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Abstract: This article explores the evolving landscape of AI infrastructure, tracing the architectural 

progression from traditional recommendation systems to modern large language model deployments. It 

demonstrates how personalization engines have transitioned from batch processing to real-time 

architectures while investigating the unique challenges posed by LLMs that necessitate specialized 

infrastructure solutions. The paper presents PagedAttention as implemented in vLLM, a novel approach 

addressing memory management challenges in transformer models through block-level allocation. By 

contrasting established recommendation pipelines with emerging LLMOps patterns, it provides insights 

into common infrastructure solutions that support experimentation, continuous training, and efficient 

inference across both domains, culminating in a practical implementation guide for serving LLaMA models. 
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INTRODUCTION 

 

Evolution of ML Infrastructure in Industry 

The infrastructure supporting recommendation systems has undergone tremendous evolution, transitioning 

from simple algorithms to sophisticated architectures. Early Facebook recommendation systems processed 

billions of interactions daily, serving a global audience across their suite of applications. These systems 

faced unique challenges including sparse user interaction data, with the vast majority of content receiving 

relatively few engagements despite the platform hosting billions of posts and interactions. This required a 

specifically designed infrastructure to handle both popular and niche content effectively [1]. 
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From Batch to Real-Time Processing 

Initial recommendation systems relied primarily on batch processing approaches, where model training and 

recommendation generation occurred at fixed intervals. Facebook's early news feed ranking system 

combined various signals including social connections, engagement patterns, and content types processed 

in scheduled batches [1]. Amazon's item-to-item collaborative filtering algorithm similarly processed 

purchase history data to build similarity tables through offline computation, enabling their system to scale 

to tens of millions of customers and products with computation time growing linearly with the number of 

customers and items [2]. The transition to real-time architectures began when companies recognized that 

immediate user interactions provided crucial contextual signals for relevance. Amazon's architecture 

evolved to incorporate real-time personalization while maintaining offline computation for the base 

similarity matrix, demonstrating how hybrid approaches bridged the gap between computational efficiency 

and recommendation relevance. 

 

Computational Challenges at Scale 

As recommendation systems scaled, unique computational challenges emerged. Amazon's recommendation 

computation needed to process a product catalog with millions of items across multiple international 

marketplaces, requiring careful algorithm optimization to achieve O(N) complexity instead of the O(N²) 

complexity typical of user-user collaborative filtering approaches [2]. Facebook faced similar scaling 

challenges with their feed ranking algorithm which needed to process an extremely dense interaction graph 

representing connections and engagement patterns across billions of users and content items to identify 

meaningful recommendations within milliseconds of a request [1]. 

 

Experimentation Infrastructure 

The evolution of recommendation systems demanded robust experimentation frameworks. Facebook 

implemented extensive A/B testing infrastructure to evaluate changes to recommendation algorithms, 

requiring sophisticated monitoring of metrics including engagement rates, time spent, session depth, and 

user satisfaction [1]. Amazon similarly relied on extensive evaluation of their recommendation quality, 

measuring the percentage of recommended items that were subsequently purchased, with their item-to-item 

collaborative filtering showing conversion rates between 3% and 15% higher than traditional approaches 

depending on category and customer segment [2]. This experimentation infrastructure became foundational 

for continuous improvement cycles and would later inspire similar approaches in modern LLMOps. 
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Fig. 1: Evolution of ML Infrastructure in Recommendation Systems [1, 2] 

 

Architecture of Modern Recommendation Systems 

Modern recommendation architectures have evolved into complex, multi-layered systems designed to 

handle massive scale while delivering highly personalized experiences. The integration of various 

technologies from vector databases to edge computing has fundamentally transformed how these systems 

operate and perform. 

 

Vector Database Integration 

Pinterest's recommendation architecture exemplifies advanced vector database integration through their 

Related Pins system. Their initial architecture generated candidate sets through multiple retrieval 

mechanisms including collaborative filtering and content-based systems. When a user queries the system 

(often by clicking on a Pin), the Pixie random walk algorithm traverses a bipartite graph containing 7 billion 

Pins and 2 billion boards to identify related content. This graph-based approach processes approximately 

10^12 (one trillion) edges, with computations distributed across 40-50 machines. The 2017 system could 

return 500-1000 candidates in under 100ms, demonstrating efficient large-scale vector retrieval. The 

recommendation quality improved substantially through this architecture, with human evaluators rating 

62% of recommendations as relevant, compared to 52% in previous systems [3]. 

 

Real-Time Feature Computation 

The Netflix recommendation system illustrates sophisticated real-time feature computation through its 

multi-layer ranking architecture. Their system incorporates over two dozen recommender algorithms 
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running in parallel, each generating up to 500 titles for consideration. These candidate sets then undergo 

multiple ranking stages that compute real-time personalization features including time-of-day context (with 

viewing patterns varying by 20% throughout the day) and recent viewing history. The system processes 

several billion evidence events daily, updating user models in near real-time. Netflix's architecture achieves 

recommendation generation in under 50ms, even while evaluating hundreds of potential titles against 

dozens of personalization signals. Their extensive A/B testing framework has demonstrated that this real-

time personalization approach delivers approximately $1 billion in annual value through increased retention 

[4]. 

 

Multi-Objective Optimization Framework 

Modern recommendation architectures increasingly employ multi-objective optimization frameworks to 

balance competing goals. Netflix's approach incorporates a sophisticated objective function spanning 

multiple dimensions including predicted play probability, estimated play duration, recency, diversity, and 

similarity to previously enjoyed content. Their ranking algorithm processes these signals through a 

weighted combination where the weights themselves adapt to user behavior patterns. This framework 

allows Netflix to optimize for both short-term engagement (measured by click-through rates) and long-term 

retention (measured by subscription renewal), with different objective weights applied to different user 

segments. Their objective function incorporates approximately 15 distinct signals, with detailed tracking of 

how recommendations contribute to the company's goal of "helping members find content they'll love" 

measured through multiple engagement metrics [4]. 
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Fig. 2: Architecture of Modern Recommendation Systems [3, 4] 

 

The Rise of LLMOps: New Infrastructure Demands 

As we transition from recommendation systems to LLMs, it is important to recognize that the evolution of 

ML infrastructure has followed a trajectory of increasing complexity and scale. The recommendation 

systems discussed in previous sections established critical patterns for data processing, real-time feature 

generation, and experimentation frameworks. However, the emergence of large language models introduces 

an entirely new class of infrastructure challenges that build upon—yet significantly expand beyond—those 

encountered in traditional recommendation architectures. While recommendation systems primarily 

focused on optimizing retrieval and ranking, LLMs demand novel solutions to fundamental resource 

constraints. 

 

Memory Management Challenges 

Memory constraints represent the primary bottleneck in LLM deployment. DeepSpeed Inference addresses 

this through a suite of optimization techniques including tensor parallelism, which can distribute a 175B 

parameter model across 8 NVIDIA A100-80GB GPUs while maintaining inference latency below 500ms 

for 128-token sequences. Their ZeRO-Inference technique reduces memory requirements by 2.7x through 

strategic offloading of parameters to CPU memory and careful scheduling of recomputation, enabling 

models with 175B parameters to run on commodity GPU clusters. This system achieves 5.2x higher 

throughput compared to standard deployment techniques when evaluated on GPT-3 175 B for batch size 
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32 and sequence length 1024. Remarkably, DeepSpeed reduces VRAM requirements to just 40 GB for a 

175B parameter model using 1-bit quantization while maintaining GLUE benchmark scores within 1.5% 

of full-precision models [5]. 

 

Throughput Optimization Techniques 

Maximizing throughput requires addressing the fundamental limitations of transformer architecture. The 

continuous batching approach implemented in vLLM has demonstrated throughput improvements of 2.2x 

over standard batching methods by eliminating the fixed batch formation wait time. This technique 

dynamically processes incoming requests based on available resources rather than artificial batch 

boundaries. On a single A100 GPU, vLLM achieved 82 tokens per second for a 70B parameter model with 

88 concurrent users while maintaining P99 latency below 768ms. The efficiency of these systems is 

measured through effective tokens per second (E-TPS), which accounts for both throughput and batch 

efficiency. State-of-the-art systems now achieve E-TPS rates of 1000+ tokens per second for 7B parameter 

models on a single A100 GPU, representing a 3.4x improvement over baseline implementations [6]. 

 

Deployment Orchestration Systems 

LLM deployment requires sophisticated orchestration to balance load, manage redundancy, and optimize 

resource utilization. Modern LLM serving frameworks employ multi-tier scheduling architectures where a 

central controller routes requests based on model-specific load metrics including VRAM utilization, request 

queue depth, and per-token latency measurements. These systems dynamically scale replicas based on 

predicted load patterns, with autoscaling decisions typically made using a 60-second moving average of 

request volume and a 15-second peak detection algorithm. Request routing incorporates both "sticky" 

session management for conversational contexts and least-loaded balancing for new requests. Production 

systems maintain 99.99% availability through redundant replicas across availability zones, with failover 

typically completing within 100-250ms of primary replica failure detection. This orchestration layer 

handles resource allocation across heterogeneous GPU clusters, often spanning multiple generations of 

hardware with varying memory capacities and compute capabilities [6]. 

 

The infrastructure challenges discussed in this section represent a step function increase in complexity 

compared to recommendation systems. While both domains share fundamental requirements for scaling, 

personalization, and real-time processing, LLMs introduce unprecedented computational demands that 

have catalyzed a new wave of innovation in ML infrastructure design. The subsequent sections will explore 

specific optimization techniques that address these challenges, beginning with PagedAttention—a 

breakthrough approach to memory management inspired by operating system concepts. 
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Table 1: LLM Optimization Techniques and Their Impact [5, 6] 

Optimization Technique Memory Reduction Throughput Improvement 

Tensor Parallelism Distributes load Linear with GPU count 

Quantization 2x-4x reduction 1.2x-1.5x improvement 

Continuous Batching Minimal effect 1.5x-3x improvement 

KV Cache Optimization 2x-3x reduction 2x-4x improvement 

 

PagedAttention: Solving the KV Cache Problem 

The evolution of PagedAttention represents a breakthrough in memory management for large language 

model inference, addressing critical bottlenecks that previously limited serving efficiency and throughput. 

 

KV Cache Memory Bottlenecks 

The key-value cache in transformer architectures presents a fundamental memory challenge during 

inference. In LLaMA-13B, the KV cache for a single sequence with 2048 tokens consumes approximately 

1.7 GB of GPU memory, with memory requirements scaling linearly with both batch size and sequence 

length. This creates severe constraints in production environments where thousands of concurrent requests 

must be processed. Traditional implementations allocate contiguous blocks of memory for each sequence's 

KV cache, leading to significant fragmentation as sequences complete at different rates. In vLLM's 

benchmark analysis, this fragmentation resulted in memory utilization rates of just 18-30% in real-world 

workloads with varying sequence lengths, essentially wasting 70-82% of available GPU memory. Typical 

inference servers handling mixed batches of requests showed that only 22% of allocated KV cache memory 

contained valid tokens, with the remaining 78% representing wasted space due to allocation granularity 

issues [7]. 

 

Block-Based Memory Management Implementation 

PagedAttention implements a paging mechanism that divides the KV cache into fixed-size blocks (typically 

16 or 32 tokens per block), which can be allocated and accessed non-contiguously. The implementation 

maintains a block table for each sequence that maps logical token positions to physical memory locations 

with O(1) lookup complexity. Each physical block in vLLM contains attention keys and values for a fixed 

number of tokens (16) across all attention heads, requiring 2 × 16 × h × d memory, where h is the number 

of attention heads and d is the head dimension. This approach enables fine-grained memory management, 

with physical blocks allocated only when needed and released immediately when no longer required. 

Benchmarks on LLaMA models show that PagedAttention achieves memory utilization rates of 70-89% 

across various workloads, representing a 3.9× improvement over contiguous allocation. The custom CUDA 

kernels developed for PagedAttention maintain computational efficiency despite the indirection, with the 

additional lookup overhead adding only 3-7% computational cost while providing dramatically better 

memory utilization [7]. 
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Performance Impacts and Scaling Properties 

The practical impact of PagedAttention on serving performance has been substantial. When evaluated on 

LLaMA-7B using a single A100 GPU with batch size 32 and sequence length 512, vLLM achieved 126 

tokens per second compared to 54 tokens per second with standard implementations—a 2.33× improvement 

in throughput. This advantage scales with model size, with LLaMA-13B showing throughput improvements 

of 2.47× and LLaMA-65B showing improvements of 3.03×. Under power-law distributed sequence length 

workloads mimicking real-world traffic patterns, the throughput advantages increased to 3.5-4.2× due to 

more severe fragmentation in traditional implementations. When measured in terms of effective tokens per 

second (E-TPS) at 64 concurrent users, vLLM achieved 4× higher throughput than Hugging Face 

Transformers and 2× higher than FasterTransformer across all tested model sizes. These performance gains 

directly translate to reduced serving costs, with PagedAttention-based systems requiring 65-75% fewer 

GPUs to maintain equivalent quality of service levels compared to traditional implementations [8]. 

 

Table 2: Memory Utilization Comparison Between Traditional and PagedAttention Approaches [7, 8] 

Deployment 

Scenario 

Traditional KV 

Cache 

Utilization 

PagedAttention 

Utilization 

Fragmentation 

Reduction 
Key Benefits 

Single Request 
Contiguous 

allocation 

Block-based 

allocation 

Lower with short 

sequences 

Fine-grained 

memory 

management 

Mixed 

Sequence 

Lengths 

High 

fragmentation 

Minimal 

fragmentation 

Substantial 

improvement 

Consistent 

performance 

Production 

Workloads 
Poor utilization High utilization 3-4x improvement 

Higher 

throughput 

Streaming 

Generation 

Growing 

allocation 

Block-by-block 

allocation 

Efficient for long 

outputs 

Better resource 

scaling 

 

vLLM: Implementation and Integration 

The vLLM framework represents a significant leap forward in LLM serving technology, providing both 

performance enhancements and deployment simplifications for organizations implementing large language 

models at scale. 

 

Core Architecture Components 

vLLM's architecture is built around three key components that work in concert to enable efficient model 

serving. At the heart of the system is the PagedAttention mechanism that addresses memory fragmentation 

issues through virtualized memory management. The implementation divides KV cache memory into fixed-

size blocks (typically 16 tokens), enabling non-contiguous memory allocation with 3-4x higher memory 

utilization compared to traditional contiguous allocation approaches. This is complemented by a continuous 
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batching scheduler that dynamically processes requests as they arrive rather than waiting for fixed batch 

formation, resulting in significantly improved throughput and latency characteristics. When deployed on a 

single NVIDIA A100-SXM-80GB GPU, vLLM achieves processing rates of approximately 1TB of text 

per day for 7B parameter models when running at full capacity. The framework supports multiple execution 

backends including CUDA, ROCm, and CPU, with the ability to adapt to diverse hardware environments 

through its abstracted execution layer. 

 

Deployment and Serving Configuration 

Deploying LLaMA models with vLLM requires careful configuration to maximize performance. The 

system provides flexible tensor parallelism options, allowing models to be distributed across multiple GPUs 

with near-linear scaling efficiency. In benchmark tests, distributing a 65B parameter model across 8 GPUs 

achieved 7.2x speedup compared to single-GPU execution, demonstrating 90% scaling efficiency. The 

framework's API layer provides compatibility with both OpenAI-style endpoints and Hugging Face 

interfaces, simplifying integration with existing applications. Advanced deployment configurations include 

pipeline parallelism for multi-node distribution and hybrid quantization modes that apply different precision 

levels to various model components. The quantization implementation supports multiple schemes including 

AWQ, GPTQ, and SqueezeLLM, with AWQ quantization reducing memory requirements by 

approximately 75% while maintaining accuracy within 1% of full-precision models on standard 

benchmarks. 

 

Performance Optimization Techniques 

Beyond its core architectural innovations, vLLM implements numerous optimization techniques to 

maximize performance. The framework's CUDA kernel optimizations include fused operations that reduce 

memory transfers and specialized attention implementations that minimize warp divergence. These 

optimizations result in computation overhead of less than 5% compared to standard attention mechanisms 

despite the additional indirection layer. The prefix caching functionality enables frequently used prompts 

to be precomputed and stored, providing up to 67% latency reduction for common instruction templates. 

When deployed with optimal configurations on modern GPU hardware, vLLM demonstrates impressive 

performance characteristics: serving approximately 100 tokens per second for 13B parameter models and 

30 tokens per second for 70B parameter models on single A100 GPUs. Most notably, the system's 

continuous batching approach enables consistent latency characteristics even under varying load conditions, 

with P99 latency typically remaining within 2x of median latency across load levels from 10% to 90% of 

maximum throughput. 
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Table 3: vLLM Core Components and Functionality [9, 10] 

Component Functionality Integration Point Key Feature 

PagedAttention Engine 
Memory 

management 
Model inference 

Block-based 

allocation 

Continuous Batching 

Scheduler 
Request processing Serving frontend 

Dynamic request 

handling 

Tensor Parallelism 

Manager 

Distributed 

computation 

Multi-GPU 

deployment 
Model partitioning 

Quantization Framework Precision reduction Model loading Memory optimization 

 

Future Directions and Best Practices 

The intersection of recommendation systems and large language models represents a fertile ground for 

innovation in machine learning infrastructure, with several emerging trends shaping the future landscape. 

 

Retrieval-Augmented Generation Scaling 

Retrieval-Augmented Generation (RAG) architectures have emerged as a powerful paradigm combining 

the strengths of both recommendation systems and LLMs. These systems face significant scaling 

challenges, particularly in vector database management where index sizes can reach billions of vectors. 

Production RAG applications typically require managing indexes containing 10-100 million documents 

with embedding dimensions between 768 and 1536, resulting in storage requirements of 100GB-1TB for 

the vector database alone. Performance characteristics degrade non-linearly as scale increases, with query 

latencies increasing from approximately 10ms at 1 million vectors to 100-200ms at 100 million vectors 

using standard HNSW indices. These scaling challenges necessitate specialized infrastructure patterns 

including distributed vector search, multi-stage retrieval pipelines, and hybrid storage architectures 

combining in-memory and disk-based indices. Organizations implementing these solutions have reported 

maintaining sub-100ms retrieval latencies even at billion-scale vector collections through careful 

architecture optimization and hardware acceleration [11]. 

 

Energy Efficiency and Carbon Footprint 

The environmental impact of AI infrastructure has become a critical consideration as model sizes and 

deployment scale increase. GPT-3 training alone consumed an estimated 1,287 MWh of electricity, 

equivalent to the annual consumption of 120 US homes. Inference workloads, which were previously 

considered relatively lightweight, now constitute a significant portion of AI energy consumption due to 

their continuous nature and widespread deployment. A single LLM serving cluster processing 100 requests 

per second can consume 20-50 kW of power, equivalent to a small office building. The carbon impact varies 

significantly based on infrastructure choices, with on-premises deployments typically producing 0.4-0.9 kg 

CO₂e per 1,000 inferences compared to 0.2-0.4 kg CO₂e for optimized cloud deployments in regions with 

low-carbon electricity. Organizations have implemented various optimizations to address these concerns, 

including 8-bit quantization that reduces inference energy by approximately 50% with minimal accuracy 
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impact, distillation to smaller models that can reduce energy consumption by 5-10x, and specialized 

inference hardware that improves energy efficiency by 2-5x compared to general-purpose GPUs [12]. 

 

Hybrid Architecture Patterns 

Emerging architectural patterns increasingly leverage the complementary strengths of different AI 

approaches through sophisticated hybrid designs. These architectures typically implement multi-stage 

processing pipelines where efficient retrieval systems identify relevant information that is subsequently 

processed by LLMs. This approach addresses fundamental limitations in both technologies: LLMs struggle 

with factual consistency and domain-specific knowledge beyond their training data, while recommendation 

systems lack the generative and reasoning capabilities needed for complex personalization. Production 

implementations have demonstrated that hybrid architectures can reduce computational requirements by 

60-80% compared to LLM-only approaches while improving factuality scores by 20-35% on standard 

benchmarks. These systems typically employ tiered processing strategies where 70-90% of requests are 

handled by lightweight models or retrieval mechanisms, with only the most complex queries requiring full 

LLM processing. This architecture pattern enables organizations to efficiently scale AI capabilities while 

managing infrastructure costs and environmental impact [11]. 

 

CONCLUSION 

 

The convergence of recommendation systems and large language models represents a significant inflection 

point in machine learning infrastructure design. The technical solutions developed for scaling 

personalization—including vector databases, real-time feature computation, and edge deployment—

provide valuable foundations for addressing similar challenges in LLMOps. PagedAttention's innovative 

approach to memory management through non-contiguous allocation illustrates how specialized solutions 

can overcome the inherent limitations in transformer architectures. This architectural evolution reflects 

broader industry trends toward more adaptable, efficient systems capable of supporting diverse AI 

workloads while maintaining performance at scale. Organizations implementing these infrastructure 

patterns will be better positioned to leverage both traditional recommendation engines and emerging 

foundation models, allowing for more sophisticated personalization and AI-driven experiences across their 

platforms. 
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