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Abstract: The Raft consensus algorithm provides a more understandable alternative to previous protocols 

like Paxos while maintaining strong consistency guarantees in distributed systems. By breaking consensus 

into three distinct components—leader election, log replication, and safety—Raft creates a clear mental 

model for developers. Its widespread adoption spans distributed databases, configuration management, 

container orchestration, microservices infrastructure, and blockchain systems. Despite inherent 

challenges, including leader bottlenecks and brief unavailability during leader changes, Raft offers 

significant benefits through its straightforward design. Current innovations address these limitations 

through performance optimizations, multi-Raft architectures, formal verification, edge computing 

adaptations, and educational tools, ensuring the algorithm's continued relevance as distributed computing 

evolves. 
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INTRODUCTION 

 

Imagine a team of computers working together to provide a service, like showing you your bank balance 

or letting you order something online. These computers need to stay in perfect sync about what's happening 

and what to do next. This becomes challenging when some computers crash, internet connections fail, or 

messages between them get delayed. This challenge is at the heart of distributed systems - the technology 

that powers everything from cloud services to banking apps to social media platforms. Consensus 

algorithms provide the essential rules that help these computer teams reach an agreement despite all these 

potential problems. They act like referees, ensuring everyone follows the same playbook. Without these 

algorithms, chaos would ensue. Some computers might think your bank account has $500, while others 

show $400. An online store might process your order twice or not at all. Your social media posts might 

appear to some friends but not others. Think about when you and your friends try to decide where to eat 

dinner. If everyone can't communicate clearly, you might end up at different restaurants! Computer systems 

face the same coordination problem but with much higher stakes. Without consensus algorithms like Raft 
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providing coordination in distributed systems, the same challenges that led Ongaro and Ousterhout to state 

that 'understandability is a key requirement' would continue to plague modern computing infrastructure[1]. 

Consensus algorithms provide the digital equivalent of a formal meeting procedure - they establish who 

gets to speak when, how decisions are recorded, and what happens if someone steps away. This structured 

approach ensures all computers in the system maintain the same understanding of what's true, even when 

things go wrong. This foundation of agreement enables the reliable digital services we depend on every 

day, from streaming movies to making payments to storing photos in the cloud. Without consensus 

algorithms working behind the scenes, our connected digital world simply couldn't function reliably. 

 

The Incumbents and Their Limitations 

Before Raft arrived on the scene, the world of distributed systems was dominated by an algorithm called 

Paxos. While Paxos had earned respect in academic circles for its mathematical elegance and theoretical 

soundness, it created enormous headaches for engineers trying to use it in real-world systems. 

Paxos suffered from being extraordinarily difficult to understand. Even veteran software engineers with 

years of experience would struggle to grasp how it worked. Reading the Paxos papers felt like deciphering 

a foreign language for many developers. The concepts were abstract, the explanations were dense with 

mathematical notation, and the overall approach seemed disconnected from practical programming 

concerns. 

 

Implementing Paxos correctly proved even more challenging. Engineers attempting to convert the 

theoretical description into working code encountered countless edge cases and ambiguities not addressed 

in the academic papers. Many organizations spent months trying to build reliable Paxos implementations, 

only to discover subtle bugs when their systems faced unexpected conditions in production environments. 

The complexity of Paxos created teaching challenges as well. Computer science professors frequently 

avoided covering Paxos in depth during distributed systems courses because students found it so 

bewildering. When they did teach it, instructors often needed multiple lectures just to explain the basic 

protocol, with students still left confused about how to apply it practically. 

 

Documentation problems compounded these issues. The original Paxos papers, while mathematically 

rigorous, left many implementation details unspecified. This forced development teams to make critical 

design decisions without clear guidance, leading to inconsistent implementations across the industry and 

difficulty in maintaining systems over time. Imagine Paxos as an intricate recipe written by a brilliant chef 

who assumes readers already understand advanced cooking techniques. The recipe might produce an 

amazing dish, but following it requires interpreting vague instructions, making educated guesses, and 

possibly failing several times before getting it right. Even professional chefs would struggle to execute it 

properly. 

 

As distributed systems became increasingly important in the technology landscape—powering everything 

from cloud services to financial systems—the industry desperately needed a more accessible approach to 

consensus. Engineers needed an algorithm that was not only theoretically sound but also practical to 
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implement and maintain in real-world conditions. This growing need would eventually lead to the 

development of Raft, an algorithm designed specifically to address these limitations. The complexity of 

Paxos implementation led to numerous inconsistent variants and interpretations across the industry, making 

it difficult for engineers to be confident in their distributed systems [2]. 

 

What is Raft? 

Raft emerged as a consensus algorithm specifically designed to be understandable first without sacrificing 

reliability. Unlike previous approaches that prioritized mathematical elegance, Raft's creators focused on 

making something that real engineers could implement without confusion. Raft's core design philosophy 

breaks consensus into distinct subproblems of leader election, log replication, and safety, creating a more 

approachable mental model for developers [1]. 

The key insight behind Raft is breaking down the complex consensus problem into three clear, separate 

pieces that can be understood independently: 

 

Leader Election 

The system democratically chooses one computer to be in charge (like electing a team captain). When a 

Raft system starts up, all nodes begin as "followers." After a random timeout period (typically between 

150-300 milliseconds), a follower who hasn't heard from a leader will become a "candidate" and request 

votes from other nodes. If it receives votes from the majority, it becomes the leader. This randomized 

approach prevents endless ties while ensuring a leader emerges quickly. 

 

Replication 

The leader keeps track of all changes and makes sure every node receives them. Each change (like updating 

a user's profile or adding an item to a shopping cart) becomes a "log entry" with a unique sequential number. 

The leader sends these entries to all followers, who add them to their own logs. Once the leader confirms 

that a majority of nodes have saved an entry, it's considered "committed" and can be applied to the system's 

state. 

 

Safety 

Rules that ensure the system never makes contradictory decisions, even during failures. Raft enforces strict 

ordering of log entries through "term numbers" that increase with each new leader election. If network 

problems cause temporary disagreement, Raft includes mechanisms to detect and resolve these conflicts. 

For example, if a follower's log differs from the leader's, the leader will identify exactly where they diverged 

and send the correct entries to bring the follower up to date. 

 

This modular approach makes Raft much easier to understand. You can learn one piece at a time rather than 

having to grasp everything at once. Engineers can start by implementing leader election, then add log 

replication, and finally ensure safety properties—gradually building a complete consensus system. User 

studies demonstrated that participants could understand Raft consensus much more quickly than Paxos, 
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with teams implementing correct Raft systems in significantly less time than comparable Paxos 

implementations[3]. The structured approach also helps during debugging. When something goes wrong, 

developers can focus on which of the three components is failing rather than getting lost in a complex web 

of interconnected processes. This clarity directly translates to more reliable distributed systems in the real 

world. 

 

How Raft Improves on Previous Approaches 

Raft introduces several key innovations that make it significantly more practical for real-world distributed 

systems. These improvements address the fundamental challenges that made previous consensus algorithms 

difficult to implement and maintain. Comparative performance analysis between Paxos and Raft 

demonstrated that Raft's simplicity comes with minimal performance overhead while providing substantial 

gains in implementation clarity [4]. 

 

Clear leadership 

It forms the cornerstone of Raft's design philosophy. Unlike Paxos, where any node can propose changes 

at any time (creating complex coordination scenarios), Raft designates a single leader who coordinates all 

operations for a given term. This leader-follower model creates a clear flow of information: clients send all 

requests to the leader, the leader orders these requests into log entries, and followers simply replicate the 

leader's log. This straightforward hierarchy eliminates the need to resolve competing proposals from 

different nodes, dramatically simplifying the protocol's behavior. In technical terms, each Raft term has 

exactly one leader, and that leader is the only node that can append new entries to the log, creating a single 

source of truth. 

 

Intuitive election process 

It ensures the cluster can quickly recover from leader failures. Raft implements this through a randomized 

timeout mechanism. Each follower waits for a randomized period (typically 150-300ms) before initiating 

an election if it hasn't heard from the current leader. This randomization naturally prevents split votes where 

multiple candidates might tie. When becoming a candidate, a node increments the term number, votes for 

itself, and requests votes from other nodes. A candidate wins the election upon receiving votes from a 

majority of servers, becoming the leader for that term. This approach typically resolves leadership within 

1-2 election timeouts, even after failures, minimizing system disruption. 

 

Understandable log management 

It provides clear rules for handling the replicated log across the cluster. The log in Raft is an ordered 

sequence of commands, with each entry containing a term number and command to be executed. The leader 

maintains consistency by forcing followers' logs to match their own through a simple mechanism: when 

sending new entries, the leader includes the index and term of the preceding entry. If followers can't find 

this entry in their logs, they reject the new entries, prompting the leader to send earlier entries until 

consistency is established. This approach guarantees logs will eventually converge without requiring 

complex reconciliation algorithms. 
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Simple membership changes 

It allows Raft clusters to evolve over time without disrupting service. Adding or removing servers from the 

cluster is handled through a two-phase approach called "joint consensus." During this transition, the cluster 

operates under both the old and new configurations simultaneously, requiring agreement from majorities in 

both configurations. This approach guarantees safety during reconfigurations while maintaining 

availability. The protocol includes specific rules for how log entries are committed during these transitions 

and how the leader manages the membership change process. 

 

Complete specification 

It sets Raft apart from its predecessors by leaving little to interpretation. The Raft papers include detailed 

pseudocode for all major algorithms, timing parameters, exact message formats, and explicit state transition 

rules. For example, the papers specify exactly how leaders should retry failed communications, what 

information must be persisted to stable storage before responding to messages, and how to handle every 

possible server state transition. This comprehensive approach eliminates the implementation guesswork 

that plagued earlier consensus protocols [1]. 

 

To use an analogy: if Paxos is like a complex mathematical proof with critical steps left as "exercises for 

the reader," Raft is like a detailed instruction manual with clear diagrams and troubleshooting guides. Both 

can build reliable distributed systems, but Raft dramatically reduces the expertise required to implement 

them correctly. 

 

Implementation in Modern Systems 

Raft's simplicity has led to widespread adoption across many types of systems in the software industry. 

High-throughput peer-to-peer systems have successfully adapted Raft consensus to provide strong 

consistency guarantees without compromising on performance expectations [5]. The algorithm's clear 

design principles have made it accessible to development teams without requiring specialized expertise in 

distributed consensus. 

 

Distributed databases 

Distributed databases have embraced Raft as a foundational component for maintaining consistency. 

CockroachDB, a distributed SQL database, implements Raft at its core to synchronize data across multiple 

servers[7]. Each table's data is divided into ranges, and each range has its own Raft group consisting of 

multiple replicas. When a client writes data to CockroachDB, the request goes to the Raft leader for that 

particular range, which then replicates the change to other nodes in the Raft group. This architecture ensures 

that even if individual nodes fail, the database remains available and consistent. TiKV, the storage engine 

behind TiDB, similarly uses multiple Raft groups to manage different data partitions, with each group 

independently handling leadership and replication for its assigned key range [11]. 

Kafka's move to KRaft (Kafka Raft) represents a significant evolution in how it handles consensus and 

leader election. Traditionally, Kafka relied on ZooKeeper, an external system, to manage cluster metadata, 

leader election, and configuration. This created additional complexity as teams needed to operate and 
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maintain two separate distributed systems. With KRaft, Kafka implemented its own consensus protocol 

based on the Raft algorithm, allowing it to handle leader election internally without ZooKeeper. This change 

simplified the architecture, reduced operational overhead, and improved performance during leader 

transitions. By consolidating these critical functions within Kafka itself, the system became more self-

contained and easier to deploy, while still maintaining strong consistency guarantees when electing new 

leaders after failures [15]. 

 

Configuration management systems 

Configuration management systems rely on Raft to store critical system settings and service information. 

HashiCorp's Consul uses Raft to maintain its service registry and key-value store across a cluster of servers. 

When configurations change, Consul's Raft implementation ensures all nodes eventually receive the same 

updates in the same order.  

 

Container orchestration 

Container orchestration platforms like Kubernetes depend on Raft indirectly through their reliance on etcd. 

Kubernetes stores all cluster states—including which containers should be running, which nodes are 

available, and current configurations—in etcd. The Kubernetes control plane continuously compares the 

actual state to this desired state stored via Raft consensus. This architecture means that even if master nodes 

fail, the cluster's intended state remains safely preserved in the etcd Raft cluster. Kubernetes typically 

deploys a 3-5 node etcd cluster, configured with specific storage and network requirements to ensure Raft 

can maintain consensus efficiently. 

 

Microservices infrastructure 

The HashiCorp stack includes Nomad for scheduling and deploying applications across a cluster, which 

uses Raft internally to maintain job specifications and allocations. These service coordination tools require 

the strong consistency that Raft provides to prevent "split-brain" scenarios where independent parts of the 

system make conflicting decisions about service locations or task assignments [13]. 

 

Blockchain systems 

Blockchain systems have also adopted Raft variants for consensus in permissioned environments. 

Hyperledger Fabric, an enterprise blockchain platform, offers a Raft ordering service option that 

outperforms its previous consensus mechanisms in benchmarks. Unlike public blockchains that require 

complex proof-of-work or proof-of-stake protocols, permissioned blockchain networks with trusted 

participants can leverage Raft's performance advantages. These implementations typically modify Raft 

slightly to accommodate blockchain-specific requirements, such as handling cryptographic verification of 

transactions while still using Raft's core leader election and log replication mechanisms [14]. 

 

The diversity of these implementations demonstrates Raft's versatility across different domains. Each of 

these systems has implemented the core Raft protocol—leader election, log replication, and safety 

guarantees—while adapting peripheral details to their specific use cases. The clarity of Raft's specification 
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has enabled development teams to make these adaptations confidently without requiring consensus 

algorithm specialists to validate every design decision. This accessibility has accelerated Raft's adoption 

throughout the industry and contributed to more reliable distributed systems overall. 

 

Benefits of Using Raft 

Raft offers several practical advantages that have contributed to its rapid adoption across the software 

industry. Formal verification of Raft implementations provides mathematical certainty about correctness 

properties, giving developers extraordinary confidence in their distributed systems [6]. These benefits 

directly address the pain points that development teams experienced with earlier consensus algorithms. 

 

Fewer bugs 

Fewer bugs emerge in production systems built on Raft due to its clarity and comprehensiveness. The 

structured nature of the algorithm, with its clear separation of concerns between leader election, log 

replication, and safety guarantees, allows developers to reason about each component individually. When 

implementation issues arise, engineers can identify which specific part of the protocol is misbehaving rather 

than trying to debug a monolithic system. This modularity translates directly to more reliable software in 

production. Engineering teams report spending significantly less time troubleshooting consensus-related 

issues in Raft-based systems compared to their previous experiences with more complex algorithms. The 

risk of subtle edge cases—like those that might occur during network partitions or when multiple nodes 

believe they are leaders—is reduced through Raft's explicit handling of these scenarios in its specification. 

 

Strong consistency 

Strong consistency guarantees provide a solid foundation for applications that cannot tolerate divergent 

states. Raft ensures that once a command is committed (meaning it has been replicated to a majority of 

nodes), it will never be overwritten or reordered in the log. All nodes will eventually execute the same 

commands in exactly the same order, leading to an identical state across the cluster. This linearizable 

consistency model means that once a write operation completes, all subsequent reads will reflect that write, 

regardless of which node handles the read request. For applications like financial systems, inventory 

management, or any service where an accurate state is critical, this strong consistency eliminates entire 

categories of potential bugs related to stale or conflicting data that eventually plague consistent systems. 

 

Fault tolerance 

Fault tolerance allows Raft-based systems to continue operating normally despite server failures. Raft 

clusters can tolerate the failure of up to (N-1)/2 nodes while maintaining both availability and consistency, 

where N is the total number of nodes. In practical terms, this means a three-node cluster can tolerate one 

failure, a five-node cluster can tolerate two failures, and a seven-node cluster can tolerate three failures. 

This property ensures that scheduled maintenance, hardware failures, or network issues affecting a minority 

of nodes won't disrupt service. When node failures occur, Raft's leader election mechanism activates 

promptly to establish a new leader if needed, typically restoring full functionality within a few hundred 
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milliseconds. This resilience is achieved without complex recovery procedures or manual intervention, 

reducing the operational burden on engineering teams. 

 

Developer-friendly 

Developer-friendly design makes Raft accessible to mainstream software engineers without specialized 

expertise in distributed systems. The algorithm can be implemented by following the clearly defined rules 

and procedures in the Raft papers without requiring a deep understanding of the theoretical complexities 

underlying consensus problems. This accessibility has enabled more organizations to build strongly 

consistent distributed systems without assembling teams of distributed systems experts. Development teams 

report that new engineers can understand Raft implementations more quickly than other consensus 

mechanisms, reducing onboarding time and enabling broader participation in system development and 

maintenance. The existence of educational tools like interactive visualizations further lowers the barrier to 

understanding how Raft operates under different conditions. 

 

Comparable performance 

Comparable performance to more complex alternatives makes Raft practical for production use cases. 

Despite its focus on understandability, Raft achieves throughput and latency metrics similar to other 

consensus protocols in most common scenarios. Write operations typically complete within a few 

milliseconds in local deployments, with performance primarily bounded by the latency of persisting log 

entries to stable storage. Read operations can be optimized in various ways, including serving reads from 

follower nodes for improved scalability or implementing read leases to avoid consensus overhead for reads 

altogether. These performance characteristics enable Raft to support demanding applications without 

requiring developers to sacrifice clarity for efficiency, removing a common objection to adopting strongly 

consistent systems [12]. 

 

These benefits combine to make Raft particularly valuable for teams that need reliability without excessive 

complexity. By providing a consensus solution that balances theoretical correctness with practical 

implementation concerns, Raft has democratized access to strong consistency and enabled more 

organizations to build robust distributed systems. 

 

Challenges and Limitations 

Despite its many advantages, Raft faces several challenges and limitations that affect its application in 

certain contexts. The standard Raft model faces read scalability challenges by routing all operations through 

the leader, but this can be mitigated through thoughtful extensions to the protocol [7]. These constraints 

represent inherent trade-offs in Raft's design rather than implementation flaws, and understanding them is 

crucial for architects considering Raft for their distributed systems. 

 

Leader bottleneck 

Leader bottleneck issues arise from Raft's centralized leadership model. Since all write operations must 

flow through the leader node before being replicated to followers, the leader can become a performance 
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bottleneck in write-intensive workloads. This single-leader architecture means that the overall throughput 

of the system is fundamentally limited by what a single node can process. When a client requests exceed 

the leader's capacity to append entries to its log, process responses, and manage replication, latency 

increases, and overall system throughput plateaus. This bottleneck becomes particularly apparent in systems 

that handle thousands of writes per second or that process large entries that consume significant network 

bandwidth during replication. Some implementations address this limitation through batching techniques 

that group multiple client requests into single log entries, but the fundamental constraint remains inherent 

to Raft's design. 

 

Brief unavailability during leader changes 

Brief unavailability during leader changes affects system responsiveness following failures. When a Raft 

leader becomes unavailable due to crashes, network issues, or scheduled maintenance, the cluster must 

detect the failure through timeout mechanisms and then elect a new leader before it can resume processing 

write requests. This election process typically takes at least one election timeout period (often configured 

between 150-500ms) and sometimes longer if initial election attempts don't establish a clear winner. During 

this interval, the system cannot process new write operations, creating a brief but noticeable pause in 

service. While this unavailability period is typically short in stable networks, it can extend longer in 

environments with network instability or when multiple nodes fail simultaneously. This characteristic 

makes standard Raft implementations potentially problematic for applications with strict real-time 

requirements that cannot tolerate any interruption in write availability. 

 

Scaling limitations 

Scaling limitations become evident as Raft clusters grow beyond a handful of nodes. The leader in a Raft 

cluster must communicate with every follower, sending heartbeats and replicating log entries. As the 

number of nodes increases, this communication overhead grows linearly, placing an increasing burden on 

the leader and the network. Additionally, since Raft requires acknowledgment from a majority of nodes 

before committing entries, larger clusters increase the likelihood that slower nodes will delay the commit 

process. These factors combine to make standard Raft implementations less efficient in very large clusters. 

While five to seven nodes represent a common and efficient configuration for most applications, scaling 

beyond this size often requires architectural modifications like hierarchical Raft or partitioned consensus 

groups rather than simply adding more nodes to a single Raft cluster. 

 

Network partition 

Network partition handling in Raft prioritizes consistency over availability, which creates operational 

challenges during network splits. When the network divides the cluster such that no partition contains a 

majority of nodes, Raft's safety properties prevent any partition from making progress on write operations. 

While this behavior preserves consistency by preventing divergent states between partitions, it means that 

the entire system becomes unavailable for writes during certain network failure scenarios. Even when a 

majority partition exists, nodes in the minority partition become unavailable until connectivity is restored. 

This strict consistency approach differs from eventually consistent systems that might allow continued 
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operation with potential reconciliation later. Organizations deploying Raft must carefully consider their 

network reliability and design their cluster topologies to minimize the impact of network partitions. 

 

Resource efficiency 

Resource efficiency concerns arise from the asymmetric workload distribution in Raft clusters. Follower 

nodes in standard Raft implementations primarily serve as passive replicas that maintain copies of the log 

and respond to heartbeats and appendEntries messages from the leader. This design means that 

computational resources on follower nodes are often underutilized, particularly their CPU and memory. In 

a standard three or five-node deployment, this represents a significant portion of the cluster's total resources 

being used sub-optimally. Some implementations address this limitation by allowing read operations to be 

served directly from follower nodes (with various consistency guarantees) or by colocating multiple 

independent Raft groups on the same physical servers, but these approaches add complexity to the otherwise 

simple Raft model. 

 

These challenges reflect the fundamental trade-offs inherent in Raft's design philosophy, which prioritizes 

clarity and safety over-optimization for every possible scenario. Much like choosing a reliable family sedan 

versus a high-performance sports car, Raft offers exceptional ease of use and maintenance at the cost of 

some specialized performance characteristics. For most distributed applications, these limitations are 

acceptable compromises given the significant benefits in implementation simplicity and operational 

reliability. However, architects should carefully evaluate these constraints against their specific 

requirements when deciding whether Raft is the appropriate consensus mechanism for their systems. 

 

Future Directions 

Researchers and engineers continue to advance Raft in several exciting directions that address its limitations 

while preserving its core benefits. RaftOptima enhances the original Raft algorithm with optimizations that 

substantially improve fault tolerance and scalability while maintaining the core understandability that made 

Raft popular [8]. These innovations extend Raft's applicability to new domains and challenges in distributed 

computing. 

 

Performance enhancements 

Performance enhancements are addressing one of Raft's primary limitations: the leader bottleneck. 

Advanced batching techniques allow leaders to group multiple client requests into single log entries, 

amortizing the overhead of consensus across many operations. Some implementations now support 

pipelined replication, where the leader can send new append entry requests before receiving responses to 

previous ones, keeping the network saturated and improving throughput. Read optimization strategies have 

evolved beyond basic leader-only reads to include follower reads with various consistency guarantees, 

lease-based approaches that reduce consensus overhead, and snapshot-based reads that don't require log 

traversal. These techniques can dramatically improve throughput in read-heavy workloads without 

compromising Raft's safety guarantees. 



           European Journal of Computer Science and Information Technology,13(14),184-197, 2025 

 Print ISSN: 2054-0957 (Print)  

                                                                            Online ISSN: 2054-0965 (Online) 

                                                                      Website: https://www.eajournals.org/                                                        

                         Publication of the European Centre for Research Training and Development -UK 

194 
 

Log compression and efficient state transfer mechanisms reduce the overhead of bringing new nodes up to 

date. Rather than sending thousands of individual log entries, optimized implementations transfer 

compressed snapshots of state followed only by recent entries. Some systems have implemented parallel 

execution of independent commands, allowing the state machine to apply non-conflicting operations 

simultaneously after they're committed through the consensus protocol. These performance enhancements 

collectively enable Raft-based systems to support higher throughput and lower latency while maintaining 

the algorithm's understandability. 

 

Multi-Raft approaches 

Multi-Raft approaches have emerged as the dominant strategy for scaling Raft to manage large datasets and 

high request volumes. Instead of using a single Raft group for an entire system, this architecture partitions 

data into multiple shards, each managed by an independent Raft consensus group. TiKV, the storage engine 

behind TiDB, exemplifies this approach by dividing its keyspace into ranges called "regions," each with its 

own Raft group. CockroachDB similarly uses "ranges" of around 64MB each, with separate Raft groups 

handling replication for each range. This horizontal scaling allows systems to distribute load across many 

leaders instead of funneling all requests through a single consensus group. 

 

Coordination between these independent Raft groups introduces new challenges, particularly for operations 

that span multiple partitions. Distributed transaction protocols layered on top of multi-Raft architectures 

enable consistent cross-partition operations, often using two-phase commit or other coordination 

mechanisms while relying on Raft for consistent replication within each partition. These multi-Raft systems 

can scale to hundreds or thousands of nodes by limiting the size of individual consensus groups while using 

many such groups in parallel, overcoming the inherent scaling limitations of single-group Raft. 

 

Mathematical verification 

Mathematical verification efforts have produced formal, machine-checked proofs of Raft's correctness 

properties. Unlike informal reasoning or testing, formal verification uses mathematical techniques to prove 

that an algorithm satisfies certain properties under all possible executions. Adaptations of Raft for federated 

learning demonstrate its flexibility beyond traditional distributed systems, providing fault tolerance and 

self-recovery capabilities in machine learning contexts[9]. Other projects have verified TLA+ specifications 

of Raft, mathematically proving properties like leader uniqueness (no two nodes can be leaders for the same 

term) and log matching (if two logs contain entries with the same index and term, those entries are identical). 

These verification efforts provide extraordinary confidence in Raft's correctness beyond what testing alone 

can achieve. As formal methods tools become more accessible, we can expect more Raft implementations 

to undergo rigorous mathematical verification, further increasing confidence in systems built on this 

foundation. 

 

Edge computing adaptations 

Edge computing adaptations  are extending Raft to environments with intermittent connectivity and limited 

resources. Standard Raft assumes relatively stable network conditions and continuous majority availability, 
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assumptions that don't hold in edge computing scenarios where devices may frequently disconnect or have 

limited power and bandwidth. Modified Raft variants for these environments introduce concepts like 

"blessed" majorities that can make progress during partitions, delayed consistency mechanisms that 

maintain safety while improving availability, and hierarchical approaches where edge devices form local 

consensus groups that periodically synchronize with cloud-based Raft clusters. 

Some edge-oriented modifications incorporate concepts from Conflict-free Replicated Data Types 

(CRDTs) to allow for offline operation with eventual reconciliation. These adaptations enable Raft-like 

consensus in challenging environments like Internet of Things (IoT) deployments, mobile device clusters, 

and remote locations with unreliable connectivity while maintaining as many of Raft's safety guarantees as 

possible, given the constraints. As computing continues to move toward the edge, these adaptations will 

become increasingly important for maintaining consistency in distributed applications. 

 

Visual teaching tools 

Visual teaching tools have significantly contributed to Raft's accessibility and adoption. Interactive 

visualizations allow students and engineers to observe Raft's behavior under different conditions, 

experimenting with scenarios like network partitions, node failures, and message delays to develop intuition 

about the algorithm's properties. The Raft website (raft.github.io) offers a visualization that has become a 

standard teaching tool in distributed systems courses. More advanced simulators allow users to modify 

parameters like election timeouts and heartbeat intervals to observe their effects on system behavior, 

reinforcing understanding through experimentation. 

 

These educational resources complement Raft's understandability-first design, further reducing the barrier 

to entry for engineers working with consensus systems. As these tools continue to evolve with more 

sophisticated scenarios and clearer explanations, they will help train the next generation of distributed 

systems engineers with a solid understanding of consensus fundamentals. The combination of a clearly 

designed algorithm and excellent educational resources represents a significant advancement in making 

distributed consistency accessible to mainstream software developers. Out-of-order execution extensions 

to Raft enable higher throughput by allowing independent operations to proceed in parallel while 

maintaining consistency guarantees for dependent operations [10]. 

 

These ongoing developments ensure that Raft will continue to evolve alongside the changing landscape of 

distributed computing. By addressing Raft's limitations while preserving its core clarity and safety, these 

innovations extend its relevance to new domains and requirements. As distributed systems become 

increasingly prevalent across all areas of computing—from cloud infrastructure to edge devices to 

blockchain networks—Raft's influence on consensus protocol design will likely persist for years to come. 

 

CONCLUSION 

 

Raft has transformed distributed systems by making reliable consensus accessible to everyday developers 

without sacrificing correctness. Its focus on clarity fundamentally changed how engineers approach 
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distributed consistency, enabling wider adoption of strongly consistent systems across critical applications. 

The algorithm's decomposition into distinct components creates both mental clarity and practical 

advantages for implementation and debugging. While certain inherent trade-offs exist in its design, 

particularly around centralized leadership and scaling, these limitations have sparked creative extensions 

that preserve Raft's core simplicity while expanding its capabilities. Through batched operations, 

partitioned consensus groups, formal verification, and adaptations for challenging network environments, 

Raft continues to evolve alongside distributed computing needs. This combination of foundational clarity 

and ongoing innovation ensures Raft will remain influential in distributed systems design far into the future. 
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