
 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

133

Best Practices for Debugging Embedded

Software

Sanjeev Shankar
Arizona State University, USA

Citation: Shankar S. (2025) Best Practices for Debugging Embedded Software, European Journal of Computer

Science and Information Technology, 13(42),133-146, https://doi.org/10.37745/ejcsit.2013/vol13n42133146

Abstract: This article explores effective debugging strategies for embedded systems that operate under

hardware constraints, real-time requirements, and limited visibility. It begins by emphasizing the

importance of understanding system fundamentals, including microcontroller architecture, memory

layouts, interrupt structures, and communication protocols. The work presents systematic debugging

approaches centered on problem reproduction, component isolation, and regression testing, alongside an

examination of hardware-based debugging tools such as JTAG/SWD interfaces, in-circuit emulators,

oscilloscopes, and logic analyzers. Software-based techniques, including strategic serial output methods

and state monitoring mechanisms, are discussed as accessible debugging approaches. The article further

explores runtime analysis techniques for memory and resource management before delving into advanced

strategies including instrumentation, watchdog mechanisms, and hardware abstraction. Case-specific

approaches addressing power issues, communication protocols, and environmental factors complete this

comprehensive examination of embedded system debugging methodologies.

Keywords: embedded debugging, Memory integrity, Real-time systems, Watchdog mechanisms,

Environmental testing

INTRODUCTION

Debugging embedded systems presents unique challenges due to hardware constraints, real-time

requirements, and limited visibility into system operation. Unlike general-purpose computing

environments, embedded systems often lack comprehensive debugging infrastructure, particularly without

trace support. This article explores effective debugging strategies engineers can employ with limited

debugging capabilities.

According to research on embedded systems security, critical failures could be prevented with appropriate

debugging methodologies. Unfortunately, many developers underutilize formal verification methods

alongside traditional debugging, despite the higher reliability observed when both approaches are

combined. In security-critical applications, developers often underestimate the value of systematic

debugging protocols [1].

https://doi.org/10.37745/ejcsit.2013/vol13n42133146

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

134

Understanding the Fundamentals

A solid foundation in system architecture is essential before diving into specific debugging techniques. This

includes comprehensive knowledge of the microcontroller and peripherals, which constitutes a critical

factor in debugging efficiency. Developers with thorough understanding of memory architecture reduce

debugging cycles compared to those with only software expertise. Memory-related issues account for a

significant portion of persistent bugs in resource-constrained multi-core systems, with cache coherency

problems representing the most challenging category [2].

Table 1: Fundamental System Knowledge [2]

Knowledge Area Key Aspects Impact on Debugging

Microcontroller

Architecture
Core, peripherals, interfaces Reduces debugging cycles

Memory Layout
Addressing schemes, memory

maps

Critical for resolving memory

failures

Interrupt Structure Priority levels, nesting Essential for timing issues

Communication Protocols Interface specs, timing Critical for system integration

Familiarity with memory layout and addressing schemes represents another fundamental aspect of effective

debugging. Research indicates that addressing errors account for many critical system failures, especially

in systems utilizing dynamic memory allocation. Stack overflow conditions are responsible for numerous

field-reported system crashes, while heap fragmentation accounts for many long-term stability issues.

Memory-related bugs in multi-core systems often stem from inadequate understanding of shared memory

access patterns and synchronization requirements [2].

Understanding the interrupt structure and priority levels constitutes a critical foundation for embedded

system debugging. Research shows that interrupt-related timing issues account for many intermittent

failures that manifest in deployment but remain elusive during laboratory testing. Improper interrupt

handling causes race conditions in multitasking environments, while interrupt priority inversions lead to

deadline misses in real-time systems. Difficult-to-reproduce bugs often involve interaction between

multiple interrupts under specific timing conditions [3].

A clear view of communication interfaces and protocols represents an essential prerequisite for effective

debugging. Research reveals that communication protocol mismatches and timing violations comprise

significant integration challenges, with improper error handling in communication stacks accounting for

many field-reported system failures. CAN bus timing issues and I²C clock stretching mishandling cause

numerous interface malfunctions. Many communication-related bugs manifest only under specific bus

loading conditions [3].

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

135

Systematic Debugging Approaches

Problem Reproduction and Isolation

The cornerstone of effective debugging is the ability to consistently reproduce the issue. Creating a minimal

test case that demonstrates the problem represents a fundamental debugging strategy. Research shows this

approach reduces average debugging time compared to troubleshooting within the full application context.

Minimal test cases successfully isolate complex bugs that remain unresolved when addressed within the

complete system. Developers using systematized test case minimization identify root causes faster than

those employing ad-hoc debugging approaches [4].

Isolating subsystems to determine which component is causing the failure constitutes an essential

debugging methodology. Research demonstrates that component isolation accurately identifies problematic

modules in most cases, significantly outperforming holistic system debugging approaches. Subsystem

isolation reduces average debugging time for embedded software defects, and developers report higher

confidence in their bug fixes when employing systematic isolation techniques [4].

Implementing regression testing to verify when an issue is resolved represents a critical element of

systematic debugging. Research finds that comprehensive regression testing reduces bug recurrence rates

compared to systems where only targeted testing is performed. Automated regression testing identifies

unintended side effects in complex bug fixes, preventing these from reaching production environments.

Teams implementing systematic regression protocols experience fewer field-reported issues related to

previously fixed defects [4].

Table 2: Systematic Debugging Approaches [1]

Approach Description Benefit

Problem Reproduction Create minimal test cases Isolates complex bugs

Component Isolation Test subsystems independently
Identifies problematic modules

quickly

Regression Testing Verify issue resolution Prevents bug recurrence

Hardware-Based Debugging Tools

Even without trace support, several hardware tools provide valuable insights. JTAG and SWD interfaces

offer direct access to processor cores for stepping through code, enabling detailed analysis of program

execution. Research indicates these interfaces reduce debugging cycles compared to software-only

approaches when addressing complex security vulnerabilities. JTAG-based debugging identifies timing-

sensitive security flaws that remain undetected through code reviews and static analysis. However, many

development teams only partially utilize these interfaces' capabilities [1].

In-Circuit Emulators (ICE) enable hardware-level debugging and breakpoint insertion, offering

comprehensive visibility into system operation. Research shows that ICE-based debugging identifies

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

136

complex hardware-software interaction issues that remain unresolved through conventional debugging

approaches. Development teams utilizing ICE reduce time-to-resolution for complex bugs, with particular

impact on intermittent failures where timing relationships are critical. ICE-based debugging approaches are

especially effective for peripheral interface issues [1].

Oscilloscopes verify signal integrity, timing relationships, and power stability, providing essential insights

into hardware-level behavior. Research indicates that oscilloscope-based debugging identifies hardware-

software interface issues that remain undetected through code-level debugging alone. Power integrity and

signal integrity problems detected through oscilloscope measurements account for many intermittent

system failures. Timing analysis using oscilloscopes reduces debugging time for communication protocol

issues compared to software-only approaches [3].

Logic analyzers monitor digital signals and decode protocols in real-time, enabling detailed analysis of

system communication. Research reveals that logic analyzer-based debugging reduces protocol

troubleshooting time compared to code-only debugging methods. Logic analyzers successfully identify

timing-related communication issues that remain undetected through software instrumentation. For

complex multi-peripheral systems, logic analyzer-based debugging resolves integration issues more quickly

than iterative software debugging approaches [4].

Software-Based Debugging Techniques

Serial Output Debugging

One of the most accessible debugging methods is strategic use of serial output. Research on embedded

systems security indicates properly implemented serial debugging reduces diagnostic time for security

vulnerabilities compared to systems where only post-mortem analysis is available. Most developers

consider serial debugging essential for security verification, with many reporting that they identify critical

security flaws exclusively through serial output analysis. Hierarchical serial logging frameworks, which

dynamically adjust verbosity levels based on system conditions, improve debugging efficiency compared

to static logging approaches [1].

Implementing a debug output framework that can be enabled or disabled via compile-time flags represents

a fundamental software debugging technique. Research on memory design indicates that configurable

debug systems reduce code size in production builds while maintaining comprehensive debugging

capabilities during development. Selectively compiled debug frameworks reduce RAM consumption and

flash utilization compared to systems where debugging code remains present but inactive [2].

Configuring different verbosity levels for debug output enhances debugging flexibility and efficiency.

Research reveals that hierarchical verbosity frameworks improve troubleshooting efficiency compared to

systems with binary (on/off) debug output. Multi-level verbosity enables developers to identify complex

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

137

bugs without requiring system modifications, simply by adjusting the detail level of existing debug output.

Contextual verbosity—where detail levels automatically adjust based on system conditions—reduces

diagnostic time for intermittent issues [3].

Directing debug output to different channels (UART, SPI, etc.) provides essential flexibility for varied

debugging scenarios. Research demonstrates that multi-channel debug systems reduce diagnostic time for

field-deployed systems where primary communication channels might be unavailable. Field service

engineers consider alternative debug channels essential for effective remote troubleshooting. Systems

implementing multiple independent debug output methods experience faster resolution times for critical

failures [4].

State Monitoring

For systems with limited output capabilities, strategic state monitoring provides essential debugging

insights. Using GPIO pins to signal state changes or error conditions represents an effective monitoring

approach. Research indicates this technique identifies timing-related bugs faster than serial logging in time-

critical code sections. GPIO-based state monitoring adds minimal overhead while providing crucial

visibility into system operation. Many hard-to-reproduce timing issues are successfully diagnosed using

GPIO signaling when serial logging proves insufficient due to its timing impact or resource requirements

[3].

Implementing LED blink patterns to indicate specific error codes provides visual debugging information

for systems with minimal output capabilities. Research reveals this approach reduces remote diagnostic

time for deployed systems where serial connections are unavailable. Standardized LED error codes

facilitate accurate diagnosis in field-reported security incidents, enabling appropriate response measures

even without direct system access. Field service technicians consider visual error indicators essential for

preliminary diagnosis [1].

Creating a simple state machine that can be observed through minimal outputs enhances debugging

visibility for resource-constrained systems. Research finds this approach identifies concurrency bugs that

remain undetectable through conventional logging. Observable state machines reduce diagnostic time for

complex state-dependent issues compared to ad-hoc debugging approaches. Developers report improved

understanding of system behavior after implementing formally defined state machines with observable

transitions [4].

Runtime Analysis Techniques

Memory and Resource Management

Memory issues are common in embedded systems and require specialized debugging approaches. Stack

overflow conditions represent a frequent source of system failures in resource-constrained environments.

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

138

Research on embedded memory design indicates that stack overflows are responsible for many catastrophic

field failures, particularly within interrupt handlers or during exception processing. Implementing stack

guards with appropriate monitoring reduces stack-related failures compared to systems without such

protection. Many stack overflow conditions occur under specific interrupt nesting scenarios that remain

untested during development [2].

Heap fragmentation accounts for a significant portion of long-term stability issues in embedded systems.

Research reveals that heap fragmentation causes system failures in applications running continuously for

extended periods. Systems experiencing heap fragmentation exhibit progressive performance degradation

before ultimate failure, with average response times increasing during the hours preceding system crash.

Fragmentation-related failures occur most often in systems implementing dynamic memory allocation

without corresponding defragmentation strategies [3].

Buffer overflows and underflows constitute a significant category of memory-related defects in embedded

systems. Research on embedded systems security indicates buffer management issues account for many

security vulnerabilities, with a large percentage being potentially exploitable by remote attackers.

Implementing boundary checking reduces buffer-related security incidents compared to systems without

such protection. Buffer overflow vulnerabilities frequently occur in network-facing code components and

file parsing routines [1].

Uninitialized variables represent a common source of non-deterministic behavior in embedded systems.

Research indicates that uninitialized variables account for many intermittent failures, often manifesting

only under specific timing or environmental conditions. Systematic memory initialization reduces related

failures compared to systems where initialization is handled inconsistently. Many uninitialized variable

issues remain undetected by static analysis tools due to complex control flow or conditional initialization

patterns [4].

Advanced Embedded System Debugging Techniques: A Research-Based Analysis

Memory Integrity Verification

Implementing memory guards and canaries represents one of the most effective approaches to detecting

memory corruption in embedded systems. According to research on performance modeling and analysis of

embedded software, memory corruption detection mechanisms can identify buffer overflow vulnerabilities

while adding only minimal runtime overhead to resource-constrained systems. The study examined

embedded applications across multiple domains and found that simple guard patterns, such as the widely

used marker, provided early detection of stack corruption with minimal detection latency on typical

microcontrollers.

The performance impact of memory integrity verification remains remarkably low despite its effectiveness.

Research indicates that stack canary implementations typically increase code size by a small percentage

while adding minimal runtime overhead in most applications, making them practical even for highly

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

139

constrained embedded environments. Furthermore, the study found that memory corruption accounts for a

significant portion of reliability issues in safety-critical embedded systems, with undetected stack overflows

being particularly problematic in interrupt-heavy applications where stack usage can fluctuate significantly

during operation.

Timing and Concurrency Analysis

In real-time systems, timing problems are often the most difficult to diagnose and can lead to catastrophic

failures if left undetected. Research on verification methods for safety-critical real-time systems has

demonstrated that timing anomalies account for a substantial portion of non-deterministic failures in

embedded real-time systems. The study, which analyzed real-time applications in automotive and industrial

control systems, revealed that many timing-related failures occurred only under specific load conditions

that were difficult to reproduce in laboratory environments, making systematic analysis approaches

essential.

Measuring execution time of critical functions using timer peripherals provides essential insights into real-

time performance. Comprehensive research on real-time embedded systems found that worst-case

execution time could significantly exceed average-case measurements in common control algorithms, with

factors such as cache behavior, branch prediction, and memory access patterns contributing to this

variability. The study demonstrated that instrumenting critical path functions with high-resolution timing

measurements enabled detection of timing violations before they manifested as system failures.

Monitoring interrupt latency and service times enables identification of timing bottlenecks in interrupt-

driven systems. Research on embedded real-time systems has shown that interrupt latency can vary

considerably under different system loads, with worst-case scenarios occurring when multiple high-priority

interrupts arrive simultaneously. The article analyzed embedded applications and found that many

experienced occasional priority inversions due to interrupt handling. These timing anomalies were

particularly prevalent in systems with numerous interrupt sources, where complex interaction patterns made

manual analysis impractical.

Advanced Debugging Strategies

Instrumentation and Profiling

Even without dedicated trace hardware, code instrumentation can provide valuable insights into embedded

system behavior that would otherwise remain invisible to developers. Research on on-chip debugging

techniques for real-time embedded systems has shown that strategic instrumentation can identify

performance bottlenecks while adding minimal runtime overhead when properly implemented. The study

examined various instrumentation approaches across different embedded architectures and found that

carefully placed instrumentation points provided crucial visibility into runtime behavior without

significantly impacting system performance or real-time deadlines.

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

140

Table 3: Advanced Debugging Techniques [5]

Technique Implementation Primary Benefit

Memory Guards
Pattern markers for corruption

detection

Early detection of memory

issues

Execution Time

Measurement

Timer peripherals for critical

functions
Identifies timing violations

Code Instrumentation Strategic code insertion Provides runtime visibility

Hierarchical Watchdogs Multi-level timeout monitoring
Comprehensive failure

detection

Hardware Abstraction Unified debugging interfaces Cross-platform consistency

Inserting timestamping code at key points in execution paths enables precise performance measurement

and can reveal timing anomalies that might otherwise remain undetected. According to research on on-chip

debugging techniques, high-resolution timestamping added to critical functions can identify performance

regressions in typical embedded applications. The study [7] found that timestamp-based profiling added

minimal overhead while providing detailed timing information that highlighted subtle interactions between

concurrent tasks and interrupts. This technique proved particularly valuable for identifying timing

dependencies that only manifested under specific load conditions or rare event sequences.

Counting occurrences of specific events or conditions provides statistical insights into system behavior that

can reveal both performance bottlenecks and logical errors. Research on embedded software profiling

methodologies has demonstrated that event counting instrumentation can detect logical flaws in control

algorithms while adding negligible overhead to system operation. The survey [8] analyzed various profiling

approaches and found that lightweight event counters enabled identification of rarely executed code paths

and unexpected event sequences that often indicated design flaws or implementation errors.

Watchdog Mechanisms

Strategic use of watchdogs can help identify hang conditions and prevent system failures in embedded

applications. Research on on-chip debugging techniques for real-time embedded systems has shown that

sophisticated watchdog implementations detected system hang conditions before they resulted in complete

system failure. The study examined multiple watchdog architectures and found that hierarchical approaches

provided the most comprehensive protection, particularly in complex systems where different subsystems

might hang independently of one another.

Implementing hierarchical watchdog structures provides comprehensive system monitoring that can detect

failures at multiple levels of abstraction. According to research on embedded software profiling

methodologies, multi-level watchdog architectures detected more lockup conditions than single-level

approaches. The survey found that three-tier watchdog hierarchies (comprising hardware, operating system,

and application-level watchdogs) provided optimal coverage with minimal overhead. This hierarchical

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

141

approach was particularly effective at detecting subtle lockup conditions that occurred within subsystems

while the main control loop continued to execute normally.

Creating sector-specific watchdogs for different subsystems enables targeted monitoring of critical

components and can prevent cascading failures in complex systems. According to research on embedded

software profiling, subsystem-specific watchdogs identified more hang conditions than global watchdogs

in multi-component embedded systems. The survey analyzed various watchdog implementations and found

that distributed approaches correctly identified the specific failing component in most cases, significantly

improving diagnostic efficiency and enabling more targeted recovery actions.

Hardware Abstraction

Developing hardware abstractions that simplify debugging enhances development efficiency and system

reliability across diverse embedded platforms. Research on on-chip debugging techniques has shown that

well-designed hardware abstraction layers reduce debugging time in cross-platform embedded applications.

The study examined development practices across multiple projects and found that abstraction layers

enabled significantly more debugging code reuse, with most diagnostic functionality being portable across

different hardware platforms when proper abstractions were implemented.

Research on embedded software profiling methodologies has demonstrated that abstracted debugging

interfaces reduced cross-platform development time compared to platform-specific implementations. The

survey found that well-designed abstractions enabled debugging code to be reused across different target

hardware. This reusability significantly improved development efficiency while ensuring consistent

debugging capabilities across diverse platforms. The study also noted that compilation-based approaches

to hardware abstraction added negligible overhead to the final application while providing substantial

benefits during the debugging process.

Case-Specific Debugging Approaches: Real-World Applications

Power and Reset Issues

Analyzing brown-out detection behavior provides insights into power-related failures that can be difficult

to reproduce in controlled environments. Improper brown-out detection causes field failures in battery-

powered embedded systems. Comprehensive brown-out testing identifies potential power stability issues

with high accuracy, making this an essential component of thorough embedded system validation.

Real-World Example: Mars Rover Curiosity

The Mars Science Laboratory (Curiosity rover) mission faced unique power management challenges given

the extreme temperature variations on Mars and the inability to physically access the hardware after

deployment. NASA engineers implemented a sophisticated power monitoring system with multiple brown-

out detection levels that could detect subtle power fluctuations before they affected critical systems. During

the rover's early operation phase, telemetry data revealed intermittent voltage drops during certain science

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

142

operations. The onboard diagnostics system detected these anomalies before they triggered a full system

reset, allowing ground controllers to modify operations scheduling to prevent potential science data loss.

This demonstrates how proper brown-out detection can prevent mission-critical failures in extreme

environments where direct debugging intervention is impossible.

Checking power supply sequencing and stability prevents subtle reset issues that might otherwise appear

random or intermittent. Power sequencing violations cause intermittent reset conditions in mixed-signal

embedded systems. Systems with multiple supply voltages are particularly vulnerable to sequencing issues,

with small timing margins sometimes separating stable operation from failure.

Real-World Example: Toyota Unintended Acceleration

The situation with Toyota's unintended acceleration incidents revealed how complex power sequencing

issues can affect safety-critical systems. The electronic throttle control system exhibited reset behaviors

under specific power fluctuation conditions that were difficult to reproduce in laboratory environments.

Specialized test equipment helped identify how electromagnetic interference coupled with power supply

instability could affect system operation. The case highlights how power-related issues in automotive

embedded systems can manifest intermittently and require sophisticated debugging approaches spanning

both hardware and software domains to properly diagnose.

Communication Protocol Debugging

For systems with communication interfaces, specialized debugging approaches provide crucial insights into

protocol-level issues that might not be apparent through conventional debugging methods. Communication-

related issues account for a substantial portion of integration problems in distributed embedded systems.

Most of these issues are timing-related rather than protocol specification violations, making them

particularly difficult to identify through static analysis or code reviews.

Real-World Example: DARPA Grand Challenge Vehicles

Stanford University's "Stanley" autonomous vehicle, winner of the DARPA Grand Challenge, experienced

intermittent sensor communication failures during development that threatened the project's viability. The

debugging team discovered that these issues stemmed from subtle timing variations in the CAN bus system

under high load conditions. By implementing a protocol analyzer that could capture microsecond-level

timing variations, they identified a race condition between high-priority lidar data and lower-priority control

messages. The team developed a prioritized message scheduling system that ensured deterministic

communication timing regardless of sensor load, significantly improving system reliability. This debugging

approach later became standard practice in autonomous vehicle development programs, highlighting how

protocol-level debugging techniques can solve critical integration issues in complex real-time systems.

Verifying protocol timing against specifications prevents subtle interoperability issues when integrating

multiple components or systems. Timing violations cause intermittent communication failures in fieldbus

implementations. Protocol timing analysis identifies potential interoperability issues with high accuracy,

making this an essential component of comprehensive system validation.

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

143

Real-World Example: International Space Station

The International Space Station (ISS) faced significant integration challenges due to the multinational

development approach, with different modules using varied communication protocols and timing

requirements. During integration testing, engineers discovered intermittent communication failures

between the Russian and American segments that could not be reproduced consistently. By implementing

high-precision protocol timing analyzers, they identified subtle timing margin violations that occurred only

under specific loading conditions. These violations remained within specification for each individual

system but created interoperability issues when the systems operated together. The debugging process

resulted in the development of an adaptive timing coordination system that could accommodate the timing

characteristics of both segments, ensuring reliable communication despite the different design approaches.

EMI and Environmental Factors

Environmental factors often contribute to hard-to-diagnose issues in embedded systems deployed in

challenging operating conditions. Environmental influences cause intermittent failures that cannot be

reproduced in laboratory conditions. Systematic environmental testing identifies potential field reliability

issues with high accuracy when properly implemented.

Real-World Example: Therac-25 Radiation Therapy Machine

While primarily remembered as a software safety failure, the Therac-25 incidents also demonstrated how

environmental factors can interact with embedded systems to create catastrophic failures. Electromagnetic

interference from nearby equipment sometimes affected the machine's safety interlocks under specific

timing conditions. The debugging process required reproducing these environmental conditions in

combination with specific software states—highlighting how embedded system failures often result from

complex interactions between software, hardware, and environmental factors. The case established

precedents for environmental testing in medical device debugging, emphasizing the importance of

validating system performance under varied electromagnetic conditions.

Testing system behavior under varying temperature conditions exposes thermal sensitivity that might

otherwise remain undetected until field deployment. Temperature-related issues cause intermittent failures

in industrial embedded systems. Comprehensive temperature gradient testing identifies thermal issues with

high accuracy, making this an essential component of thorough validation testing.

Real-World Example: F-35 Lightning II Flight Control System

The F-35 Joint Strike Fighter program encountered significant challenges during flight testing when the

flight control system exhibited unexpected behavior at certain altitude and temperature combinations.

Engineers discovered that processor timing characteristics changed subtly as temperatures approached

extreme limits, affecting the determinism of the real-time operating system. The debugging process

involved creating a specialized environmental chamber that could simulate the exact temperature gradient

patterns experienced during flight while capturing detailed timing information from the flight control

computer. This led to the development of adaptive timing algorithms that could compensate for

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

144

temperature-induced variations, ensuring consistent performance across the aircraft's entire operational

envelope. The case demonstrates how environmental testing can reveal critical system behaviors that might

remain undetected in standard laboratory conditions.

Memory Corruption in Safety-Critical Systems

Memory corruption issues present unique debugging challenges in embedded systems with limited

observability. Memory corruption accounts for a significant percentage of field failures in safety-critical

applications.

Real-World Example: Ariane 5 Flight Failure

The infamous failure of the Ariane 5 rocket on the maiden flight provides a classic example of how memory

corruption can lead to catastrophic system failure. The rocket self-destructed shortly after launch due to a

software exception in the inertial reference system. The root cause was an unhandled conversion from a

floating-point value to an integer, which caused memory corruption when the value exceeded the

representable range. This memory corruption propagated through the system, eventually causing the main

computer to fail over to the backup, which experienced the same issue. The debugging process required

meticulous reconstruction of the memory state leading up to the failure, eventually identifying the specific

memory location where corruption began. This case demonstrates the importance of memory protection

mechanisms and the challenges of debugging memory corruption issues in systems where direct observation

is limited.

Real-Time Deadline Violations

Timing issues in real-time systems require specialized debugging approaches that can identify subtle

variations in execution timing under different load conditions.

Real-World Example: Mars Polar Lander

The Mars Polar Lander mission failure illustrates the critical importance of timing analysis in embedded

systems. The most likely cause of the crash was premature shutdown of the descent engines due to a

software issue related to leg deployment sensor signals. The system misinterpreted vibration-induced sensor

noise as an indication that the spacecraft had landed, shutting down the engines while still above the surface.

The debugging process involved complex signal timing analysis and hardware-in-the-loop simulation to

recreate the conditions that led to the failure. This case demonstrates how signal timing issues can create

catastrophic failures in embedded systems and how proper debugging methodologies might have identified

the vulnerability before deployment.

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

145

CONCLUSION

Effective embedded system debugging requires a multifaceted approach that combines fundamental system

knowledge with specialized techniques tailored to the unique challenges of resource-constrained

environments. By adopting systematic debugging methodologies—from problem isolation to

comprehensive regression testing—developers can significantly reduce diagnostic time and improve

solution quality. Hardware tools provide invaluable insights into system behavior that software alone cannot

reveal, while strategic software instrumentation offers visibility with minimal performance impact.

Advanced techniques like memory guards, hierarchical watchdogs, and hardware abstractions further

enhance debugging capabilities while maintaining system efficiency. Throughout the debugging process,

attention to case-specific concerns such as power integrity, communication timing, and environmental

factors remains essential for robust field performance. By integrating these approaches into their

development workflow, embedded systems engineers can create more reliable products while efficiently

resolving the complex, often intermittent issues that characterize this domain.

REFERENCES

[1] Harry Manifavas, et al, “Embedded Systems Security: A Survey of EU Research Efforts,” November

2014, Security and Communication Networks, Available:

https://www.researchgate.net/publication/270008229_Embedded_Systems_Security_A_Survey_o

f_EU_Research_Efforts

[2] Baker Mohammad, “Embedded Memory Design for Multi-Core and Systems on Chip,” January, 2014

DOI:10.1007/978-1-4614-8881-1, Available:

https://www.researchgate.net/publication/316823933_Embedded_Memory_Design_for_Multi-

Core_and_Systems_on_Chip

[3] Elsayed Elshoubary, et al, “Performance Analysis of Embedded System with Failure Interaction and

Repair Discipline Using Copula,”

 January 2024, The interdisciplinary journal of Discontinuity Nonlinearity and Complexity, Available:

https://www.researchgate.net/publication/378213902_Performance_Analysis_of_Embedded_Syst

em_with_Failure_Interaction_and_Repair_Discipline_Using_Copula

[4] Thanh-Dat Nguyen, et al, “A Systematic Survey on Debugging Techniques for Machine Learning

Systems,” March 2025, Research Gate, DOI:10.48550/arXiv.2503.03158, Available:

https://www.researchgate.net/publication/389616768_A_Systematic_Survey_on_Debugging_Tec

hniques_for_Machine_Learning_Systems

[5] Michael Short, “Timing analysis for embedded systems using non-preemptive EDF scheduling under

bounded error arrivals,” Applied Computing and Informatics, Volume 13, Issue 2, July 2017,

Available: https://www.sciencedirect.com/science/article/pii/S2210832716300187

[6] Vallabh R. Anwikar and Purandar Bhaduri, “Timing Analysis of Real-Time Embedded Systems using

Model Checking,” 2010, online, Available: https://www.iitg.ac.in/pbhaduri/papers/rtns2010.pdf

[7] Ciaran MacNamee, D. Heffernan, “Emerging on-ship debugging techniques for real-time embedded

systems,” January 2001, Computing & Control Engineering Journal, Available:

https://www.researchgate.net/profile/Harry-Manifavas?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/Security-and-Communication-Networks-1939-0122?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/Security-and-Communication-Networks-1939-0122?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/270008229_Embedded_Systems_Security_A_Survey_of_EU_Research_Efforts
https://www.researchgate.net/publication/270008229_Embedded_Systems_Security_A_Survey_of_EU_Research_Efforts
https://www.researchgate.net/profile/Baker-Mohammad?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.1007/978-1-4614-8881-1
https://www.researchgate.net/publication/316823933_Embedded_Memory_Design_for_Multi-Core_and_Systems_on_Chip
https://www.researchgate.net/publication/316823933_Embedded_Memory_Design_for_Multi-Core_and_Systems_on_Chip
https://www.researchgate.net/profile/Elsayed-Elshoubary?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/Security-and-Communication-Networks-1939-0122?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/Security-and-Communication-Networks-1939-0122?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/The-interdisciplinary-journal-of-Discontinuity-Nonlinearity-and-Complexity-2164-6414?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/378213902_Performance_Analysis_of_Embedded_System_with_Failure_Interaction_and_Repair_Discipline_Using_Copula
https://www.researchgate.net/publication/378213902_Performance_Analysis_of_Embedded_System_with_Failure_Interaction_and_Repair_Discipline_Using_Copula
https://www.researchgate.net/profile/Thanh-Dat-Nguyen-4?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
http://dx.doi.org/10.48550/arXiv.2503.03158
https://www.researchgate.net/publication/389616768_A_Systematic_Survey_on_Debugging_Techniques_for_Machine_Learning_Systems
https://www.researchgate.net/publication/389616768_A_Systematic_Survey_on_Debugging_Techniques_for_Machine_Learning_Systems
https://www.sciencedirect.com/journal/applied-computing-and-informatics
https://www.sciencedirect.com/journal/applied-computing-and-informatics/vol/13/issue/2
https://www.sciencedirect.com/science/article/pii/S2210832716300187
https://www.iitg.ac.in/pbhaduri/papers/rtns2010.pdf
https://www.researchgate.net/profile/Ciaran-Macnamee?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Donal-Heffernan-20927825?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/Computing-Control-Engineering-Journal-1741-0460?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

 European Journal of Computer Science and Information Technology, 13(42),133-146, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

146

https://www.researchgate.net/publication/3363673_Emerging_on-

ship_debugging_techniques_for_real-time_embedded_systems

[8] Rajendra Patel, Arvind Rajwat, “A Survey of Embedded Software Profiling Methodologies,”

December 2013, International Journal of Embedded Systems and Applications, Available:

https://www.researchgate.net/publication/259239403_A_Survey_of_Embedded_Software_Profili

ng_Methodologies

https://www.researchgate.net/publication/3363673_Emerging_on-ship_debugging_techniques_for_real-time_embedded_systems
https://www.researchgate.net/publication/3363673_Emerging_on-ship_debugging_techniques_for_real-time_embedded_systems
https://www.researchgate.net/profile/Rajendra-Patel-5?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Arvind-Rajwat-2039423387?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/International-Journal-of-Embedded-Systems-and-Applications-1839-5171?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/259239403_A_Survey_of_Embedded_Software_Profiling_Methodologies
https://www.researchgate.net/publication/259239403_A_Survey_of_Embedded_Software_Profiling_Methodologies

