
 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

184

Raft Consensus Algorithm: Simplicity and

Robustness in Distributed Systems

Kuldeep Deshwal

Proofpoint Inc, USA

doi: https://doi.org/10.37745/ejcsit.2013/vol13n14184197 Published May 05, 2025

Citation: Deshwal K. (2025) Raft Consensus Algorithm: Simplicity and Robustness in Distributed Systems,

European Journal of Computer Science and Information Technology,13(14),184-197

Abstract: The Raft consensus algorithm provides a more understandable alternative to previous protocols

like Paxos while maintaining strong consistency guarantees in distributed systems. By breaking consensus

into three distinct components—leader election, log replication, and safety—Raft creates a clear mental

model for developers. Its widespread adoption spans distributed databases, configuration management,

container orchestration, microservices infrastructure, and blockchain systems. Despite inherent

challenges, including leader bottlenecks and brief unavailability during leader changes, Raft offers

significant benefits through its straightforward design. Current innovations address these limitations

through performance optimizations, multi-Raft architectures, formal verification, edge computing

adaptations, and educational tools, ensuring the algorithm's continued relevance as distributed computing

evolves.

Keywords: Algorithm, Consensus, Distributed, Fault-Tolerance, Replication

INTRODUCTION

Imagine a team of computers working together to provide a service, like showing you your bank balance

or letting you order something online. These computers need to stay in perfect sync about what's happening

and what to do next. This becomes challenging when some computers crash, internet connections fail, or

messages between them get delayed. This challenge is at the heart of distributed systems - the technology

that powers everything from cloud services to banking apps to social media platforms. Consensus

algorithms provide the essential rules that help these computer teams reach an agreement despite all these

potential problems. They act like referees, ensuring everyone follows the same playbook. Without these

algorithms, chaos would ensue. Some computers might think your bank account has $500, while others

show $400. An online store might process your order twice or not at all. Your social media posts might

appear to some friends but not others. Think about when you and your friends try to decide where to eat

dinner. If everyone can't communicate clearly, you might end up at different restaurants! Computer systems

face the same coordination problem but with much higher stakes. Without consensus algorithms like Raft

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

185

providing coordination in distributed systems, the same challenges that led Ongaro and Ousterhout to state

that 'understandability is a key requirement' would continue to plague modern computing infrastructure[1].

Consensus algorithms provide the digital equivalent of a formal meeting procedure - they establish who

gets to speak when, how decisions are recorded, and what happens if someone steps away. This structured

approach ensures all computers in the system maintain the same understanding of what's true, even when

things go wrong. This foundation of agreement enables the reliable digital services we depend on every

day, from streaming movies to making payments to storing photos in the cloud. Without consensus

algorithms working behind the scenes, our connected digital world simply couldn't function reliably.

The Incumbents and Their Limitations

Before Raft arrived on the scene, the world of distributed systems was dominated by an algorithm called

Paxos. While Paxos had earned respect in academic circles for its mathematical elegance and theoretical

soundness, it created enormous headaches for engineers trying to use it in real-world systems.

Paxos suffered from being extraordinarily difficult to understand. Even veteran software engineers with

years of experience would struggle to grasp how it worked. Reading the Paxos papers felt like deciphering

a foreign language for many developers. The concepts were abstract, the explanations were dense with

mathematical notation, and the overall approach seemed disconnected from practical programming

concerns.

Implementing Paxos correctly proved even more challenging. Engineers attempting to convert the

theoretical description into working code encountered countless edge cases and ambiguities not addressed

in the academic papers. Many organizations spent months trying to build reliable Paxos implementations,

only to discover subtle bugs when their systems faced unexpected conditions in production environments.

The complexity of Paxos created teaching challenges as well. Computer science professors frequently

avoided covering Paxos in depth during distributed systems courses because students found it so

bewildering. When they did teach it, instructors often needed multiple lectures just to explain the basic

protocol, with students still left confused about how to apply it practically.

Documentation problems compounded these issues. The original Paxos papers, while mathematically

rigorous, left many implementation details unspecified. This forced development teams to make critical

design decisions without clear guidance, leading to inconsistent implementations across the industry and

difficulty in maintaining systems over time. Imagine Paxos as an intricate recipe written by a brilliant chef

who assumes readers already understand advanced cooking techniques. The recipe might produce an

amazing dish, but following it requires interpreting vague instructions, making educated guesses, and

possibly failing several times before getting it right. Even professional chefs would struggle to execute it

properly.

As distributed systems became increasingly important in the technology landscape—powering everything

from cloud services to financial systems—the industry desperately needed a more accessible approach to

consensus. Engineers needed an algorithm that was not only theoretically sound but also practical to

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

186

implement and maintain in real-world conditions. This growing need would eventually lead to the

development of Raft, an algorithm designed specifically to address these limitations. The complexity of

Paxos implementation led to numerous inconsistent variants and interpretations across the industry, making

it difficult for engineers to be confident in their distributed systems [2].

What is Raft?

Raft emerged as a consensus algorithm specifically designed to be understandable first without sacrificing

reliability. Unlike previous approaches that prioritized mathematical elegance, Raft's creators focused on

making something that real engineers could implement without confusion. Raft's core design philosophy

breaks consensus into distinct subproblems of leader election, log replication, and safety, creating a more

approachable mental model for developers [1].

The key insight behind Raft is breaking down the complex consensus problem into three clear, separate

pieces that can be understood independently:

Leader Election

The system democratically chooses one computer to be in charge (like electing a team captain). When a

Raft system starts up, all nodes begin as "followers." After a random timeout period (typically between

150-300 milliseconds), a follower who hasn't heard from a leader will become a "candidate" and request

votes from other nodes. If it receives votes from the majority, it becomes the leader. This randomized

approach prevents endless ties while ensuring a leader emerges quickly.

Replication

The leader keeps track of all changes and makes sure every node receives them. Each change (like updating

a user's profile or adding an item to a shopping cart) becomes a "log entry" with a unique sequential number.

The leader sends these entries to all followers, who add them to their own logs. Once the leader confirms

that a majority of nodes have saved an entry, it's considered "committed" and can be applied to the system's

state.

Safety

Rules that ensure the system never makes contradictory decisions, even during failures. Raft enforces strict

ordering of log entries through "term numbers" that increase with each new leader election. If network

problems cause temporary disagreement, Raft includes mechanisms to detect and resolve these conflicts.

For example, if a follower's log differs from the leader's, the leader will identify exactly where they diverged

and send the correct entries to bring the follower up to date.

This modular approach makes Raft much easier to understand. You can learn one piece at a time rather than

having to grasp everything at once. Engineers can start by implementing leader election, then add log

replication, and finally ensure safety properties—gradually building a complete consensus system. User

studies demonstrated that participants could understand Raft consensus much more quickly than Paxos,

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

187

with teams implementing correct Raft systems in significantly less time than comparable Paxos

implementations[3]. The structured approach also helps during debugging. When something goes wrong,

developers can focus on which of the three components is failing rather than getting lost in a complex web

of interconnected processes. This clarity directly translates to more reliable distributed systems in the real

world.

How Raft Improves on Previous Approaches

Raft introduces several key innovations that make it significantly more practical for real-world distributed

systems. These improvements address the fundamental challenges that made previous consensus algorithms

difficult to implement and maintain. Comparative performance analysis between Paxos and Raft

demonstrated that Raft's simplicity comes with minimal performance overhead while providing substantial

gains in implementation clarity [4].

Clear leadership

It forms the cornerstone of Raft's design philosophy. Unlike Paxos, where any node can propose changes

at any time (creating complex coordination scenarios), Raft designates a single leader who coordinates all

operations for a given term. This leader-follower model creates a clear flow of information: clients send all

requests to the leader, the leader orders these requests into log entries, and followers simply replicate the

leader's log. This straightforward hierarchy eliminates the need to resolve competing proposals from

different nodes, dramatically simplifying the protocol's behavior. In technical terms, each Raft term has

exactly one leader, and that leader is the only node that can append new entries to the log, creating a single

source of truth.

Intuitive election process

It ensures the cluster can quickly recover from leader failures. Raft implements this through a randomized

timeout mechanism. Each follower waits for a randomized period (typically 150-300ms) before initiating

an election if it hasn't heard from the current leader. This randomization naturally prevents split votes where

multiple candidates might tie. When becoming a candidate, a node increments the term number, votes for

itself, and requests votes from other nodes. A candidate wins the election upon receiving votes from a

majority of servers, becoming the leader for that term. This approach typically resolves leadership within

1-2 election timeouts, even after failures, minimizing system disruption.

Understandable log management

It provides clear rules for handling the replicated log across the cluster. The log in Raft is an ordered

sequence of commands, with each entry containing a term number and command to be executed. The leader

maintains consistency by forcing followers' logs to match their own through a simple mechanism: when

sending new entries, the leader includes the index and term of the preceding entry. If followers can't find

this entry in their logs, they reject the new entries, prompting the leader to send earlier entries until

consistency is established. This approach guarantees logs will eventually converge without requiring

complex reconciliation algorithms.

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

188

Simple membership changes

It allows Raft clusters to evolve over time without disrupting service. Adding or removing servers from the

cluster is handled through a two-phase approach called "joint consensus." During this transition, the cluster

operates under both the old and new configurations simultaneously, requiring agreement from majorities in

both configurations. This approach guarantees safety during reconfigurations while maintaining

availability. The protocol includes specific rules for how log entries are committed during these transitions

and how the leader manages the membership change process.

Complete specification

It sets Raft apart from its predecessors by leaving little to interpretation. The Raft papers include detailed

pseudocode for all major algorithms, timing parameters, exact message formats, and explicit state transition

rules. For example, the papers specify exactly how leaders should retry failed communications, what

information must be persisted to stable storage before responding to messages, and how to handle every

possible server state transition. This comprehensive approach eliminates the implementation guesswork

that plagued earlier consensus protocols [1].

To use an analogy: if Paxos is like a complex mathematical proof with critical steps left as "exercises for

the reader," Raft is like a detailed instruction manual with clear diagrams and troubleshooting guides. Both

can build reliable distributed systems, but Raft dramatically reduces the expertise required to implement

them correctly.

Implementation in Modern Systems

Raft's simplicity has led to widespread adoption across many types of systems in the software industry.

High-throughput peer-to-peer systems have successfully adapted Raft consensus to provide strong

consistency guarantees without compromising on performance expectations [5]. The algorithm's clear

design principles have made it accessible to development teams without requiring specialized expertise in

distributed consensus.

Distributed databases

Distributed databases have embraced Raft as a foundational component for maintaining consistency.

CockroachDB, a distributed SQL database, implements Raft at its core to synchronize data across multiple

servers[7]. Each table's data is divided into ranges, and each range has its own Raft group consisting of

multiple replicas. When a client writes data to CockroachDB, the request goes to the Raft leader for that

particular range, which then replicates the change to other nodes in the Raft group. This architecture ensures

that even if individual nodes fail, the database remains available and consistent. TiKV, the storage engine

behind TiDB, similarly uses multiple Raft groups to manage different data partitions, with each group

independently handling leadership and replication for its assigned key range [11].

Kafka's move to KRaft (Kafka Raft) represents a significant evolution in how it handles consensus and

leader election. Traditionally, Kafka relied on ZooKeeper, an external system, to manage cluster metadata,

leader election, and configuration. This created additional complexity as teams needed to operate and

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

189

maintain two separate distributed systems. With KRaft, Kafka implemented its own consensus protocol

based on the Raft algorithm, allowing it to handle leader election internally without ZooKeeper. This change

simplified the architecture, reduced operational overhead, and improved performance during leader

transitions. By consolidating these critical functions within Kafka itself, the system became more self-

contained and easier to deploy, while still maintaining strong consistency guarantees when electing new

leaders after failures [15].

Configuration management systems

Configuration management systems rely on Raft to store critical system settings and service information.

HashiCorp's Consul uses Raft to maintain its service registry and key-value store across a cluster of servers.

When configurations change, Consul's Raft implementation ensures all nodes eventually receive the same

updates in the same order.

Container orchestration

Container orchestration platforms like Kubernetes depend on Raft indirectly through their reliance on etcd.

Kubernetes stores all cluster states—including which containers should be running, which nodes are

available, and current configurations—in etcd. The Kubernetes control plane continuously compares the

actual state to this desired state stored via Raft consensus. This architecture means that even if master nodes

fail, the cluster's intended state remains safely preserved in the etcd Raft cluster. Kubernetes typically

deploys a 3-5 node etcd cluster, configured with specific storage and network requirements to ensure Raft

can maintain consensus efficiently.

Microservices infrastructure

The HashiCorp stack includes Nomad for scheduling and deploying applications across a cluster, which

uses Raft internally to maintain job specifications and allocations. These service coordination tools require

the strong consistency that Raft provides to prevent "split-brain" scenarios where independent parts of the

system make conflicting decisions about service locations or task assignments [13].

Blockchain systems

Blockchain systems have also adopted Raft variants for consensus in permissioned environments.

Hyperledger Fabric, an enterprise blockchain platform, offers a Raft ordering service option that

outperforms its previous consensus mechanisms in benchmarks. Unlike public blockchains that require

complex proof-of-work or proof-of-stake protocols, permissioned blockchain networks with trusted

participants can leverage Raft's performance advantages. These implementations typically modify Raft

slightly to accommodate blockchain-specific requirements, such as handling cryptographic verification of

transactions while still using Raft's core leader election and log replication mechanisms [14].

The diversity of these implementations demonstrates Raft's versatility across different domains. Each of

these systems has implemented the core Raft protocol—leader election, log replication, and safety

guarantees—while adapting peripheral details to their specific use cases. The clarity of Raft's specification

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

190

has enabled development teams to make these adaptations confidently without requiring consensus

algorithm specialists to validate every design decision. This accessibility has accelerated Raft's adoption

throughout the industry and contributed to more reliable distributed systems overall.

Benefits of Using Raft

Raft offers several practical advantages that have contributed to its rapid adoption across the software

industry. Formal verification of Raft implementations provides mathematical certainty about correctness

properties, giving developers extraordinary confidence in their distributed systems [6]. These benefits

directly address the pain points that development teams experienced with earlier consensus algorithms.

Fewer bugs

Fewer bugs emerge in production systems built on Raft due to its clarity and comprehensiveness. The

structured nature of the algorithm, with its clear separation of concerns between leader election, log

replication, and safety guarantees, allows developers to reason about each component individually. When

implementation issues arise, engineers can identify which specific part of the protocol is misbehaving rather

than trying to debug a monolithic system. This modularity translates directly to more reliable software in

production. Engineering teams report spending significantly less time troubleshooting consensus-related

issues in Raft-based systems compared to their previous experiences with more complex algorithms. The

risk of subtle edge cases—like those that might occur during network partitions or when multiple nodes

believe they are leaders—is reduced through Raft's explicit handling of these scenarios in its specification.

Strong consistency

Strong consistency guarantees provide a solid foundation for applications that cannot tolerate divergent

states. Raft ensures that once a command is committed (meaning it has been replicated to a majority of

nodes), it will never be overwritten or reordered in the log. All nodes will eventually execute the same

commands in exactly the same order, leading to an identical state across the cluster. This linearizable

consistency model means that once a write operation completes, all subsequent reads will reflect that write,

regardless of which node handles the read request. For applications like financial systems, inventory

management, or any service where an accurate state is critical, this strong consistency eliminates entire

categories of potential bugs related to stale or conflicting data that eventually plague consistent systems.

Fault tolerance

Fault tolerance allows Raft-based systems to continue operating normally despite server failures. Raft

clusters can tolerate the failure of up to (N-1)/2 nodes while maintaining both availability and consistency,

where N is the total number of nodes. In practical terms, this means a three-node cluster can tolerate one

failure, a five-node cluster can tolerate two failures, and a seven-node cluster can tolerate three failures.

This property ensures that scheduled maintenance, hardware failures, or network issues affecting a minority

of nodes won't disrupt service. When node failures occur, Raft's leader election mechanism activates

promptly to establish a new leader if needed, typically restoring full functionality within a few hundred

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

191

milliseconds. This resilience is achieved without complex recovery procedures or manual intervention,

reducing the operational burden on engineering teams.

Developer-friendly

Developer-friendly design makes Raft accessible to mainstream software engineers without specialized

expertise in distributed systems. The algorithm can be implemented by following the clearly defined rules

and procedures in the Raft papers without requiring a deep understanding of the theoretical complexities

underlying consensus problems. This accessibility has enabled more organizations to build strongly

consistent distributed systems without assembling teams of distributed systems experts. Development teams

report that new engineers can understand Raft implementations more quickly than other consensus

mechanisms, reducing onboarding time and enabling broader participation in system development and

maintenance. The existence of educational tools like interactive visualizations further lowers the barrier to

understanding how Raft operates under different conditions.

Comparable performance

Comparable performance to more complex alternatives makes Raft practical for production use cases.

Despite its focus on understandability, Raft achieves throughput and latency metrics similar to other

consensus protocols in most common scenarios. Write operations typically complete within a few

milliseconds in local deployments, with performance primarily bounded by the latency of persisting log

entries to stable storage. Read operations can be optimized in various ways, including serving reads from

follower nodes for improved scalability or implementing read leases to avoid consensus overhead for reads

altogether. These performance characteristics enable Raft to support demanding applications without

requiring developers to sacrifice clarity for efficiency, removing a common objection to adopting strongly

consistent systems [12].

These benefits combine to make Raft particularly valuable for teams that need reliability without excessive

complexity. By providing a consensus solution that balances theoretical correctness with practical

implementation concerns, Raft has democratized access to strong consistency and enabled more

organizations to build robust distributed systems.

Challenges and Limitations

Despite its many advantages, Raft faces several challenges and limitations that affect its application in

certain contexts. The standard Raft model faces read scalability challenges by routing all operations through

the leader, but this can be mitigated through thoughtful extensions to the protocol [7]. These constraints

represent inherent trade-offs in Raft's design rather than implementation flaws, and understanding them is

crucial for architects considering Raft for their distributed systems.

Leader bottleneck

Leader bottleneck issues arise from Raft's centralized leadership model. Since all write operations must

flow through the leader node before being replicated to followers, the leader can become a performance

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

192

bottleneck in write-intensive workloads. This single-leader architecture means that the overall throughput

of the system is fundamentally limited by what a single node can process. When a client requests exceed

the leader's capacity to append entries to its log, process responses, and manage replication, latency

increases, and overall system throughput plateaus. This bottleneck becomes particularly apparent in systems

that handle thousands of writes per second or that process large entries that consume significant network

bandwidth during replication. Some implementations address this limitation through batching techniques

that group multiple client requests into single log entries, but the fundamental constraint remains inherent

to Raft's design.

Brief unavailability during leader changes

Brief unavailability during leader changes affects system responsiveness following failures. When a Raft

leader becomes unavailable due to crashes, network issues, or scheduled maintenance, the cluster must

detect the failure through timeout mechanisms and then elect a new leader before it can resume processing

write requests. This election process typically takes at least one election timeout period (often configured

between 150-500ms) and sometimes longer if initial election attempts don't establish a clear winner. During

this interval, the system cannot process new write operations, creating a brief but noticeable pause in

service. While this unavailability period is typically short in stable networks, it can extend longer in

environments with network instability or when multiple nodes fail simultaneously. This characteristic

makes standard Raft implementations potentially problematic for applications with strict real-time

requirements that cannot tolerate any interruption in write availability.

Scaling limitations

Scaling limitations become evident as Raft clusters grow beyond a handful of nodes. The leader in a Raft

cluster must communicate with every follower, sending heartbeats and replicating log entries. As the

number of nodes increases, this communication overhead grows linearly, placing an increasing burden on

the leader and the network. Additionally, since Raft requires acknowledgment from a majority of nodes

before committing entries, larger clusters increase the likelihood that slower nodes will delay the commit

process. These factors combine to make standard Raft implementations less efficient in very large clusters.

While five to seven nodes represent a common and efficient configuration for most applications, scaling

beyond this size often requires architectural modifications like hierarchical Raft or partitioned consensus

groups rather than simply adding more nodes to a single Raft cluster.

Network partition

Network partition handling in Raft prioritizes consistency over availability, which creates operational

challenges during network splits. When the network divides the cluster such that no partition contains a

majority of nodes, Raft's safety properties prevent any partition from making progress on write operations.

While this behavior preserves consistency by preventing divergent states between partitions, it means that

the entire system becomes unavailable for writes during certain network failure scenarios. Even when a

majority partition exists, nodes in the minority partition become unavailable until connectivity is restored.

This strict consistency approach differs from eventually consistent systems that might allow continued

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

193

operation with potential reconciliation later. Organizations deploying Raft must carefully consider their

network reliability and design their cluster topologies to minimize the impact of network partitions.

Resource efficiency

Resource efficiency concerns arise from the asymmetric workload distribution in Raft clusters. Follower

nodes in standard Raft implementations primarily serve as passive replicas that maintain copies of the log

and respond to heartbeats and appendEntries messages from the leader. This design means that

computational resources on follower nodes are often underutilized, particularly their CPU and memory. In

a standard three or five-node deployment, this represents a significant portion of the cluster's total resources

being used sub-optimally. Some implementations address this limitation by allowing read operations to be

served directly from follower nodes (with various consistency guarantees) or by colocating multiple

independent Raft groups on the same physical servers, but these approaches add complexity to the otherwise

simple Raft model.

These challenges reflect the fundamental trade-offs inherent in Raft's design philosophy, which prioritizes

clarity and safety over-optimization for every possible scenario. Much like choosing a reliable family sedan

versus a high-performance sports car, Raft offers exceptional ease of use and maintenance at the cost of

some specialized performance characteristics. For most distributed applications, these limitations are

acceptable compromises given the significant benefits in implementation simplicity and operational

reliability. However, architects should carefully evaluate these constraints against their specific

requirements when deciding whether Raft is the appropriate consensus mechanism for their systems.

Future Directions

Researchers and engineers continue to advance Raft in several exciting directions that address its limitations

while preserving its core benefits. RaftOptima enhances the original Raft algorithm with optimizations that

substantially improve fault tolerance and scalability while maintaining the core understandability that made

Raft popular [8]. These innovations extend Raft's applicability to new domains and challenges in distributed

computing.

Performance enhancements

Performance enhancements are addressing one of Raft's primary limitations: the leader bottleneck.

Advanced batching techniques allow leaders to group multiple client requests into single log entries,

amortizing the overhead of consensus across many operations. Some implementations now support

pipelined replication, where the leader can send new append entry requests before receiving responses to

previous ones, keeping the network saturated and improving throughput. Read optimization strategies have

evolved beyond basic leader-only reads to include follower reads with various consistency guarantees,

lease-based approaches that reduce consensus overhead, and snapshot-based reads that don't require log

traversal. These techniques can dramatically improve throughput in read-heavy workloads without

compromising Raft's safety guarantees.

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

194

Log compression and efficient state transfer mechanisms reduce the overhead of bringing new nodes up to

date. Rather than sending thousands of individual log entries, optimized implementations transfer

compressed snapshots of state followed only by recent entries. Some systems have implemented parallel

execution of independent commands, allowing the state machine to apply non-conflicting operations

simultaneously after they're committed through the consensus protocol. These performance enhancements

collectively enable Raft-based systems to support higher throughput and lower latency while maintaining

the algorithm's understandability.

Multi-Raft approaches

Multi-Raft approaches have emerged as the dominant strategy for scaling Raft to manage large datasets and

high request volumes. Instead of using a single Raft group for an entire system, this architecture partitions

data into multiple shards, each managed by an independent Raft consensus group. TiKV, the storage engine

behind TiDB, exemplifies this approach by dividing its keyspace into ranges called "regions," each with its

own Raft group. CockroachDB similarly uses "ranges" of around 64MB each, with separate Raft groups

handling replication for each range. This horizontal scaling allows systems to distribute load across many

leaders instead of funneling all requests through a single consensus group.

Coordination between these independent Raft groups introduces new challenges, particularly for operations

that span multiple partitions. Distributed transaction protocols layered on top of multi-Raft architectures

enable consistent cross-partition operations, often using two-phase commit or other coordination

mechanisms while relying on Raft for consistent replication within each partition. These multi-Raft systems

can scale to hundreds or thousands of nodes by limiting the size of individual consensus groups while using

many such groups in parallel, overcoming the inherent scaling limitations of single-group Raft.

Mathematical verification

Mathematical verification efforts have produced formal, machine-checked proofs of Raft's correctness

properties. Unlike informal reasoning or testing, formal verification uses mathematical techniques to prove

that an algorithm satisfies certain properties under all possible executions. Adaptations of Raft for federated

learning demonstrate its flexibility beyond traditional distributed systems, providing fault tolerance and

self-recovery capabilities in machine learning contexts[9]. Other projects have verified TLA+ specifications

of Raft, mathematically proving properties like leader uniqueness (no two nodes can be leaders for the same

term) and log matching (if two logs contain entries with the same index and term, those entries are identical).

These verification efforts provide extraordinary confidence in Raft's correctness beyond what testing alone

can achieve. As formal methods tools become more accessible, we can expect more Raft implementations

to undergo rigorous mathematical verification, further increasing confidence in systems built on this

foundation.

Edge computing adaptations

Edge computing adaptations are extending Raft to environments with intermittent connectivity and limited

resources. Standard Raft assumes relatively stable network conditions and continuous majority availability,

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

195

assumptions that don't hold in edge computing scenarios where devices may frequently disconnect or have

limited power and bandwidth. Modified Raft variants for these environments introduce concepts like

"blessed" majorities that can make progress during partitions, delayed consistency mechanisms that

maintain safety while improving availability, and hierarchical approaches where edge devices form local

consensus groups that periodically synchronize with cloud-based Raft clusters.

Some edge-oriented modifications incorporate concepts from Conflict-free Replicated Data Types

(CRDTs) to allow for offline operation with eventual reconciliation. These adaptations enable Raft-like

consensus in challenging environments like Internet of Things (IoT) deployments, mobile device clusters,

and remote locations with unreliable connectivity while maintaining as many of Raft's safety guarantees as

possible, given the constraints. As computing continues to move toward the edge, these adaptations will

become increasingly important for maintaining consistency in distributed applications.

Visual teaching tools

Visual teaching tools have significantly contributed to Raft's accessibility and adoption. Interactive

visualizations allow students and engineers to observe Raft's behavior under different conditions,

experimenting with scenarios like network partitions, node failures, and message delays to develop intuition

about the algorithm's properties. The Raft website (raft.github.io) offers a visualization that has become a

standard teaching tool in distributed systems courses. More advanced simulators allow users to modify

parameters like election timeouts and heartbeat intervals to observe their effects on system behavior,

reinforcing understanding through experimentation.

These educational resources complement Raft's understandability-first design, further reducing the barrier

to entry for engineers working with consensus systems. As these tools continue to evolve with more

sophisticated scenarios and clearer explanations, they will help train the next generation of distributed

systems engineers with a solid understanding of consensus fundamentals. The combination of a clearly

designed algorithm and excellent educational resources represents a significant advancement in making

distributed consistency accessible to mainstream software developers. Out-of-order execution extensions

to Raft enable higher throughput by allowing independent operations to proceed in parallel while

maintaining consistency guarantees for dependent operations [10].

These ongoing developments ensure that Raft will continue to evolve alongside the changing landscape of

distributed computing. By addressing Raft's limitations while preserving its core clarity and safety, these

innovations extend its relevance to new domains and requirements. As distributed systems become

increasingly prevalent across all areas of computing—from cloud infrastructure to edge devices to

blockchain networks—Raft's influence on consensus protocol design will likely persist for years to come.

CONCLUSION

Raft has transformed distributed systems by making reliable consensus accessible to everyday developers

without sacrificing correctness. Its focus on clarity fundamentally changed how engineers approach

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

196

distributed consistency, enabling wider adoption of strongly consistent systems across critical applications.

The algorithm's decomposition into distinct components creates both mental clarity and practical

advantages for implementation and debugging. While certain inherent trade-offs exist in its design,

particularly around centralized leadership and scaling, these limitations have sparked creative extensions

that preserve Raft's core simplicity while expanding its capabilities. Through batched operations,

partitioned consensus groups, formal verification, and adaptations for challenging network environments,

Raft continues to evolve alongside distributed computing needs. This combination of foundational clarity

and ongoing innovation ensures Raft will remain influential in distributed systems design far into the future.

REFERENCES

[1] Diego Ongaro and John Ousterhout, "In Search of an Understandable Consensus Algorithm," in the

Proceedings of USENIX ATC ’14: 2014 USENIX Annual Technical Conference, 2014.

Available: https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf

[2] Heidi Howard, Richard Mortier "Paxos vs Raft: Have we reached consensus on distributed

consensus?" PaPoC ’20, April 27, 2020, 2020. Available:

https://dl.acm.org/doi/pdf/10.1145/3380787.3393681

[3] Heidi Howard et al., "Raft Refloated: Do We Have Consensus?," ACM SIGOPS Operating Systems

Review, vol. 49, no. 1, pp. 12-21, 2015. Available:

https://www.cl.cam.ac.uk/research/srg/netos/papers/2015-raftrefloated-osr.pdf

[4] Harald Ng, "Distributed Consensus: Performance Comparison of Paxos and Raft," Kth Royal Institute

Of Technology, 2020. Available: https://www.diva-

portal.org/smash/get/diva2:1471222/FULLTEXT01.pdf

[5] Mahmood Fazlali et al., "Raft Consensus Algorithm: an Effective Substitute for Paxos in High

Throughput P2P-based Systems," arXiv preprint arXiv:1911.01231, 2019. Available:

https://arxiv.org/pdf/1911.01231

[6] Doug Woos et al., "Planning for Change in a Formal Verification of the Raft Consensus Protocol,"

CPP’16, January 18–19, 2016. Available: https://dl.acm.org/doi/pdf/10.1145/2854065.2854081

[7] Vaibhav Arora et al., "Leader or Majority: Why have one when you can have both? Improving Read

Scalability in Raft-like consensus protocols," in Proceedings of the 9th USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud), 2017. Available:

https://www.usenix.org/system/files/conference/hotcloud17/hotcloud17-paper-arora.pdf

[8] Kiran Kumar Kondru and Saranya Rajiakodi, "RaftOptima: An Optimised Raft With Enhanced Fault

Tolerance, and Increased Scalability With Low Latency," IEEE Access, vol. 10, pp. 123456-

123467, 2024. Available: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614451

[9] Rustem Dautov, Erik Johannes Husom, "Raft Protocol for Fault Tolerance and Self-Recovery in

Federated Learning," IEEE/ACM 19th Symposium on Software Engineering for Adaptive and

Self-Managing Systems (SEAMS), 2024. Available:

https://dl.acm.org/doi/pdf/10.1145/3643915.3644093

https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://dl.acm.org/doi/pdf/10.1145/3380787.3393681
https://www.cl.cam.ac.uk/research/srg/netos/papers/2015-raftrefloated-osr.pdf
https://www.diva-portal.org/smash/get/diva2:1471222/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1471222/FULLTEXT01.pdf
https://arxiv.org/pdf/1911.01231
https://dl.acm.org/doi/pdf/10.1145/2854065.2854081
https://www.usenix.org/system/files/conference/hotcloud17/hotcloud17-paper-arora.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614451
https://dl.acm.org/doi/pdf/10.1145/3643915.3644093

 European Journal of Computer Science and Information Technology,13(14),184-197, 2025

 Print ISSN: 2054-0957 (Print)

 Online ISSN: 2054-0965 (Online)

 Website: https://www.eajournals.org/

 Publication of the European Centre for Research Training and Development -UK

197

[10] Xiaosong Gu et al., "Raft with Out-of-Order Executions," International Journal of Software and

Informatics, 2021. Available: https://hengxin.github.io/papers/2021-JOS-PRaft-en.pdf

[11] “Consensus algorithm”, Tikv Org Available:https://tikv.org/deep-dive/consensus-

algorithm/introduction/

[12] Martin Kenyeres,Jozef Kenyeres, “Comparative Study of Distributed Consensus Gossip Algorithms

for Network Size Estimation in Multi-Agent Systems”, Future Internet, 2021. Available :

https://www.researchgate.net/publication/351669184_Comparative_Study_of_Distributed_Conse

nsus_Gossip_Algorithms_for_Network_Size_Estimation_in_Multi-Agent_Systems

[13] Joseph DeChicchis, “Cloudlet Caches: Managing State for a Microservices Based Edge Computing

Platform”, Duke University, December 13, 2018. Available:

https://www.dechicchis.com/assets/Cloudlet_Caches.pdf

[14] Hao Xu, Lei Zhang and Yinuo Liu, and Bin Cao ,“RAFT Based Wireless Blockchain Networks in

the Presence of Malicious Jamming”, IEEE Wireless Communications Letters, Vol. 9, No. 6,

June 2020. Available : https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8982036

[15] Anna Povzner, et al., “Kora: A Cloud-Native Event Streaming Platform For Kafka”,Proceedings of

the VLDB Endowment, Vol. 16, No. 12, Available : https://www.vldb.org/pvldb/vol16/p3822-

povzner.pdf

https://hengxin.github.io/papers/2021-JOS-PRaft-en.pdf
https://tikv.org/deep-dive/consensus-algorithm/introduction/
https://tikv.org/deep-dive/consensus-algorithm/introduction/
https://www.researchgate.net/publication/351669184_Comparative_Study_of_Distributed_Consensus_Gossip_Algorithms_for_Network_Size_Estimation_in_Multi-Agent_Systems
https://www.researchgate.net/publication/351669184_Comparative_Study_of_Distributed_Consensus_Gossip_Algorithms_for_Network_Size_Estimation_in_Multi-Agent_Systems
https://www.dechicchis.com/assets/Cloudlet_Caches.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8982036
https://www.vldb.org/pvldb/vol16/p3822-povzner.pdf
https://www.vldb.org/pvldb/vol16/p3822-povzner.pdf

