaction and interface updates, creating more responsive applications

even on devices with limited capabilities. The framework's embrace of standard patterns enables developers

to apply common web development knowledge rather than learning platform-specific approaches for

common tasks.

Performance and Developer Experience Improvements

The adoption of web standards delivered significant advantages across multiple dimensions of application

development and operation. Reduced framework overhead results from leveraging native browser

capabilities rather than implementing equivalent functionality in framework code. Applications require

fewer bytes of framework code to achieve the same functionality, resulting in smaller application bundles

and faster initial loading times. The reduced complexity in component implementation translates to

improved runtime performance, particularly on mobile devices with limited processing capabilities

[8].Faster component rendering and initialization stem from direct use of native browser APIs without

intermediate abstraction layers. This approach minimizes the processing required between user interactions

and visible interface updates, creating more responsive applications. Enhanced browser optimization

capabilities emerge from alignment with standard patterns that browser vendors specifically target for

performance improvements. The framework benefits automatically from ongoing browser optimizations

without requiring framework-specific code changes [7].

Lower learning curve for web developers represents a significant advantage for organizations adopting the

framework. By leveraging standard technologies, teams can utilize existing web development expertise

rather than requiring specialized framework knowledge. Better tooling compatibility with standard web

development ecosystems streamlines development workflows and enables teams to leverage popular

development tools without requiring specialized plugins or extensions. This compatibility improves

developer productivity throughout the application lifecycle, from initial development through testing and

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

111

maintenance phases. The standards-based approach ultimately delivers more maintainable applications that

can evolve alongside web platform capabilities [8].

Table 3: Lightning Web Components: Web Standards Implementation and Organizational Benefits [7,8]

Web Standards Feature Organizational Benefit

Custom Elements & Shadow DOM Component Encapsulation and Conflict Prevention

Modern ECMAScript Features Enhanced Developer Productivity and Code Maintainability

Native DOM APIs Improved Performance and Reduced Framework Overhead

Standard Web Development Patterns Lower Learning Curve and Broader Developer Pool

Browser-Optimized Components Automatic Performance Improvements with Browser Updates

Comparative Analysis of Framework Evolution

Architectural Progression

The evolution from Visualforce to Lightning Web Components demonstrates several clear architectural

trends that parallel broader shifts in enterprise architecture development. The most fundamental transition

represents a shift from server-centric to client-centric processing models. This progression reflects the

evolution of enterprise architecture from traditional monolithic systems toward more distributed computing

models with enhanced client capabilities. As enterprise architecture has evolved through various stages

from mainframe-centric to cloud-native designs, UI frameworks have similarly transformed to distribute

processing more effectively between servers and clients [9].

The movement from page-based to component-based architecture represents a pivotal transformation in

application structure. This shift aligns with broader enterprise architecture principles of modularity and

reusability. The decomposition of monolithic pages into discrete, interchangeable components mirrors the

evolution of enterprise systems from tightly coupled applications to service-oriented and microservice

architectures. This architectural evolution enables more flexible system composition and adaptation to

changing business requirements while supporting iterative development approaches [9].

The transition from proprietary technologies to web standards represents perhaps the most significant

architectural shift across framework generations. This evolution toward standards alignment follows

enterprise architecture best practices that emphasize the use of industry standards to reduce vendor lock-in

and improve interoperability. Component-based architectures built on standard technologies enable greater

flexibility in technology selection and integration while providing clearer migration paths as technologies

evolve. This standardization supports the enterprise architecture goal of creating adaptive systems that can

incorporate new capabilities as they emerge [10].

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

112

Development Paradigm Transformation

The framework evolution also reflects changing development methodologies across the enterprise

application landscape. The transformation from waterfall-compatible page development to agile component

creation represents a significant shift in how development teams approach application construction.

Component-based approaches support incremental development and delivery, allowing teams to build and

test individual components independently before integration. This modularity facilitates parallel

development workflows and more frequent delivery cycles, aligning with modern enterprise architecture

principles that emphasize adaptability and responsiveness to change [10].

Increased focus on reusability and composition emerged as frameworks evolved toward component-based

architectures. Component-based architecture promotes the development of self-contained, reusable

building blocks with well-defined interfaces. This approach enables organizations to establish component

libraries that can be leveraged across multiple applications, improving consistency while reducing

redundant development efforts. The encapsulation provided by modern component models enhances

maintainability by isolating changes and reducing unexpected dependencies between system elements [10].

Growing alignment with mainstream web development practices characterizes the progression across

framework generations. This alignment enables organizations to leverage broader industry expertise rather

than requiring specialized platform knowledge. Modern enterprise architecture approaches recognize the

importance of skills availability and developer productivity as key factors in technology selection. By

adopting standard patterns and technologies, organizations can reduce training requirements and expand

their talent pool while improving long-term system maintainability [9].

Performance and User Experience Impact

Each framework generation delivered measurable improvements in application performance and user

experience capabilities. Reduced page load and interaction response times represent the most immediately

noticeable improvements across generations. This performance evolution parallels the increasing emphasis

on user experience within enterprise architecture frameworks, recognizing that system responsiveness

directly impacts user productivity and satisfaction. Modern enterprise architecture approaches incorporate

user-centered design principles that prioritize performance optimization alongside functionality [9].

Enhanced support for complex, data-rich interfaces emerged as frameworks evolved to handle more

sophisticated enterprise requirements. Component-based architectures enable more efficient handling of

complex data relationships by encapsulating related data and behavior within discrete components with

clear responsibilities. This approach supports the development of sophisticated business applications that

can process and visualize complex information while maintaining performance and usability. The improved

data handling capabilities align with enterprise architecture goals of delivering actionable business

intelligence through intuitive interfaces [10].

Improved mobile and cross-device experiences represent a critical capability evolution as enterprise

applications increasingly support distributed work patterns. Modern component architectures facilitate

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

113

responsive design through reusable components that adapt to different viewport sizes and interaction

models. This cross-device compatibility supports enterprise architecture strategies for digital workplace

transformation and mobile enablement. The evolution toward lightweight, standards-based components

particularly benefit mobile scenarios where bandwidth and processing constraints require efficient

implementations [10].

Table 4: UI Framework Evolution: Key Architectural Shifts and Enterprise Benefits [9,10]

Evolutionary Trend Enterprise Architecture Benefit

Server-Centric to Client-Centric Processing Enhanced Distributed Computing Capabilities

Page-Based to Component-Based

Architecture
Improved Modularity and System Flexibility

Proprietary to Standards-Based

Technologies
Reduced Vendor Lock-in and Better Interoperability

Waterfall to Agile Development

Methodologies
Faster Delivery Cycles and Parallel Development

Enhanced Performance and Mobile

Optimization

Better User Experience and Cross-Device

Compatibility

CONCLUSION

The evolution of Salesforce's UI development frameworks—from Visualforce to Aura to Lightning Web

Components—demonstrates a strategic progression that mirrors broader trends in web application

development. This journey reflects a fundamental shift from server-rendered monolithic pages to

component-based architectures, leveraging modern web standards and client-side processing capabilities.

The transition to Lightning Web Components represents more than a technical upgrade; it signifies

Salesforce's recognition of the importance of aligning with standardized development practices and

leveraging native browser capabilities. This evolution has delivered substantial benefits in performance,

developer productivity, and application maintainability. The lessons from this UI framework progression—

embracing standards, prioritizing performance, and enhancing developer experience—offer relevant

guidance for other enterprise platforms navigating similar technological transitions.

REFERENCES

[1] Sencha, "How Enterprise Applications Use UI Frameworks to Build Modern Web Apps,"

Sencha.com, 2023. [Online]. Available: https://www.sencha.com/blog/how-enterprise-

applications-use-ui-frameworks-to-build-modern-web-apps/

[2] Christophe Coenraets, "Lightning Components Performance Best Practices," Developers,

2017. [Online]. Available: https://developer.salesforce.com/blogs/developer-

relations/2017/04/lightning-components-performance-best-practices

https://www.sencha.com/blog/how-enterprise-applications-use-ui-frameworks-to-build-modern-web-apps/
https://www.sencha.com/blog/how-enterprise-applications-use-ui-frameworks-to-build-modern-web-apps/
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-components-performance-best-practices
https://developer.salesforce.com/blogs/developer-relations/2017/04/lightning-components-performance-best-practices

 European Journal of Computer Science and Information Technology, 13(40), 104-114, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

114

[3] Razi Chaudhry, "Evolution of Enterprise Architecture (EA-Part-3)," Medium, 2024. [Online].

Available: https://medium.com/razi-chaudhry/evolution-of-enterprise-architecture-ea-part-3-

94beda636464

[4] David Mia, "Evaluating Web Frameworks: A Comparative Study for Selecting the Optimal

Technology Based on Development Requirements," ResearchGate, 2025. [Online]. Available:

https://www.researchgate.net/publication/389172736_Evaluating_Web_Frameworks_A_Compar

ative_Study_for_Selecting_the_Optimal_Technology_Based_on_Development_Requirements

[5] Ishaan Puniani, "What Is Component-Based Architecture? Benefits, Examples & Use Cases,"

FabBuilder, 2025. [Online]. Available: https://fabbuilder.com/blogs/what-is-component-based-

architecture-benefits-examples-use-cases/

[6] Gartner, "Enhance Your Enterprise Apps to Drive the Modern Digital Business," Gartner.com.

[Online]. Available: https://www.gartner.com/en/information-technology/topics/enterprise-apps

[7] UATeam, "LWC Best Practices: How to Build Efficient and Scalable Lightning Web Components,"

Medium, 2024. [Online]. Available: https://medium.com/@aleksej.gudkov/lwc-best-practices-

how-to-build-efficient-and-scalable-lightning-web-components-1b816a139506

[8] Meshach Dimka, "Lightning Web Components: The Future of Salesforce Development," DKloud,

2024. [Online]. Available: https://www.dkloudconsulting.com/lightning-web-components-the-

future-of-salesforce-development/

[9] Capstera, "Evolution of Enterprise Architecture," Capstera.com, 2024. [Online]. Available:

https://www.capstera.com/evolution-enterprise-architecture/

[10] Hamir Nandaniya, "A Guide to Component-Based Design and Architecture: Features, Benefits, and

More," Maruti Techlabs. [Online]. Available: https://marutitech.com/guide-to-component-based-

architecture/

https://medium.com/razi-chaudhry/evolution-of-enterprise-architecture-ea-part-3-94beda636464
https://medium.com/razi-chaudhry/evolution-of-enterprise-architecture-ea-part-3-94beda636464
https://www.researchgate.net/publication/389172736_Evaluating_Web_Frameworks_A_Comparative_Study_for_Selecting_the_Optimal_Technology_Based_on_Development_Requirements
https://www.researchgate.net/publication/389172736_Evaluating_Web_Frameworks_A_Comparative_Study_for_Selecting_the_Optimal_Technology_Based_on_Development_Requirements
https://fabbuilder.com/blogs/what-is-component-based-architecture-benefits-examples-use-cases/
https://fabbuilder.com/blogs/what-is-component-based-architecture-benefits-examples-use-cases/
https://www.gartner.com/en/information-technology/topics/enterprise-apps
https://medium.com/@aleksej.gudkov/lwc-best-practices-how-to-build-efficient-and-scalable-lightning-web-components-1b816a139506
https://medium.com/@aleksej.gudkov/lwc-best-practices-how-to-build-efficient-and-scalable-lightning-web-components-1b816a139506
https://www.dkloudconsulting.com/lightning-web-components-the-future-of-salesforce-development/
https://www.dkloudconsulting.com/lightning-web-components-the-future-of-salesforce-development/
https://www.capstera.com/evolution-enterprise-architecture/
https://marutitech.com/guide-to-component-based-architecture/
https://marutitech.com/guide-to-component-based-architecture/

