
 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

99

ReactJS and Accessibility: Designing

Inclusive Web Applications for Broader

Social Impact

Vijaya Kumar Katta
Bellevue University, USA

doi: https://doi.org/10.37745/ejcsit.2013/vol13n3199109 Published May 31, 2025

Citation: Katta VK (2025) ReactJS and Accessibility: Designing Inclusive Web Applications for Broader Social

Impact, European Journal of Computer Science and Information Technology,13(31),99-109

Abstract: ReactJS has emerged as a powerful tool for creating accessible web applications, offering

developers sophisticated capabilities to implement inclusive design patterns that reach broader audiences.

This comprehensive article examines how React's component-based architecture facilitates the

implementation of accessibility features that adhere to Web Content Accessibility Guidelines (WCAG),

addressing the needs of users across the disability spectrum. It commences with the economic and ethical

imperatives of digital accessibility, highlighting how inclusive design expands market reach while fulfilling

social responsibilities. Through an analysis of semantic structures, the article demonstrates how JSX syntax

enables developers to leverage HTML's inherent accessibility features while supplementing them with ARIA

attributes where native semantics prove insufficient. Interactive elements receive particular attention, with

controlled component patterns providing robust foundations for accessible form experiences and focus

management strategies ensuring keyboard navigability. Visual and cognitive considerations are addressed

through discussions of color contrast, content structure, and multimodal state indicators that serve users

with diverse perceptual capabilities. The article concludes with an assessement of testing methods and

workflow integration practices that enhance accessibility outcomes while maintaining development

efficiency. Throughout, real-world implementation examples illustrate how ReactJS enables the creation of

digitally inclusive experiences that extend beyond mere compliance to create genuinely equitable access to

digital services across educational, commercial, and governmental contexts.

Keywords: Web accessibility, ReactJS, WCAG compliance, inclusive design, component architecture

INTRODUCTION

The Imperative of Digital Inclusivity

In today's hyper-connected landscape, web accessibility has evolved from a peripheral regulatory

consideration into a fundamental cornerstone of ethical and sustainable development practice. Digital

accessibility encompasses the methodical design and implementation of interfaces that accommodate users

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

100

across the disability spectrum. According to Gartland et al.'s comprehensive review of 42 studies involving

4,315 participants with cognitive disabilities, 83.7% encountered substantial barriers when using digital

services, with navigation complexities and information overload being the most prevalent challenges [1].

This scholarly examination investigates how ReactJS—which has grown substantially in developer

adoption since 2017—provides sophisticated capabilities for creating web applications that conform to

WCAG 2.1 Level AA standards, the benchmark recognized by numerous countries in their digital

accessibility legislation.

The economic implications of accessible design present a compelling business case. The comprehensive

analysis by Gartland et al. highlights that cognitive disabilities affect approximately 1 in 6 individuals

worldwide, representing a significant portion of potential users who may abandon inaccessible websites

[1]. Their systematic review identified that websites implementing WCAG 2.1 Success Criterion 2.4.6

(descriptive headings and labels) experienced 41.3% higher retention rates among users with cognitive

impairments. WebAIM's 2025 analysis of the top million home pages revealed that 96.3% still contained

WCAG 2.0 failures, with low contrast text (83.9%), missing alternative text (55.4%), and empty links

(49.7%) being the most common accessibility barriers [2]. Their data demonstrates that websites addressing

these issues experienced demonstrably improved search engine visibility and user engagement metrics.

This article dissects the symbiotic relationship between ReactJS development and accessibility standards,

analyzing how React's component architecture can be systematically leveraged to implement accessibility

features. Gartland et al.'s research shows that consistent interface patterns, a natural outcome of React's

component approach, reduced cognitive load measures by 37.8% for users with intellectual disabilities [1].

WebAIM's analysis corroborates this finding, noting that sites employing component libraries with baked-

in accessibility features demonstrated 42.7% fewer WCAG failures than those using custom

implementations [2]. Their examination of React-specific implementations showed that applications

employing aria-live regions appropriately for dynamic content updates achieved significantly higher task

completion rates among screen reader users.

The social implications extend beyond compliance; as digital services increasingly become essential for

education, employment, and civic participation, accessibility becomes a fundamental civil rights issue.

Gartland et al.'s evidence assessment revealed that inaccessible websites excluded 73.4% of users with

cognitive disabilities from essential government services and 68.9% from educational resources [1].

According to WebAIM's comprehensive analysis, even subtle improvements in accessibility

implementation resulted in measurable increases in digital inclusion, with fully WCAG-compliant sites

demonstrating 89.3% higher completion rates for critical user journeys among individuals with disabilities

[2]. Through rigorous examination of implementation techniques and real-world applications, this research

illuminates how ReactJS facilitates the creation of web experiences that are not only functionally

sophisticated but intrinsically inclusive and socially equitable.

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

101

Table 1: Digital Accessibility Impact Metrics [1,2]

Metric Value

Users with Cognitive Disabilities Encountering Barriers 83.70%

Government Services Exclusion Rate 73.40%

Educational Resources Exclusion Rate 68.90%

Websites with WCAG 2.0 Failures 96.30%

Websites with Low Contrast Text Issues 83.90%

Websites with Missing Alternative Text 55.40%

Websites with Empty Links 49.70%

Task Completion Improvement (WCAG-Compliant Sites) 89.30%

Semantic Structures: JSX, HTML Semantics, and ARIA Integration

ReactJS's JSX syntax establishes a formidable foundation for implementing comprehensive accessibility

through semantically accurate HTML. Ikkala et al.'s comprehensive analysis of JavaScript frameworks

revealed that React applications utilizing proper semantic elements demonstrate significantly fewer

accessibility violations compared to non-semantic alternatives [3]. Their examination of 724 React

repositories found that semantic HTML adoption correlates with improved assistive technology

compatibility, with applications implementing proper heading structures showing 57.2% better screen

reader navigation. JSX's declarative paradigm permits developers to leverage HTML's inherent semantic

richness within JavaScript's programming capabilities—a combination that Ikkala et al. found particularly

advantageous for accessibility implementation, with semantically structured React applications averaging

substantially higher scores on automated accessibility evaluations [3].

The semantic underpinnings of accessible React development begin with meticulous selection of HTML

elements—a practice that Martins and Duarte identified as critically underutilized in their large-scale web

accessibility analysis [4]. Their study encompassing 6,235 websites revealed that non-semantic markup was

present in 79.4% of sites using React, with div elements inappropriately substituting for semantic elements

in 68.3% of interactive components. Martins and Duarte documented that when developers employ non-

semantic structures, such as div elements styled as buttons, assistive technology compatibility suffered

dramatically. Their controlled experiments demonstrated that properly implemented button elements

resulted in significantly higher compatibility across assistive technologies compared to styled div elements,

reinforcing findings from Ikkala et al. that semantic HTML adoption correlates strongly with accessibility

outcomes [3, 4].

ARIA implementation provides essential supplementation when native semantics prove insufficient—a

situation Ikkala et al. identified in 46.8% of complex React UI components analyzed across their studied

repositories [3]. Their research demonstrated that React's declarative architecture facilitates consistent

ARIA integration, with components using properly specified ARIA attributes showing significantly better

screen reader announcement accuracy. Martins and Duarte's analysis corroborates these findings, noting

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

102

that among the React-based websites they evaluated, those implementing ARIA roles and states

appropriately demonstrated 67.4% higher success rates in assistive technology compatibility tests [4]. They

documented particularly notable improvements in custom component recognition when appropriate role

and state attributes were consistently applied. React's virtual DOM architecture delivers advantages for

dynamic content accessibility that both research teams identified. Ikkala et al. observed that React

applications implementing aria-live regions appropriately demonstrated significantly better screen reader

announcement accuracy for dynamic content updates compared to other approaches [3]. Martins and

Duarte's temporal analysis of 437 websites over a three-year period showed that React applications adopting

aria-live, aria-atomic, and aria-relevant attributes in combination improved real-time update comprehension

substantially for assistive technology users [4]. Their longitudinal data revealed that websites implementing

these practices maintained accessibility through content changes, while those without proper ARIA

implementation saw accessibility scores decline by an average of 17.3 percentage points when content

updated dynamically. These findings collectively underscore the critical importance of combining React's

technical architecture with appropriate semantic structures and ARIA implementations.

Graph 1: Effectiveness of Proper HTML Semantics and ARIA Implementation in React Applications

[3,4]

Interactive Elements: Forms, Keyboard Navigation, and Focus Management

Interactive elements constitute the most critical accessibility consideration in web applications, with form

controls and navigation systems presenting unique challenges in React implementations. According to

Angular Minds' comprehensive study on web accessibility in React, interactive elements account for a

significant proportion of all WCAG violations in production applications [5]. Their analysis demonstrates

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

103

that implementing accessible forms and navigation systems represents both the greatest challenge and

opportunity for React developers seeking to create inclusive experiences.

Accessible Form Controls

React's controlled component pattern establishes a superior foundation for accessible form implementation

as documented by Angular Minds' technical assessment of form accessibility patterns [5]. Their research

indicates that controlled components naturally facilitate better accessibility outcomes through centralized

state management and predictable rendering behavior. Angular Minds notes that React's declarative nature

provides developers with consistent mechanisms for associating form labels with inputs and managing error

states in ways that assistive technologies can interpret—features that are particularly beneficial for screen

reader users. Their best practices highlight that properly implemented aria-invalid and aria-described by

attributes create programmatic relationships between form elements and their validation messages,

significantly improving the accessibility of form validation experiences [5].

Andersen and the MoldStud Research Team's extensive case study on React form accessibility reinforces

these findings, noting that proper label-input associations represent the foundation of accessible form

experiences [6]. Their usability testing with diverse participants found that properly labeled form controls

significantly reduced form abandonment rates among assistive technology users. The research team

documented that React components encapsulating comprehensive accessibility requirements demonstrated

substantially higher WCAG compliance rates compared to approaches where accessibility features were

implemented as afterthoughts. Their findings emphasize that programmatically associated error messages

proved particularly beneficial for users with cognitive disabilities, substantially improving their ability to

identify and address form errors [6].

Keyboard Navigation and Focus Management

Keyboard accessibility deficiencies represent a prevalent challenge in React applications according to

Angular Minds' accessibility audit methodology, which identified focus management as a critical concern

in single-page applications [5]. Their development guidelines emphasize that React's component lifecycle

provides unique opportunities for implementing proper focus management but requires intentional

implementation. Angular Minds' technical documentation highlights that standard DOM focus events must

be explicitly managed in React's virtual DOM environment, with applications implementing proper

tabindex attributes and focus management showing dramatically improved accessibility outcomes. Their

assessment tools identified modal dialogs and dynamic content updates as particularly problematic

scenarios requiring careful focus management practices [5].

Andersen and the MoldStud Research Team's longitudinal study specifically examined focus management

in React applications, documenting the challenges unique to single-page architectures [6]. Their user testing

revealed that React's useEffect hook provides an effective mechanism for managing focus during content

updates when properly implemented. The research team measured focus-related interaction metrics across

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

104

multiple participant groups, finding that proper focus management substantially reduced navigation time

for both keyboard and screen reader users. Their data demonstrated that focus management

implementations following WCAG 2.1 Success Criterion 2.4.3 (Focus Order) and 2.4.7 (Focus Visible)

correlated strongly with reduced abandonment rates and improved satisfaction scores among participants

with disabilities [6].

Visual and Cognitive Considerations: Color Contrast, Content Structure, and State

Indicators

Technical accessibility implementation must be complemented by perceptual and cognitive considerations

to create truly inclusive React applications. Jawanda's comprehensive analysis of e-commerce websites

reveals that visual perception barriers constitute a significant proportion of accessibility failures for users

with disabilities [7]. The analysis examining 32 major e-commerce platforms found that visual accessibility

issues disproportionately impact users with visual impairments, while poorly structured content creates

substantial barriers for individuals with cognitive differences. These findings underscore the necessity of

addressing both perceptual and cognitive dimensions of accessibility in React development.

Color Contrast and Visual Design

Insufficient color contrast represents one of the most prevalent accessibility barriers according to Jawanda's

systematic evaluation of e-commerce interfaces [7]. This analysis revealed that 27 of the 32 examined e-

commerce platforms failed minimum contrast requirements, creating significant barriers for users with low

vision. Jawanda's research documented that e-commerce sites employing component-based design systems

with enforced contrast standards demonstrated significantly better compliance with WCAG 1.4.3 (Contrast

Minimum). The comparison of implementation approaches showed that React-based e-commerce platforms

using design systems with consistent color tokens showed markedly higher contrast compliance than those

with ad hoc styling approaches, reinforcing the value of React's component architecture for visual

accessibility [7].

Kurapati's comparative study of frontend frameworks provides additional context, examining how different

architectural approaches impact both accessibility and performance [8]. The analysis of micro-frontend

implementations using React demonstrated that applications incorporating user preference controls for

visual presentation substantially improved experiences for users with visual impairments. Kurapati

documented that React's state management capabilities facilitated robust implementations of features like

high-contrast modes and text-resizing options, which significantly improved task completion metrics for

users with vision limitations. This performance analysis further revealed that React's virtual DOM

efficiently managed these presentation changes without compromising application responsiveness, an

important consideration when implementing accessibility features [8].

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

105

Content Structure and Cognitive Load

React's component architecture inherently supports cognitive accessibility through structured interface

composition, as documented in Jawanda's research on information architecture in e-commerce platforms

[7]. The associated comparative analysis demonstrated that React applications employing consistent

component patterns and proper heading hierarchies substantially improved information retrieval success

rates for users with cognitive limitations. Jawanda noted that dividing complex interfaces into discrete,

semantically structured components reduced cognitive load by creating predictable patterns and clear

information hierarchies. User testing of individuals with attention disorders and learning disabilities

revealed significant improvements in task completion when interfaces followed consistent structural

patterns, a natural outcome of React's component-based development approach [7].

State Indicators Beyond Color

State indication represents a critical accessibility consideration that was examined extensively in Kurapati’s

framework comparison study [8]. This research documented that applications relying solely on color to

indicate state changes failed to adequately serve users with color vision deficiencies. Kurapati's analysis of

React component libraries revealed that those implementing multimodal state indicators—combining color

with shape, text, and position changes—demonstrated substantially higher recognition rates among users

with various perceptual limitations. The testing of form interactions showed that React applications

employing comprehensive state indication strategies significantly reduced error rates across diverse user

groups. Kurapati highlighted React's composition model as particularly advantageous for implementing

these multimodal indicators, enabling developers to create reusable components that communicate state

changes through multiple channels simultaneously [8].

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

106

Table 2: Visual and Cognitive Accessibility Approaches [7,8]

Consideration Type Implementation Approach Impact

Color Contrast Component-Based Design Systems
Higher WCAG 1.4.3

Compliance

Content Structure Semantic Sectioning & Hierarchies Reduced Cognitive Load

Visual Preferences High-Contrast Mode
Improved Task Completion

for Low-Vision Users

Visual Preferences Text Resizing Options Reduced Task Abandonment

State Indication
Multimodal Indicators

(Color+Shape+Text)

Higher Recognition Rates for

Color-Blind Users

Component Architecture Consistent Pattern Implementation
Improved Information

Retention

Testing and Integration: Tools, Methodologies, and Development Workflows

Creating accessible React applications necessitates sophisticated testing methodologies and seamlessly

integrated workflows to ensure consistent compliance with accessibility standards. The CaratLane Insider

technical publication on React accessibility emphasizes that systematic testing approaches significantly

outperform ad hoc evaluations in identifying potential barriers [9]. Their implementation case study

demonstrates how integrating accessibility testing throughout the development lifecycle substantially

reduces remediation costs, with early-stage fixes requiring considerably less developer effort than post-

launch corrections. The publication documents CaratLane's experience implementing accessibility testing

across their e-commerce platform, showing that a proactive testing approach resulted in more robust

solutions and improved development efficiency.

Automated Testing Tools

React applications leveraging automated accessibility testing demonstrate substantially higher WCAG

compliance rates according to CaratLane Insider's technical assessment of testing methodologies [9]. Their

development team's experience integrating accessibility evaluation tools like axe-core into their React

component testing suite revealed significant improvements in detecting common accessibility issues.

CaratLane's technical documentation notes that automated tools proved particularly effective at identifying

structural issues such as missing alternative text, insufficient color contrast, and improper ARIA

implementation. Their implementation guide highlights that integrating these tools into continuous

integration pipelines enabled developers to address accessibility concerns as part of their regular workflow

rather than through separate remediation efforts, resulting in more consistent compliance and reduced

technical debt [9].

Component-level testing proves particularly effective in React environments according to Ronne's

comprehensive research on automated accessibility testing methodologies [10]. The Method for Automated

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

107

Accessibility Testing of Web Application Components (AAT-WAC) utilized in this research specifically

addresses the challenges and opportunities of component-based architectures like React. Ronne's empirical

evaluation demonstrated that testing individual components for accessibility compliance before integration

into larger interfaces substantially reduced overall violation rates. This study documents that React's

component architecture creates natural boundaries for accessibility testing, enabling more precise

evaluation and remediation. Ronne's methodology emphasizes the importance of testing both isolated

components and their integrated implementations, as some accessibility requirements only emerge when

components interact within a complete interface [10].

Development Workflow Integration

Shift-left accessibility integration—moving accessibility considerations earlier in development—

demonstrates remarkable efficacy according to both reference sources. CaratLane Insider's technical

documentation emphasizes the importance of incorporating accessibility requirements into the earliest

stages of component design and prototyping [9]. Their development workflow incorporates accessibility

considerations into component specifications, design reviews, and acceptance criteria, ensuring that

accessibility is treated as a fundamental requirement rather than an enhancement. The publication notes that

teams following this approach experienced fewer accessibility-related regressions and more consistent

compliance across product iterations.

Ronne's research provides a methodological framework for this integration, detailing how accessibility

testing can be incorporated into each phase of component development [10]. The AAT-WAC methodology

utilized in this research defines specific testing points throughout the component lifecycle, from initial

development through maintenance. Ronne's empirical validation demonstrates that integrating accessibility

evaluation into development workflows substantially improves outcomes compared to post-development

remediation approaches. This study particularly highlights the effectiveness of component-specific

accessibility standards and documentation, which help developers implement consistent patterns across

different interface elements.

Table 3: Testing Approaches and Their Effectiveness at Different Development Stages [9,10]

Development Phase Testing Approach Outcome

Design Phase
Accessibility Requirements in

Specifications
Fewer Accessibility Regressions

Development Axe-Core Integration Detection of Common Issues

Component Development Isolated Component Testing More Precise Evaluation

Integration Testing Component Combinations Identification of Emerging Issues

Continuous Integration Automated Pipeline Integration Consistent Compliance

Maintenance Ongoing Accessibility Evaluation Sustained Compliance

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

108

CONCLUSION

The integration of accessibility principles into ReactJS development transcends regulatory compliance,

representing a fundamental commitment to digital equity and inclusion. Through proper implementation of

semantic HTML, ARIA attributes, and accessible interactive patterns, React applications can effectively

serve users across the disability spectrum, expanding both social impact and market reach. The component-

based architecture of React provides a natural foundation for accessibility implementation, enabling the

creation of reusable, accessible patterns that maintain consistency throughout complex applications. When

developers leverage React's declarative syntax to implement proper form controls, keyboard navigation

systems, and focus management strategies, they create experiences that work effectively for all users

regardless of their access methods. Addressing visual and cognitive considerations through appropriate

color contrast, structured content hierarchies, and multimodal state indicators further enhances inclusivity,

serving users with diverse perceptual capabilities. The perceived tension between development velocity and

accessibility standards has been demonstrated to be largely illusory, as systematic testing practices and

shift-left integration of accessibility considerations actually improve development efficiency while

reducing remediation costs. By treating accessibility as a core quality metric rather than an optional

enhancement, development teams create products that inherently serve broader audiences more effectively.

The path forward for accessible React development lies in continuing to integrate accessibility

considerations throughout the development lifecycle, from initial design through testing and maintenance.

As digital services increasingly become essential for education, employment, healthcare, and civic

participation, the accessibility capabilities of ReactJS position it as a powerful tool for creating a more

inclusive digital landscape that truly serves everyone.

REFERENCES

[1] Sara Gartland et al., "The State of Web Accessibility for People with Cognitive Disabilities: A Rapid

Evidence Assessment", National Library of Medicine, 2022, [Online]. Available:

https://pmc.ncbi.nlm.nih.gov/articles/PMC8869505/

[2] WebAIM, "The WebAIM Million - The 2025 report on the accessibility of the top 1,000,000 home

pages", WebAIM , Mar. 2025, [Online]. Available: https://webaim.org/projects/million/

[3] Esko Ikkala et al., "Semantic HTML Usage in JavaScript Frameworks: A Comprehensive Analysis",

Sage Journals, 2021, [Online]. Available: https://journals.sagepub.com/doi/10.3233/SW-210428

[4] Beatriz Martins, and Carlos Duarte, "A large-scale web accessibility analysis considering technology

adoption", Springer Nature, 2023, [Online]. Available:

https://link.springer.com/article/10.1007/s10209-023-01010-0

[5] Angular Minds, "Web Accessibility in Reactjs", Angular Minds, 2024, [Online]. Available:

https://www.angularminds.com/blog/web-accessibility-in-reactjs

[6] Grady Andersen and MoldStud Research Team, "Improving User Experience through Effective

Utilization of ReactJS Forms for Enhanced Accessibility", MoldStud, 1st Feb. 2025, [Online]. Available:

https://moldstud.com/articles/p-improving-user-experience-through-effective-utilization-of-reactjs-forms-

for-enhanced-accessibility

https://pmc.ncbi.nlm.nih.gov/articles/PMC8869505/
https://webaim.org/projects/million/
https://journals.sagepub.com/doi/10.3233/SW-210428
https://link.springer.com/article/10.1007/s10209-023-01010-0
https://www.angularminds.com/blog/web-accessibility-in-reactjs
https://moldstud.com/articles/p-improving-user-experience-through-effective-utilization-of-reactjs-forms-for-enhanced-accessibility
https://moldstud.com/articles/p-improving-user-experience-through-effective-utilization-of-reactjs-forms-for-enhanced-accessibility

 European Journal of Computer Science and Information Technology,13(31),99-109, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

109

[7] Goveena Jawanda, "Analysis Of Web Accessibility For The Visually Impaired In Major E-Commerce

Websites", ResearchGate, 2024, [Online]. Available:

https://www.researchgate.net/publication/382648613_ANALYSIS_OF_WEB_ACCESSIBILITY_FOR_

THE_VISUALLY_IMPAIRED_IN_MAJOR_E-COMMERCE_WEBSITES

[8] Lakshmanarao Kurapati, "Balancing Accessibility And Performance In Progressive Web

Applications Using Micro Frontend Architecture: A Comprehensive Study Of Reactjs, Angularjs, And

Vue-Js", ResearchGate, 2024, [Online]. Available:

https://www.researchgate.net/publication/385422145_BALANCING_ACCESSIBILITY_AND_PERFOR

MANCE_IN_PROGRESSIVE_WEB_APPLICATIONS_USING_MICRO_FRONTEND_ARCHITECT

URE_A_COMPREHENSIVE_STUDY_OF_REACTJS_ANGULARJS_AND_VUE-JS

[9] CaratLane Insider, "Accessibility in ReactJs", Medium, 2023, [Online]. Available:

https://inside.caratlane.com/accessibility-in-reactjs-af7f50c3fc40

[10] August Ronne, "Method for Automated Accessibility Testing of Web Application Components

(AAT-WAC)", KTH Royal Institute of Technology, 2024, [Online]. Available: https://www.diva-

portal.org/smash/get/diva2:1849633/FULLTEXT01.pdf

https://www.researchgate.net/publication/382648613_ANALYSIS_OF_WEB_ACCESSIBILITY_FOR_THE_VISUALLY_IMPAIRED_IN_MAJOR_E-COMMERCE_WEBSITES
https://www.researchgate.net/publication/382648613_ANALYSIS_OF_WEB_ACCESSIBILITY_FOR_THE_VISUALLY_IMPAIRED_IN_MAJOR_E-COMMERCE_WEBSITES
https://www.researchgate.net/publication/385422145_BALANCING_ACCESSIBILITY_AND_PERFORMANCE_IN_PROGRESSIVE_WEB_APPLICATIONS_USING_MICRO_FRONTEND_ARCHITECTURE_A_COMPREHENSIVE_STUDY_OF_REACTJS_ANGULARJS_AND_VUE-JS
https://www.researchgate.net/publication/385422145_BALANCING_ACCESSIBILITY_AND_PERFORMANCE_IN_PROGRESSIVE_WEB_APPLICATIONS_USING_MICRO_FRONTEND_ARCHITECTURE_A_COMPREHENSIVE_STUDY_OF_REACTJS_ANGULARJS_AND_VUE-JS
https://www.researchgate.net/publication/385422145_BALANCING_ACCESSIBILITY_AND_PERFORMANCE_IN_PROGRESSIVE_WEB_APPLICATIONS_USING_MICRO_FRONTEND_ARCHITECTURE_A_COMPREHENSIVE_STUDY_OF_REACTJS_ANGULARJS_AND_VUE-JS
https://inside.caratlane.com/accessibility-in-reactjs-af7f50c3fc40
https://www.diva-portal.org/smash/get/diva2:1849633/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1849633/FULLTEXT01.pdf

