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ABSTRACT: The only known predictable aggregation of dwarf minke whales .occurs in the 

Australian offshore waters of the northern Great Barrier Reef in May-August each year. The 

identification of individual whales is required for research on the whales’ population 

characteristics and for monitoring the potential impacts of tourism activities, including 

commercial swims with the whales. At present, it is not cost-effective for researchers to 

manually process and analyze the tens of thousands of underwater images collated after each 

observation/tourist season, and a large data base of historical non-identified imagery exists. 

This study reports the first proof of concept for recognizing individual dwarf minke whales 

using the Deep Learning Convolutional Neural Networks (CNN).The “off-the-shelf” Image 

net-trained VGG16 CNN was used as the feature-encoder of the per-pixel sematic seg-

mentation Automatic Minke Whale Recognizer (AMWR). The most frequently photographed 

whale in a sample of 76 individual whales (MW1020) was identified in 179 images out of the 

total 1320 images provided. Training and image augmentation procedures were developed to 

compensate for the small number of available images. The trained AMWR achieved 93% 

prediction accuracy on the testing subset of 36 positive/MW1020 and 228 negative/not-

MW1020 images, where each negative image contained at least one of the other 75 whales. 

Furthermore on the test subset, AMWR achieved 74% precision, 80% recall, and 4% false-

positive rate, making the presented approach comparable or better to other state-of-the-art 

individual animal recognition results. 

KEYWORDS: dwarf minke whales, photo-identification, population biology, convolutional 

neural networks, deep learning, image recognition 

 

INTRODUCTION 
 
The dwarf minke whale (Balaenoptera acutorostrata subsp.) is the second smallest baleen 

whale, born at approximately 2m in length and growing to a maxi-mum measured length of 7.8 

m [1]. Dwarf minke whales are distributed throughout the southern hemisphere, including 

Antarctica, and were first acknowledged as a distinct form of minke in 1985 [1]. The only 

known predictable aggregation of dwarf minke whales occurs in the Australian offshore waters 

of the northern Great Barrier Reef (GBR) each year throughout the Australian winter months 
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[3]. This aggregation supports a local swim-with-whales tourism industry [2] [3]. The 

predictable nature of this aggregation has also enabled dedicated research of dwarf minke 

whales, which has contributed to seminal work on dwarf minke whale biology [4], behavior 

[5], and assessment and management of swim-with-whales activities [2]. Outputs from this 

work have in-formed and shaped management policies and expanded knowledge of both the 

subspecies in general and, specifically, the interactions with the tourism industry. The 

uniqueness of this aggregation presents an opportunity to conduct re-search and improve the 

knowledge base for a poorly understood oceanic coequal whale, as well as a responsibility to 

ensure that tourism activities are managed sustainably [2] [3] [5]. 

 
The identification of individual whales underpins much of the scientific re-search on dwarf 

minke whales and the monitoring of tourism activities. While in the GBR, these whales are 

highly inquisitive, readily approaching vessels and divers and often maintaining contact for 

prolonged periods [3] [5]. This behaviour provides good opportunities for passengers aboard 

the swim-with tourism vessels to photograph dwarf minke whales. The whales’ color patterns 

have been shown to remain stable over many years, and are sufficiently complex to allow for 

unequivocal identification of individuals [3] [6] [7]. The stability of these patterns and the 

regular, in-water access provided to researchers by tourism vessels has made the dwarf minke 

whale an ideal species for photo-identification (photo-ID) [6] [8]. 

 
 
Photo-ID is a simple, non-invasive technique widely used to study a range of biological and 

behavioral characteristics of wild animal populations. Ideal candidates for photo-ID are those 

with stable color patterns and/or other markings that are unique to each individual, so that 

individuals can be easily distinguished from each other and their identifiable markings remain 

the same over time. The automation of the photo-ID process is often highly specific to the 

required species, e.g. fin contour of great white sharks [9]. Due to its fundamental research 

role, photo-ID is an active research area for many species, e.g. green sea turtles [10], gorillas 

[11], and dolphins [12]. For minke whales, photo-ID has typically involved visual comparison 

of large numbers of photographs by trained researchers; thus, the process is time-intensive. 

Much of the imagery used for photo-identification of dwarf minke whales in re-cent years has 

come from tourists and crew aboard swim-with whales dive tour-ism vessels [8]. The quantity 

of this donated imagery has increased dramatically with the availability of low-cost digital 

underwater cameras and the resultant rise in popularity of these items among tourists [8]. 

Researchers are now obtaining tens of thousands of photographs and video clips each season. 

Consequently, it is no longer cost-effective for researchers to manually process and analyse 
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such quantities of images, and a large database of historical non-identified imagery exists. In 

order to utilize the increasing quantity of imagery to address key biological and ecological 

knowledge gaps about these whales, automatic computer-vision based recognition software is 

required, and was the main focus of this study. 

 
 
Over the last few years the Deep Learning Convolutional Neural Networks (CNNs) 

revolutionized the field of computer-vision image recognition [13]. For example, the Alex Net 

image classification CNN [14] won the Image net Large Scale Visual Recognition Challenge 

(ILSVRC) [15] in 2012, and since then all the ILSVRC13-ILSVRC17 winners used CNNs of 

various architectural configurations as their key features, e.g. [16]. It is customary to refer to 

such CNNs as been trained-on Image net. 

 

A typical Imagenet-trained CNN is setup to classify as many as 1000 different types of objects. 

Therefore, it is plausible to expect that such a CNN could distinguish at least 1000 different 

individual dwarf minke whales if it is trained or re-trained appropriately. This direct approach, 

however, has a number of limit-ing factors. First, millions of images are available in the 

Imagenet for training CNNs, which is presently not feasible for dwarf minke whales, where the 

number of images available for an individual whale may vary between one and sever-al 

thousand. Second, typical Imagenet object categories are very different, e.g. differences in 

images for dogs and people, whereas all minke whales fit essentially the same category for the 

Imagenet (i.e. near-identical body shape, proportions and general color). Third, the output of a 

classification CNN is a single probability number for each available class, where category and 

class are used as equivalent terms in this study. Such probability prediction has limited value 

to a marine biologist, as it does not explain why/how CNN arrived at its prediction. This is 

known as the black-box perception and/or criticism of the classification CNNs. The black-box 

CNN prediction is unavoidable in studies where animals are identified by their “faces”, e.g. for 

gorillas [11], and identification uses facial geometrical proportions and is essentially the full 

face. Fortunately in the case of dwarf minke whales, they are currently identified by finely 

detailed color pat-terns and scars (Figure 1), which could be recognized and localized by CNN, 

and then confirmed by a trained researcher. 
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The black-box limitation of the classification CNNs has a natural solution                    
 
 
 
 
 
 
 
 
 
 
Figure 1. Example of individual minke whale distinct fin color pattern and scars. 

 

when the CNNs are configured to perform semantic segmentation of images, where an image 

is segmented into per-pixel categories [17]. The output of segmentation CNNs is a per-pixel 

heat-map (also known as the probability or activation map) for each class. Therefore, a 

researcher could easily verify the CNN prediction by viewing the heat-map corresponding to 

the recognized individual whale (Figure 2). This approach was successfully validated in this 

proof of con-cept study by training a segmentation CNN to recognize a single whale within 

1320 images of 76 different whales. 
 
 

MATERIALS AND METHODS 

 

Dataset 
 
The underwater imagery dataset used in this study consisted of 1320 digital photographs of 

dwarf minke whales (Balaenoptera acutorostrata subsp.). All images were sorted according to 

unique individual animals. In some cases only left or right sides of a whale was identified, 

without knowing if corresponding images belonged to the same whale or not. Where it was 

possible to match the left and right sides to the same whale, the related imagery was labelled 

accordingly and placed together in the same folder. As a result, the dataset identified 76 

different whales. The identification process was extremely time consuming even for trained 

researchers as it required recording and cataloguing the color patterns and scars of 76 different 

whales, and/or reviewing any new image against at least 76 other whale images thus relying on 

researchers’ memory to identify matches with any efficiency. The number of available images 

varied greatly between individuals; the MW1020 individual had the largest number of images 

(179), and several whales had only one image per individual. 
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Segmentation Neural Network 
 

As described in the introduction, this study used a segmentation CNN rather than a 

classification CNN to recognize an individual minke whale and localize the recognized unique 

features. Specifically, the most accurate segmentation FCN-8s model from the Fully 

Convolutional Networks (FCN) [17] was selected due to the following considerations. First, 

the FCN-8s model is based on the VGG16 CNN model [16], which was one of the top 

performers in the ILSVRC14 [15]. 

 

 Randomly rotated in the range of [ −45, +45] degrees, where the input image was 

reflected to fill pixels outside the original boundary as required;  
 Randomly resized in the scale range of [0.75,1.25] , or by up to 25% zooming in or 

out; 

 Randomly shifted in each color channel in the [ −25.5, 25.5] range, where 25.5 was 

the 10% of maximum colour values 255;  
 Randomly gamma shifted in the [ −25.5, 25.5] range, where all color chan-nels values 

were shifted together;  
 Randomly cropped to retain  480 : 480  pixels;  
 Image net color mean values were subtracted as commonly done when work-ing with 

the Image net-trained VGG16 model. 
 
 

The following training workflow was adopted for this study. All available im-ages were 

sequentially numbered and split into five approximately equal subsets. The first three subsets 

were used as a single training set, i.e. 60% of all available images. The fourth and the fifth 

subsets became the validation and testing sets, respectively. More precisely, the ith image was 

allocated to validation or test if (i >1) or i were multiple of 5, respectively, where all remaining 

images were as-signed to the training set. 
 
 

The training of FCN-8s was done in up to 100 cycles. In each cycle, TAP480 was further 

applied to the already ISP640-processed images. The training images were loaded into memory 

as a X ( N t , M , M , C) tensor or a multidimensional matrix, where Nt >200 was the number of 

images, M >480 was the TAP480 cropping length, and where C > 3  was due to the three 

available colour channels. The corresponding to the loaded training images were the ground-

truth binary per-pixel masks, which were loaded as a one-hot encoded Y ( N t , M , M , K )  

tensor, where Y >i , m, l , k > 9 1  if the  ( m, l)  pixel belonged to the kth class in the ith image 

and zero otherwise. The required number of classes K was K : 1 for the automatic whale locator 
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and a single whale classifier, as described later on in this paper. The validation Xv and Yv tensors 

were constructed in similar fashion. 
 
 

The per-pixel binary cross-entropy loss function, e.g. p.231 of [13], was aver-aged as required 

and used as the training loss metric. Due to the available Graphical Processing Unit (GPU) 

memory limits, training was done in batches of only four images. Up to 16 training epochs 

were allowed per cycle, where one feed-forward and one back-propagation passes through all 

Nt-loaded im-age-mask pairs were considered to be one epoch. Training for a given cycle was 

aborted if the validation loss metric did not decrease after two epochs, this is commonly known 

as early stopping. Note that the early stopping was the only place where the validation images 

were used in training. In order to prevent the indirect overfitting of the validation images, they 

were augmented by TAP480 before each training cycle similar to the training set. 

 

 Minke Whale Locator 
 

Being a segmentation model, the FCN-8s model required the ground-truth per-pixel binary 

mask for each of the training and validation images. Therefore, the auxiliary goal of this study 

was to design the required workflow to be as scalable as possible for future larger training 

datasets. Creating the ground-truth per-pixel binary masks was clearly the least scalable 

component of this study, and required a scalable solution. This was solved by training an 

instance of FCN-8s to be the Minke Whale Locator (MWL). 

 

To train MWL, 100 images were segmented by hand (including 50 of the MW1020 individual) 

to produce binary per-pixel ground-truth mask Y for each of the 100 images. Then MWL was 

trained as per preceding Section 2.2 with the following modifications. In addition to TAP480, 

images were flipped horizon-tally with 0.5 probability. The available 100 images were split 70 

for training, and 30 for validation, where the rest of the not-segmented images were considered 

to be the testing set. The Keras version of the RMS prop optimizer was used with 10−4 learning 

rate, and 10−3 learning rate decay after each weights update, where RMS prop “divides the 

learning rate for a weight by a running average of the magnitudes of recent gradients for that 

weight” [19]. Once the per-pixel valida-tion accuracy stopped improving (usually at around 

95%), the Stochastic Gra-dient Descent (SGD) optimizer was used with 10−4 learning rate, 10−3 

learning rate decay, 0.9 momentum, and enabled Nesterov momentum. 
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Trained MWL was applied to all available images to automatically generate one largest 

rectangular binary mask per ISP640 pre-processed image. Note that since MWL was fully 

convolutional, it was rebuilt to accommodate any required image dimensions, where one side 

was always 640 (due to ISP640) but the other side was varied. The mask generation was done 

as follows. For each image, the 

 

where i and j were the row and column pixel location indices, respectively, and where the 

remaining mask values were set to zero, i.e. B (i , j) > 0 ,Y p :i , j >  9.8 . The largest connected 

non-zero area was filled to complete its minimum-enclosing rectangle, and saved as the only 

non-zero values of the final binary mask. 
 
Automatic Minke Whale Recognition 
 
Similar to the preceding MWL model, an instance of the FCN-8s model was created for a 

required number of K individual whales to be the Automatic Minke Whale Recognition 

(AMWR) model. To train AMWR, the automatically created (by MWL) masks for the K 

whales were reviewed for correctness. Specifically, each MWL-generated rectangular mask 

was checked to make sure it enclosed correct whale if multiple whales were present in an 

image. Also, if the mask did not enclose the whole whale, the mask was verified to enclose all 

whales’ fea-tures, which a biologist could use to identify that whale, i.e. fin coloration pat-terns 

and distinct scars. Note that in this study, the MWL model was nothing more than a 

convenience tool to automate ground-truth mask creation. Therefore where available, the 

manually segmented masks were used instead of the corresponding MWL masks.MWL 

produced acceptable bounding boxes in more than 90% cases confirming it to be a viable tool 

for this project. 

The AMWR was trained as per preceding Section 2.2 with the following mod-ifications. For 

the K selected whales the positive ground-truth masks (manually or automatically MWL-

segmented) were used. The training masks for the re-maining (76 − K ) whales were 

automatically generated as negative or all-zeros masks, i.e. any of the K selected whales were 

missing in the remaining images. Then the training proceeded as per MWL but with added 

regularization weight decay set to 10−4. 
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RESULTS AND DISCUSSION 
 
The largest number (179) of images was available for the individual whale MW1020 so it was 

used as the benchmark of possible accuracy for the utilized dataset and the AMWR model with 

K  1. As per preceding Sections 2.3 and 2.4, 50 masks were segmented manually, and the rest 

of available MW1020 im-ages (129) were segmented by MWL and quality-checked visually. 

The MW1020 training, validation and test sets contained 107, 36, and 36 images, respectively. 

The rest of other whale images (1141) were automatically labeled as negative, and split 60%-

training, 20%-validation, and 20%-test. Because there were many more negative labels than 

positive, for each training cycle an equal number of images (100) were randomly selected from 

both negative and positive/MW1020 training images. Similarly, all available 36 MW1020 

validation images were used with 36 randomly selected negative validation images, where a 

new random se-lection of 36 negative images was done before each training cycle. Also due to 

the highly unbalanced number of positive and negative examples, AMWR classifier was 

assessed via precision, recall, fprate (false-positive), in addition to the standard accuracy [9] 

[11], 

 
 

precision  TP / (TP  FP) ,  recall  TP / P ,  fp rate  FP / N (2) 

accuracy  (TP  TN ) / (P  N ) , (3) 
 
where TP, TN, FP and FN were the numbers of true-positive, true-negative, false-positive and 

false-negative predictions, respectively, and where P and N were the total numbers of positive 

(MW1020) and negative (non-MW1020-whale) images. 

 

The main distinct advantage of a per-pixel classifier (rather than per-image) such as the 

presented AMWR, is the full control over how “conservative” or “liberal” [12] it could be 

configured. The highly conservative version was configured by accepting the prediction heat-

map values only above 0.99, where the binary per-pixel predictions were set as B (i , j) < 1, Y 

p (i , j) ≥ 0.99 and zero otherwise. Furthermore, the largest connected prediction area was only 

accepted as a positive detection if its area was at least 64 = 64 > 4096 pixels, see example in  

Figure 2. 
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Figure 2. Example of AMWR per-pixel prediction for MW1020 individual. The pixels with 

the prediction heat-map values above 0.99 were illustrated by amplifying the cor-responding 

image pixel intensities by factor of 1.5. 

 
Table 1. Identification results for MW1020.  

 

Prediction Score  Datasets   

    

Train Validation Test  

  

     

Accuracy 0.984 0.924 0.935  

Precision 0.935 0.735 0.743  

Recall 0.953 0.694 0.805  

Fp rate 0.01 0.04 0.04  

     

 
On the test subset, AMWR achieved 4% false-positive rate (Table 1). Low fp rate was viewed 

as essential to support a workflow where many thousands of unsorted images could be scanned 

for the known whales, and the number of “false-alarm” instances would remain feasible to be 

classified manually. AMWR’s test precision (74%) and recall (80%) results (last column of 

Table 1) were better than the corresponding state-of-the-art gorilla identification results [11] 

of ap-proximately 60%. The AMWR’s test accuracy (93%) and precision (74%) were 

comparable to the 81% average precision achieved in the state-of-the-art great white shark 

identification results [9]. The validation and test prediction metrics were comparable (third and 

fourth columns in Table 1) supporting the achieved testvalues to be the expected 

benchmark/baseline values of the AMWR model in future similar circumstances/studies. 
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CONCLUSION 
 
Due to the increasing abundance of underwater digital imagery, the manual identification of 

individual dwarf minke whales from images and videos has be-come cost-ineffective. It has 

become excessively time-consuming to manually check if an unsorted image contains a new 

whale or a known whale, e.g. from the 76 labeled whales of this study’s dataset. Considering 

that photo-identification of dwarf minke whales represents one of the few methods available to 

address key knowledge gaps for this species’ biology and life history, the application of au-

tomated recognition tools can potentially provide new scientific insights that would otherwise 

be inaccessible to scientists. The quantity of images for individual whales presented a 

theoretically challenging problem, where the number of available labeled images was too large 

for further manual labeling, but not large enough to apply Deep Learning classification CNNs. 

This study demonstrated how the Deep Learning per-pixel segmentation FCN-8s [17] CNN 

could be trained for an individual minke whale recognition from only 179 positive images. As 

much as possible the off-the-shelf pre-trainedVGG16 [16] CNN was used to assist adoption 

and reproducibility of the results. 
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