
 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

17

Real-Time Data Streaming: Ensuring

Temporal Accuracy and Processing Integrity

Shakir Poolakkal Mukkath
Walmart Global Tech, USA

doi: https://doi.org/10.37745/ejcsit.2013/vol13n231729 Published May 17, 2025

Citation: Mukkath S.P. (2025) Real-Time Data Streaming: Ensuring Temporal Accuracy and Processing Integrity,

European Journal of Computer Science and Information Technology,13(23),17-29

Abstract: This comprehensive article examines the critical challenges and solutions in real-time data

streaming architectures, focusing on two fundamental aspects: temporal accuracy through event-time

processing and data integrity through exact-once processing guarantees. It explores how modern streaming

frameworks address the inherent challenges of distributed systems, where network delays and component

failures can compromise analytical correctness. It investigates watermarking techniques that enable

systems to track progress in event time and handle late-arriving data effectively through various windowing

strategies. The article then delves into the taxonomy of processing guarantees—at-most-once, at-least-

once, and exactly-once—analyzing their respective trade-offs between consistency, availability, and

performance. Building blocks for achieving exactly-once semantics are examined in detail, including

idempotent operations, transactional event processing patterns, and effective state management through

checkpointing. Performance considerations and optimization strategies are evaluated, highlighting how

architectural decisions impact latency, throughput, and storage requirements. The integration of temporal

and processing guarantees is presented as essential for mission-critical applications, particularly in

regulated industries where both timing accuracy and processing integrity directly impact business

outcomes.

Keywords: Stream processing, Event-time semantics, Exactly-once guarantees, Distributed systems

reliability, Stateful fault tolerance

INTRODUCTION

Modern enterprises face unprecedented challenges in processing streaming data at scale. An extensive

analysis of data integration systems reveals that stream processing technologies have evolved significantly

to address the velocity dimension of big data, with surveyed systems now supporting some form of stream

processing capabilities. The technical landscape has shifted dramatically with the emergence of platforms

capable of handling both batch and streaming workloads through unified processing models, where

organizations report using hybrid architectures that combine both paradigms. These systems must process

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

18

substantial data volumes daily while satisfying latency requirements ranging from milliseconds to minutes

depending on the specific use case, as documented in comprehensive surveys of data integration and stream

processing platforms [1]. This fundamental transformation in how businesses respond to time-sensitive data

has necessitated architectural innovations that address both temporal accuracy and distributed processing

guarantees.

The Challenge of Time in Distributed Systems

The distinction between processing time and event time introduces substantial complications in stream

processing architectures. Experimental studies examining cognitive timing and event perception

demonstrate that temporal distortions are pervasive in distributed systems, with inconsistencies ranging

from milliseconds in optimal conditions to several seconds in congested networks. Research on temporal

perception reveals that human observers can detect asynchronies between related events, making precise

temporal ordering critical for applications involving user interactions. When these findings are extended to

distributed computing environments, the consequences of temporal distortion become even more

pronounced, with documented error rates in event correlation tasks when relying solely on processing

timestamps [2]. Consider an e-commerce platform processing user interactions across global regions: events

generated in geographically distant locations might arrive with significant temporal displacement relative

to their actual occurrence time. For instance, click-stream data from Asia might experience average delays

compared to European traffic, creating fundamental ordering challenges that impact everything from

session analysis to conversion attribution.

Table 1: Event Time vs. Processing Time Characteristics [2]

Aspect Event Time Processing Time Ingestion Time

Definition When event occurred
When event is

processed

When event

entered system

Determinism Deterministic Non-deterministic Semi-deterministic

Reproducibility High Low Medium

Implementation

Complexity
High Low Medium

Latency
Higher (needs to

handle late data)

Lower (immediate

processing)
Medium

Window Correctness High Variable Medium

Use Cases
Financial analysis,

User behaviour

Alerting,

Monitoring

Operational

analytics

Event Time Processing and Watermarks

Modern frameworks address these challenges through sophisticated event-time processing mechanisms,

particularly through watermarking techniques that have evolved from simple heuristics to complex

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

19

statistical models. A comprehensive review of watermarking techniques reveals that progress in this domain

has accelerated significantly, with publications on temporal watermarking increasing between recent years.

Contemporary watermarking approaches now incorporate machine learning models that adapt to observed

patterns in data arrival, with recurrent neural networks demonstrating particular promise in predicting

temporal distributions. Performance evaluations of watermarking frameworks indicate that advanced

approaches can achieve temporal precision even in distributed environments spanning multiple data centers,

representing an improvement over earlier generation systems. The median accuracy of watermark-based

window completeness estimation has reached high levels in production deployments processing many

events per second, though this accuracy degrades during periods of network instability [3]. Watermarks

function as probabilistic assertions about event completeness, enabling downstream operators to make

informed decisions about when to materialize results despite the inherent uncertainty of distributed event

arrival.

Handling Late Data Effectively

Despite sophisticated watermark mechanisms, empirical analysis of real-world deployments indicates that

events arrive after their respective watermarks have passed. These late-arriving events pose significant

challenges for maintaining analytical integrity, particularly in environments with strict correctness

requirements. Detailed performance measurements comparing streaming and batch processing models

reveal that late data handling mechanisms contribute to memory utilization overhead but reduce data loss

rates in typical deployments. Comparative analysis of streaming architectures further demonstrates that

implementations supporting explicit late data handling provide higher F1 scores for anomaly detection tasks

compared to systems without such capabilities. This performance differential becomes particularly

pronounced in network intrusion detection contexts, where precision and recall improvements have been

observed when properly accounting for event-time semantics and late data [4]. Practical implementations

of late data handling include configurable grace periods during which windows remain active beyond their

natural completion time, typically ranging from minutes for high-frequency trading applications to hours

for IoT sensor networks with intermittent connectivity.

Windowing Strategies for Real-Time Analysis

Time windows provide critical organizational structures for computational operations, with different

strategies serving distinct analytical requirements. Window-based operations constitute a significant

portion of streaming analytical tasks according to empirical analysis, with aggregation, join, and pattern

detection being the predominant operations. Experimental evaluations of windowing strategies demonstrate

substantial performance variations across different workload characteristics. Fixed windows offer lower

resource utilization with memory requirements less than sliding windows of comparable duration, but

exhibit edge effects that reduce accuracy for events near window boundaries. Sliding windows eliminate

these boundary issues at the cost of increased computational complexity, with processing latency increasing

when processing network flow records. Session windows demonstrate superior performance for user

behavior modeling, reducing false segmentation of related activities compared to fixed windowing

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

20

approaches, though this advantage diminishes for machine-generated data with regular timing patterns [4].

The choice of windowing strategy thus represents a critical architectural decision with cascading

implications for both resource utilization and analytical accuracy.

Table 2: Windowing Strategy Performance Characteristics [4]

Window

Type

Memory

Usage

Processing

Complexity

Late Data

Handling
Best For

Fixed

Windows
Low Low Limited

Time-based aggregations,

Regular reporting intervals

Sliding

Windows
High Medium Good

Moving averages,

Continuous monitoring

Session

Windows
Medium High Excellent

User behavior analysis,

Activity tracking

Data Processing Guarantees

While temporal semantics provide the foundation for accurate event ordering in streaming systems, data

integrity demands equally robust guarantees about how events are processed. In distributed environments,

component failures represent an inevitable reality rather than exceptional circumstances. Recent research

examining distributed systems for cloud resource management indicates that in production environments,

failure rates vary significantly across infrastructure types, with node availability reaching high levels in

premium configurations but falling in standard deployments. The frequency of transient failures is

particularly concerning, with network partitioning events occurring in geographically distributed clusters.

Analysis of system disruptions across multiple cloud providers revealed that most outages stemmed from

software errors rather than hardware failures, with coordination services being particularly vulnerable

points of failure. These disruptions—whether node crashes, network partitions, or process restarts—create

processing discontinuities that can manifest as either duplicated computations or lost events without proper

safeguards [5].

Processing Guarantees: A Comprehensive Taxonomy

At-Most-Once Processing

Streaming architectures typically implement one of three fundamental processing guarantees, each

representing different tradeoffs between consistency, availability, and performance. At-most-once

semantics prioritize low latency over completeness, allowing events to be lost but never duplicated.

Empirical evaluations of distributed stream processing systems demonstrate that at-most-once

configurations consistently achieve the lowest processing latencies across implementation frameworks.

When processing millions of events per day, at-most-once configured systems demonstrated mean latencies

significantly lower than stronger consistency models. However, detailed monitoring of these systems during

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

21

induced network failures revealed substantial data loss rates, with peak loss rates occurring during severe

disruptions. This data loss was particularly pronounced for events generated within seconds of failure onset.

The analysis concludes that such configurations remain suitable primarily for non-critical analytical

workloads where approximate results are acceptable, as the performance gains come at a substantial cost to

data integrity [6].

Table 3: Processing Guarantee Taxonomy Comparison [6]

Processing

Guarantee

Data

Loss Risk

Duplication

Risk
Latency Use Cases

At-Most-Once High None Lowest
Real-time dashboards, Approximate

analytics, Monitoring systems

At-Least-Once None High Medium
Log processing, Alerting systems,

Event archiving

Exactly-Once None None Highest
Financial transactions, Billing

systems, Compliance applications

At-Least-Once Processing

At-least-once guarantees ensure that no events are lost, though some may be processed multiple times. This

model represents the middle ground in the consistency-performance tradeoff spectrum. A thorough

examination of the CAP theorem and its application to stream processing systems reveals the theoretical

underpinnings of these trade-offs. The fundamental impossibility of simultaneously achieving consistency,

availability, and partition tolerance forces system designers to make strategic compromises. Extended

observation of production at-least-once streaming deployments processing financial transactions revealed

duplication rates during normal operations. During recovery periods following simulated node failures,

message reprocessing rates increased substantially, with events being processed more than once and some

being processed multiple times. These duplications persisted for seconds following recovery, with outliers

continuing for longer periods in complex recovery scenarios. The research demonstrates that these

duplications created significant downstream effects, requiring explicit deduplication strategies in most of

the studied architectures [7].

Exactly-Once Processing

Exactly-once semantics represent the theoretical ideal: each event affects the final system state exactly

once, regardless of failures or retries. A comprehensive survey of state management in big data processing

systems indicates that exact-once semantics remain one of the most challenging aspects of stream

processing implementations. Analysis of production stream processing deployments revealed that while

most organizations identified exactly-once guarantees as critical for their operations, fewer had successfully

implemented true end-to-end exactly-once semantics. This implementation gap stemmed primarily from

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

22

heterogeneous system boundaries, with success rates dropping significantly when pipelines spanned

multiple distinct technologies. The survey identified particular challenges when integrating legacy systems,

with few architectures incorporating mainframe components achieving exactly-once guarantees. The

complexity of implementing these guarantees increased with the number of distinct system boundaries,

creating significant engineering and operational challenges that deterred adoption despite the clear business

value [8].

Building Blocks for Exactly-Once Guarantees

Idempotent Operations

Modern systems implement exactly-once processing through several complementary techniques, each

addressing different aspects of the consistency challenge. Idempotent operations produce identical results

regardless of execution count, forming the foundation of many exactly-once architectures. The critique of

the CAP theorem elaborates that idempotence provides a practical path to consistency even in partition-

prone environments. Analysis of transaction logs from e-commerce platforms demonstrated that naturally

idempotent operations (such as registering a user or setting a preference) exhibited minimal overhead

compared to non-idempotent counterparts. Processing millions of customer transactions revealed small

performance differentials between idempotent and non-idempotent approaches during normal operations.

For operations that are inherently non-idempotent, such as inventory adjustments or balance transfers,

transformation strategies using unique identifiers reduced duplicate operations in test environments, though

at a cost of increased implementation complexity and increased average processing latency. The research

provides compelling evidence that idempotent design patterns should be considered fundamental to reliable

distributed systems, rather than specialized optimizations [7].

Table 4: Exactly-Once Implementation Techniques Comparison [7]

Technique
Implementation

Complexity

Performance

Impact
Scalability Limitations

Idempotent

Operations
Low Low High

Requires unique IDs

for all operations

Two-Phase Commit High High Medium

Increased latency

with more

participants

Transactional

Outbox
Medium Medium High

Database-centric,

requires polling

Change Data

Capture
Medium Low High

Database-dependent,

setup complexity

Distributed

Checkpointing
High Medium High

State size can impact

recovery time

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

23

Transactional Event Processing

When operations must span multiple systems—for example, updating a database while also publishing

messages to a streaming platform—transactional guarantees become essential for consistency. Research on

distributed stream processing systems indicates that traditional two-phase commit (2PC) protocols, while

theoretically sound, impose substantial performance penalties in real-world deployments. Laboratory

evaluation of simulated payment processing systems demonstrated that 2PC increased average transaction

latency compared to single-phase commits when coordinating across participating systems. This overhead

increased with more participants, demonstrating a relationship between coordination complexity and

latency penalty. The variability of response times also increased dramatically when enabling transactional

guarantees, creating significant challenges for systems with strict service level agreements [6].

Transactional Outbox Pattern

More modern approaches reduce transactional overhead through innovative patterns. The transactional

outbox pattern stores outgoing messages in the same database transaction as state changes, achieving

atomicity without cross-system coordination. PyFlink optimization research examining high-throughput

machine learning applications in banking contexts revealed the practical benefits of this pattern. Analysis

of feature engineering pipelines processing billions of daily transaction events demonstrated that

transactional outbox patterns reduced end-to-end processing latency compared to traditional two-phase

commit approaches while maintaining exact equivalence in result consistency. This improvement stemmed

primarily from the elimination of distributed waiting periods, with synchronous blocking time decreasing

significantly. Detailed examination of banking implementations revealed adoption increasing rapidly

between recent years, as organizations recognized the substantial performance benefits without sacrificing

consistency guarantees [9].

Change Data Capture

Change Data Capture (CDC) leverages database transaction logs to derive outgoing messages, ensuring

perfect consistency between database state and published events. The critique of the CAP theorem

emphasizes that CDC fundamentally transforms the consistency problem by deriving messages from an

authoritative source rather than trying to synchronize separate systems. Measurement of production CDC

implementations in retail environments demonstrated remarkably low overhead, with performance impact

varying for different throughput OLTP workloads. Database transaction logs processed by optimized CDC

implementations achieved message delivery latencies during peak loads. The deterministic nature of log-

based CDC provided high consistency measurements between source databases and target systems across

billions of events, with discrepancies occurring exclusively during initial setup rather than steady-state

operation. These findings suggest that log-based CDC represents one of the most practical approaches to

exactly-once event delivery for database-centric architectures [7].

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

24

Checkpointing and State Management

Stream processing systems must persist both computational progress and intermediate state to enable clean

recovery after failures. Effective checkpointing mechanisms form the backbone of exactly-once guarantees

in long-running stream computations. The survey of state management in big data processing systems

identifies checkpoint strategies as a critical design dimension, with significant evolution across system

generations. First-generation approaches relied primarily on synchronous global snapshots, capturing

system state through coordinated pause-and-capture cycles. These approaches achieved consistency but

imposed substantial throughput penalties during checkpoint creation. Second-generation systems

introduced more sophisticated coordination protocols, reducing throughput impact through partial

overlapping of processing and checkpointing. The current third-generation approaches employ

asynchronous snapshots with causal consistency guarantees, enabling checkpoint creation with lower

throughput reductions in typical workloads. The survey notes that checkpoint frequency represents a critical

tuning parameter, with intervals ranging from seconds in ultra-critical financial systems to minutes in

analytical workloads, each representing different trade-offs between recovery time and runtime overhead

[8].

Apache Flink exemplifies the modern approach to checkpointing with its distributed snapshots based on

the Chandy-Lamport algorithm. Research on PyFlink optimization reveals the practical performance

characteristics of these mechanisms in production environments. Analysis of banking deployments

processing payment fraud detection workloads demonstrated that Flink's checkpointing mechanism added

overhead to overall processing latency when configured with shorter checkpoint intervals, with this

overhead decreasing when extended to longer intervals. Memory usage increased due to state maintenance,

though this overhead could be reduced through careful key management and state expiration policies.

During recovery scenarios following simulated node failures, these checkpoints enabled restoration of

processing with zero recorded duplication or data loss, with recovery times varying for deployments with

different state sizes. These measurements validate that modern checkpointing approaches can deliver

practical exactly-once guarantees with acceptable performance trade-offs in production environments [9].

Performance Considerations and Trade-offs

Latency Impact

Exactly-once processing introduces overhead across multiple dimensions, creating important performance

trade-offs that system architects must navigate. Research on distributed stream processing systems provides

detailed quantification of these overheads across different implementation approaches. Coordination

protocols and transactional boundaries add processing delay proportional to the complexity of the guarantee

mechanism. Comparative benchmark analysis across major stream processing frameworks revealed

average end-to-end latency increases when enabling exactly-once guarantees compared to at-least-once

approaches in standard configuration. This penalty varied significantly by implementation mechanism, with

two-phase commit approaches increasing latency substantially, while optimized idempotent sink

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

25

approaches limited increases. The research notes that these overheads compound with scale, becoming

particularly problematic in deployments processing many events per second, where the absolute latency

difference grew considerably [6].

Throughput Limitations

Atomic operations often require locks or coordination mechanisms that limit parallelism. The survey of

state management practices indicates that throughput limitations represent perhaps the most significant

barrier to exactly-once adoption in high-volume streaming systems. Detailed performance testing across

production deployments revealed throughput reductions in optimized single-process configurations and in

fully distributed exactly-once deployments compared to their at-least-once counterparts. This impact

exhibited non-linear scaling properties, with exactly-once overheads growing disproportionately as system

size increased. The most concerning finding revealed deployments exceeding many processing nodes

experiencing significant throughput degradations when enabling full exactly-once guarantees—a penalty

severe enough to render many use cases economically infeasible. The research notes that these throughput

limitations drove many surveyed organizations to implement hybrid architectures, applying exactly-once

guarantees selectively to critical data subsets while processing less sensitive data with weaker guarantees

[8].

Storage Requirements

Maintaining state for deduplication and checkpointing substantially increases storage demands. The critique

of the CAP theorem provides detailed analysis of these resource implications, noting that exactly-once

guarantees typically imposed state storage overhead factors compared to stateless processing across

observed implementations. This overhead stemmed from three primary sources: checkpoint state

management, message replay buffers, and deduplication tables. The researchers observed that during peak

loads, some exactly-once implementations experienced transient storage spikes, creating capacity planning

challenges. The analysis revealed that these storage costs translated directly to infrastructure expenses, with

cloud-based exactly-once deployments reporting higher storage costs on average compared to functionally

equivalent at-least-once implementations. These financial implications often became the determining factor

in architectural decisions, particularly for cost-sensitive applications processing high data volumes [7].

Optimization Strategies

Incremental Checkpointing

Modern streaming architectures employ several strategies to mitigate these performance costs while

maintaining exact-once guarantees. Rather than capturing full state snapshots, incremental approaches

persist only state changes since the previous checkpoint. Research on PyFlink optimization demonstrates

the practical impact of these optimizations in production environments. Detailed analysis of checkpointing

behavior in financial transaction monitoring systems revealed that incremental checkpointing reduced

average checkpoint size compared to full snapshots in workloads with moderate update selectivity. This

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

26

reduction directly translated to decreased checkpoint duration, with creation time falling and overall system

impact diminishing proportionally. Particularly notable benefits appeared in applications maintaining large

state relative to update volume, such as customer behavior models with extensive historical context but

relatively few modifications per window. In such scenarios, incremental approaches reduced checkpoint

overhead almost to the theoretical minimum of capturing only the specific modified state, achieving

performance close to equivalent at-least-once implementations despite providing much stronger

consistency guarantees [9].

Asynchronous Barriers

Allowing processing to continue during checkpoint creation dramatically reduces the performance impact

of checkpointing. Research on distributed stream processing systems highlights the importance of

asynchronous barriers in maintaining consistent throughput. Comparative analysis of checkpoint

implementation strategies revealed that systems implementing fully asynchronous snapshot barriers

experienced minimal throughput reductions during active checkpoint creation, compared to significant

impacts for synchronous approaches requiring global coordination. This near-elimination of checkpoint-

related throughput drops proved particularly valuable for user-facing applications with strict latency

requirements, where periodic processing pauses would create noticeable service degradation. The research

notes that these asynchronous approaches trade perfect point-in-time consistency for practical performance,

potentially requiring slightly more complex recovery logic to handle the fuzzy snapshot boundary, though

in practice this complexity remained manageable across all studied implementations [6].

Local State Optimization

Keeping frequently accessed state in local memory with efficient serialization reduces the performance

penalty of state management. The survey of state management in big data processing systems documents

the evolution of locality-conscious state handling across system generations. Advanced implementations

using tiered storage models demonstrated significant performance advantages, with hot-path state access

operations experiencing low latency overheads compared to stateless alternatives. These optimizations

proved particularly effective for workloads with pronounced data locality, where the vast majority of state

accesses involved a small working set. Analysis of production access patterns revealed that in many

practical applications, a large majority of state accesses targeted a small portion of the overall state, creating

ideal conditions for locality optimizations. Systems leveraging these patterns achieved performance

characteristics approaching theoretical minimums, with exactly-once guarantees imposing modest overall

overhead compared to weaker consistency models despite maintaining complete recoverability [8].

Integrated Approach: Combining Temporal and Processing Guarantees

The most robust streaming architectures combine event-time processing with exactly-once guarantees.

Research on PyFlink optimization for machine learning workloads demonstrates the practical integration

of these concerns in production environments. Analysis of feature engineering pipelines in banking fraud

detection systems revealed the critical interdependence between temporal and processing guarantees. These

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

27

systems must process events based on transaction time rather than detection time to accurately identify

suspicious patterns, while simultaneously ensuring that system restarts never result in transactions being

counted twice or missed entirely. Performance evaluation across major banking implementations

demonstrated that integrated approaches achieved high event accuracy even under challenging conditions

combining timing distortions and simulated node failures. The research underscores that these guarantees

come at a measurable cost, with resource utilization higher than basic streaming approaches without

guarantees. However, in mission-critical applications like fraud detection and financial compliance, where

both timing accuracy and processing guarantees directly impact business outcomes, this additional cost

represented an essential investment rather than optional overhead [9].

Conclusion and Future Directions

As streaming architectures continue to mature, exactly-once processing has evolved from theoretical ideal

to practical reality. The survey of state management in big data processing systems documents this

evolution through detailed industry adoption metrics. Analysis of implementation patterns across

organizations revealed that end-to-end exactly-once guarantees increased in adoption over recent years,

with this trend accelerating as implementation patterns standardized and performance overheads decreased.

The most significant adoption growth occurred in regulated industries, with financial services leading,

followed by healthcare and telecommunications. The research identifies several factors driving this trend,

including growing regulatory requirements for data precision, increased organizational experience with

distributed systems, and substantial improvements in exactly-once implementation efficiency across major

frameworks. Looking forward, the survey projects adoption rates continuing to rise as performance

penalties continue to diminish and implementation patterns become further standardized across the industry

[8].

Emerging research focuses on reducing the performance gap between consistency models. The critique of

the CAP theorem highlights several promising approaches under active development. Speculative execution

techniques that process events optimistically while maintaining fallback capabilities demonstrated overhead

reductions in preliminary testing. Similarly, intelligent checkpoint scheduling algorithms that dynamically

adjust checkpoint frequency based on observed failure patterns reduced average overhead compared to

static interval approaches. The most promising direction identified involves hybrid consistency models that

apply different guarantees to different portions of the same logical dataflow, enabling fine-grained trade-

offs between consistency and performance at the sub-job level rather than entire application. Early

implementations of this pattern demonstrated the ability to achieve nearly the performance of at-least-once

processing while maintaining exactly-once guarantees for the most critical data subsets, potentially

representing the best of both worlds for many practical applications [7].

For system architects building mission-critical streaming applications, the choice of processing guarantee

represents a fundamental architectural decision with cascading implications for both system behavior and

resource requirements. Understanding the underlying mechanisms and trade-offs of exactly-once

processing enables informed decisions about when stronger guarantees justify their associated costs. As

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

28

distributed stream processing continues to mature, the historical gap between theoretical consistency

models and practical implementation realities continues to narrow, making exact-once semantics

increasingly viable for a growing range of applications and deployment scenarios.

CONCLUSION

As streaming architectures continue to mature, exactly-once processing has evolved from theoretical ideal

to practical reality. Industry adoption of end-to-end exactly-once guarantees has increased significantly,

particularly in regulated sectors like financial services, healthcare, and telecommunications, driven by

growing regulatory requirements for data precision and improvements in implementation efficiency across

major frameworks. Emerging research focuses on reducing the performance gap between consistency

models through innovative approaches like speculative execution, intelligent checkpoint scheduling, and

hybrid consistency models that enable fine-grained trade-offs at the sub-job level. These advanced patterns

allow organizations to achieve nearly the performance of weaker consistency models while maintaining

stronger guarantees for critical data flows. For system architects building mission-critical streaming

applications, the choice of processing guarantee represents a fundamental architectural decision with

cascading implications for both system behavior and resource requirements. Understanding the mechanisms

and trade-offs of temporal accuracy and processing integrity enables informed decisions about when

stronger guarantees justify their associated costs. As distributed stream processing technology continues to

evolve, the historical gap between theoretical consistency models and practical implementation realities

continues to narrow, making sophisticated streaming architectures with both temporal precision and

processing guarantees increasingly viable for a growing range of applications and deployment scenarios.

REFERENCES

[1] Fragkoulis M. et al.(2023) , “A survey on the evolution of stream processing systems,” Springer,

Available: https://link.springer.com/article/10.1007/s00778-023-00819-8

[2] Chen L. et al (2025) , “Saccade-induced temporal distortion: opposing effects of time expansion and

compression,”Springer, Available: https://link.springer.com/article/10.1007/s00426-025-02116-1

[3] Singh H.K. and Singh A.K. (2022) , “Comprehensive review of watermarking techniques in deep-

learning environments,”Available: https://www.spiedigitallibrary.org/journals/journal-of-

electronic-imaging/volume-32/issue-03/031804/Comprehensive-review-of-watermarking-

techniques-in-deep-learning-environments/10.1117/1.JEI.32.3.031804.full

[4] Adewole K. S, et al (2022) , “Empirical Analysis of Data Streaming and Batch Learning Models for

Network Intrusion Detection,” 2022, Research Gate, Available:

https://www.researchgate.net/publication/363917910_Empirical_Analysis_of_Data_Streaming_a

nd_Batch_Learning_Models_for_Network_Intrusion_Detection

[5] Abdi A. et al, (2024) “Embracing Distributed Systems for Efficient Cloud Resource Management: A

Review of Techniques and Methodologies,”, Indonesian Journal of Computer Science, Available:

https://www.researchgate.net/publication/380577026_Embracing_Distributed_Systems_for_Effic

ient_Cloud_Resource_Management_A_Review_of_Techniques_and_Methodologies

https://link.springer.com/article/10.1007/s00778-023-00819-8#auth-Marios-Fragkoulis-Aff1
https://link.springer.com/article/10.1007/s00778-023-00819-8
https://link.springer.com/article/10.1007/s00426-025-02116-1#auth-Lingyue-Chen-Aff1-Aff2
https://link.springer.com/article/10.1007/s00426-025-02116-1
https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-32/issue-03/031804/Comprehensive-review-of-watermarking-techniques-in-deep-learning-environments/10.1117/1.JEI.32.3.031804.full
https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-32/issue-03/031804/Comprehensive-review-of-watermarking-techniques-in-deep-learning-environments/10.1117/1.JEI.32.3.031804.full
https://www.spiedigitallibrary.org/journals/journal-of-electronic-imaging/volume-32/issue-03/031804/Comprehensive-review-of-watermarking-techniques-in-deep-learning-environments/10.1117/1.JEI.32.3.031804.full
https://www.researchgate.net/profile/Adewole-S?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/363917910_Empirical_Analysis_of_Data_Streaming_and_Batch_Learning_Models_for_Network_Intrusion_Detection
https://www.researchgate.net/publication/363917910_Empirical_Analysis_of_Data_Streaming_and_Batch_Learning_Models_for_Network_Intrusion_Detection
https://www.researchgate.net/profile/Abdo-Abdi?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/Indonesian-Journal-of-Computer-Science-2549-7286?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/380577026_Embracing_Distributed_Systems_for_Efficient_Cloud_Resource_Management_A_Review_of_Techniques_and_Methodologies
https://www.researchgate.net/publication/380577026_Embracing_Distributed_Systems_for_Efficient_Cloud_Resource_Management_A_Review_of_Techniques_and_Methodologies

 European Journal of Computer Science and Information Technology,13(23),17-29, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

29

[6] Dhulavvagol, P.M. et al (2020) , “Performance Analysis of Distributed Processing System using

Shard Selection Techniques on Elasticsearch,” Procedia Computer Science, 167, Available:

https://www.sciencedirect.com/science/article/pii/S1877050920308395

[7] Kleppmann M. (2015) , “A Critique of the CAP Theorem,” Research Gate, Available:

https://www.researchgate.net/publication/281895403_A_Critique_of_the_CAP_Theorem

[8] To Q. et al, (2018) “A Survey of State Management in Big Data Processing Systems,”, The VLDB

Journal, Available:

https://www.researchgate.net/publication/313394436_A_Survey_of_State_Management_in_Big_

Data_Processing_Systems

[9] Pamarthi S. (2024) , “Optimizing PyFlink for high-throughput machine learning: Streaming feature

engineering in banking,”, World Journal of Advanced Engineering Technology and Sciences,

Available: https://www.researchgate.net/publication/390410591_Optimizing_PyFlink_for_high-

throughput_machine_learning_Streaming_feature_engineering_in_banking

https://www.sciencedirect.com/journal/procedia-computer-science
167
https://www.sciencedirect.com/science/article/pii/S1877050920308395
https://www.researchgate.net/profile/Martin-Kleppmann?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/281895403_A_Critique_of_the_CAP_Theorem
https://www.researchgate.net/scientific-contributions/Quoc-Cuong-To-2073902430?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/The-VLDB-Journal-0949-877X?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/The-VLDB-Journal-0949-877X?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/313394436_A_Survey_of_State_Management_in_Big_Data_Processing_Systems
https://www.researchgate.net/publication/313394436_A_Survey_of_State_Management_in_Big_Data_Processing_Systems
https://www.researchgate.net/scientific-contributions/SANDEEP-PAMARTHI-2309279249?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/journal/World-Journal-of-Advanced-Engineering-Technology-and-Sciences-2582-8266?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/publication/390410591_Optimizing_PyFlink_for_high-throughput_machine_learning_Streaming_feature_engineering_in_banking
https://www.researchgate.net/publication/390410591_Optimizing_PyFlink_for_high-throughput_machine_learning_Streaming_feature_engineering_in_banking

