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INTRODUCTION  

 

A Cartesian coordinate system in three dimensions, which is commonly used to describe 

space, and may be called a spatial coordinate system, can be extended to include another 

dimension that is linear like the other three dimensions of space, but possesses the attributes 

of time.   

 

The attributes of time differ from those for space, mass, and energy.  Time appears like a 

window by which we observe the motion of stars, planets, and other bodies, and the many 

interactions involving energy and matter.  Countless graphs and equations use time as a 

variable.  Nearly every computer has a clock.     

 

One attribute of time, which appears similar to the attributes of space, is how its flow or 

passage is consistent or uniform.  A clock in one location on Earth will register the same 

interval of time as a clock in another location on Earth, and its length of measurement stays 

the same, regardless of the day or year.    

 

In other words, the flow or passage of time appears to be linear since it occurs at a steady 

rate, making it similar to the dimensions of space that are considered to be flat and linear.  

While space may curve, this requires a large concentration of mass such as a black hole, 

whose high gravity affects the properties of space nearby.    

 

Another attribute of time is how it flows in a line in a single direction.  Time seems to come 

from the future before it enters the present, and moves into the past where it is lost or gone, 

unable to be retrieved.  Time flows like a river, which may flow steadily for thousands of 

miles before it empties into a sea.   

 

Since time flows in a single direction, it is unlike the dimensions of space where an 

observer may move freely in every direction.  An observer seems trapped within its flow, 

existing only in the present, unable to enter the past or the future so that its flow appears 

like a powerful current.      
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Another attribute of time is how its flow or passage is smooth and very fine.  Its subdivision 

into tiny intervals smaller than a second still results in its apparent movement, suggesting 

that it flows at a high rate of speed.     

 

To help visualize the flow or passage of time, an analogy may be used of where an observer 

inhabits a straight line in a two dimensional Cartesian coordinate system, which lies in one 

of its dimensions.   

 

To an observer on the line, the flow of time may be represented by the steady movement 

of the line past another line that is perpendicular to it, which represents the dimension of 

time.  A clock at any location on the line registers the same interval of time as a clock at 

another location, and its interval or length of measurement stays the same since the line 

moves at a steady rate past the line perpendicular to it.   

 

Since a clock at any location on the line measures a steady flow of time, or uses a consistent 

interval or length of measurement, the flow of time appears to be consistent across the 

boundaries of space, as defined by the moving line.   

 

From another perspective, the line may exist in a two dimensional Cartesian coordinate 

system where one dimension expresses time as a rate of flow that passes through the line 

at a uniform rate, letting an observer on the line view a steady flow of time from any 

location or direction on the line.    

 

Cartesian coordinate system 

 

A Cartesian coordinate system is usually defined for a flat plane or some other two 

dimensional setting by using a pair of axis lines to count or measure distance over a fixed 

or uniform interval that intersect at a right angle, or are perpendicular, making them 

geometrically independent of each other.    

 

Two lines that are geometrically independent may be viewed in terms of their projection 

upon each other as a point or edge, where an edge represents a line segment of minimum 

length, analogous to a point, a condition satisfied by their being perpendicular to each other, 

or their intersection at a right angle.   

 

In a sense, the geometrical independence of two lines may be defined in terms of their 

projection upon each other with a minimum set of intersection, which consists of a single 

point.  Such a minimum set of intersection enables them to represent separate but related 

dimensions, such as a pair of axis lines that measure distance within a plane, while retaining 

a common point of origin.    
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Cartesian coordinate systems are often used to graph a function in a plane.  A function may 

be defined as the application of a formula to a numeric variable, often called x, that gives 

a numeric result, often called y, where f(x) = y, and f stands for the function or formula 

applied to the variable x.   

 

Functions are typically graphed by applying the function to an ordered set of values of x, 

which results in an accumulation of points.  A point is usually denoted as (x, y), where x 

represents a value of x, and y represents the value of the function applied to x, so that a 

point represents the application of the function to a specific value of x.   

 

To graph a point, the value of x is plotted along the x axis, which is usually placed in a 

horizontal position, and the value of y is plotted along the y axis, which is usually placed 

in a vertical position.   

 

Distance along a line of axis is counted from a common point of origin denoted as (0, 0).  

The distance of the point (x, y) from the point of origin (0, 0) is measured along each line 

of axis as x – 0, and y – 0, respectively.    

 

The point of origin, which represents the intersection of the x axis with the y axis, is used 

as a point of reference for ordering the coordinate system, or determining the coordinates 

of another point.     

 

To count or measure distance, equal spacing or intervals on a number line are used.  The 

spacing or intervals are chosen to be easily visible, and suited in scale to solve a specific 

problem or class of problems.  However, graphs may sometimes use logarithmic and 

exponential scales.   

 

A Cartesian coordinate system is analogous to a polar coordinate system, since both 

systems use two elements to describe the location of a point in a plane with respect to a 

point of origin.   

 

A polar coordinate system denotes a point as (Ɵ, r), where the first element Ɵ or theta, 

represents the angle of the right triangle formed by using the x axis as a baseline, or side 

adjacent in a counterclockwise rotation, going up the y axis.  The second element r 

represents the length of the hypotenuse.   

 

In other words, a polar coordinate system represents a point as the endpoint of the 

hypotenuse of a right triangle.  The length r of the hypotenuse is counted in a straight line 

from the point of origin, while the angle Ɵ is determined with respect to the point of origin 

and the x axis for the side adjacent.   
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Since the hypotenuse of the right triangle intersects a circle of radius r from the point of 

origin, (Ɵ, r) appears as a point on a circle with radius r.  Ɵ may be expressed in terms of 

degrees or radians, where a circle has 2π radians or 360 degrees.   

 

To convert a point in Cartesian coordinates into polar coordinates, the point (x, y) may be 

viewed as the endpoint of the hypotenuse of a right triangle, where x represents the length 

of side adjacent, and y represents the length of the side opposite, as measured from the 

point of origin.   

 

Since the x axis and y axis intersect at a ninety degree angle, the Pythagorean Theorem 

may be applied to calculate the length of the hypotenuse as the positive square root of the 

sum of x squared and y squared.  In other words, r = √ (x2 + y2).   

 

Ɵ, or the angle of the right triangle, may be determined from its sine, or the ratio of y/r, or 

from its cosine, or the ratio of x/r, since x, y, and r have all been determined.     

 

Where polar coordinates are often used to express geometric figures that involve circles, 

cylinders, or spheres, Cartesian coordinates are used to graph functions that involve linear 

or quadratic equations, as well as other formulas.     

 

Mathematical Mirror 

 

Since the lines of axis in a Cartesian coordinate system are often used to count or measure 

distance, they may be viewed as the reflection or image of a number line that has been 

geometrically arranged to count or measure distance on a straight line, and includes a point 

of origin.      

 

In other words, a line of axis in a Cartesian coordinate system may be viewed as the 

reflection of a mirror that replicates a number line and establishes a point of origin in the 

two dimensions of a plane, or three dimensions of space where the lines of axis are 

perpendicular to each other.     

 

For example, the x axis and y axis may be viewed as separate reflections or images of a 

number line that has been geometrically arranged to count or measure distance in a plane.  

The x axis is placed in a horizontal position, and the y axis is placed in a vertical position, 

making them perpendicular to each other, where the only point they share in common is 

their point of intersection or origin.    

 

Alternatively, the y axis may be viewed as a reflection of the x axis that is rotated at a 

ninety degree angle within a plane from a common point of origin, making the two lines 

perpendicular to each other, or geometrically independent.     
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In other words, a mathematical mirror replicates a number line in another dimension, 

similar to how the y axis may be viewed as a reflection or image of the x axis at a ninety 

degree angle within a plane.   

 

The common mirror with its flat surface and high reflectivity may be viewed as a type of 

mathematical mirror that can replicate the image of an object, set, or number line, which is 

able to turn the x axis into the y axis by rotating its image around a common point of 

intersection in a plane.    

 

A mathematical mirror replicates a set or number line in another set or dimension, changing 

one of its traits or characteristics in a manner that is often geometrical, while allowing for 

a point of intersection.   

 

While a mathematical mirror is similar to a multiplier since it takes the image of a set or 

number line and changes a trait or characteristic in a uniform manner, such as multiplying 

each element by a constant, it may change the geometry of its image, or the identity of the 

set, instead of staying within the boundaries of the set or dimension.     

 

To help clarify the distinction between a mathematical mirror and multiplier, an example 

may be used of a reflecting telescope, which returns an image or a reflection of an object 

that is upside down and greatly magnified.   

 

Where the typical multiplier registers the magnification of a reflecting telescope by using 

a constant, the upside down image is typically unaccounted for.  While a negative number 

or some other type of multiplier may be able to represent the change in geometry, some 

explanation is usually required, or given in context.     

 

In other words, a mathematical mirror may change or alter the geometry of its image or 

reflection to where some explanation is needed beyond the use of a negative number to 

represent a change in direction or a reverse element.      

 

While most mirrors are designed to return an accurate image or reflection of an object, or 

to magnify it, other mirrors may be designed at a quantum level to interact with a wave of 

light, such as converting it into electricity using a photovoltaic cell, or scattering it with an 

invisibility cloak.    

 

In other words, a quantum mirror may involve the design of materials that are shaped or 

interact with individual rays of light, to either absorb or scatter a ray, so that the mirror no 

longer returns an accurate image or reflection, but instead converts the wave into a different 

form of energy or scatters it.     
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Military aircraft are often shaped to scatter radar, which is another type of electromagnetic 

wave but longer in wavelength.  A stealth aircraft usually has its wings, fuselage, and 

engines shaped to minimize its reflection seen by radar, especially from its front or side, 

and may minimize or scatter the emission of heat from its jet engines, and may be shaped 

to its visibility in daylight.   

 

The idea of a mathematical mirror is also employed in cryptography or codes, which are 

used to disguise sensitive communications.  Several images or reflections of a document 

may be involved in its coding and decoding.   

 

Going back to a Cartesian coordinate system, two lines in a plane may be viewed as 

geometrically independent if they intersect at a ninety degree angle, or project upon each 

other as a point or edge, where an edge represents a line segment of minimum length, 

analogous to a point.    

   

Where a line is edge on if there is no shadow from the projection of one line upon the other, 

a shadow represents a linear projection of one line upon the other, which produces a line 

or a line segment rather than a point or edge.    

 

With this in mind, the condition of two lines that are geometrically independent may be 

seen as the opposite condition of two lines that are geometrically dependent, or parallel to 

each other, so that the shadow of one line upon the other preserves the length of a linear 

projection from one line to the other.   

 

From another perspective, parallel lines reflect each other at an equal distance in a plane, 

or have a full shadow.  If they intersect, then they are superimposed upon each other, as a 

condition of maintaining an equal distance between them, where the distance between them 

has a value of zero.   

 

While mathematics seems to imply that multipliers and functions have the ability to 

compress information from one line onto a shorter line with no loss of data, as a practical 

matter, information may become lost if the projection employs a steep angle or uses a high 

rate of data compression.   

 

On the other hand, interpolations and extrapolations using standard functions, such as a 

linear or quadratic equation, or difference equations are often highly successful in filling 

in missing or incomplete data, and interpreting results.     

 

From another perspective, a projection may involve a rate of flow that is superimposed 

upon another dimension, like a wave passing through a medium or a body at a steady rate 

of flow like an ocean current such as the Gulf Stream, or a jet stream that moves through 

the atmosphere.    
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With this in mind, if the flow or passage of time is viewed as a rate of flow from another 

dimension, which is apparently non-spatial, its flow or passage through space at a steady 

rate and consistent manner would explain why an observer seems trapped in its flow, 

unable to enter the past or future.    

 

In other words, if time is viewed as a rate of flow that passes through space, its point of 

intersection in space occurs in the present, or at a point that represents the present, rather 

than the past or future.     

 

Linear Geometry 

 

Where time is sometimes thought of as another dimension that is added to a spatial 

coordinate system, physics has worked out a relationship between space and time called 

the Lorentz transformation that determines the passage of time for a moving observer 

compared to a stationary observer.   

 

In other words, while the flow or passage of time may be viewed as a universal constant, 

since it displays traits or characteristics that are consistent or are uniform across space, its 

value at a particular location depends upon the motion of its location, or the motion of a 

moving observer compared to a stationary observer.      

 

Unlike the dimensions of space, the observation of time is dependent upon the motion of 

its location, or the speed or rate of motion of a moving observer compared to a stationary 

observer, who is at rest compared to the moving observer.   

 

In other words, a moving observer experiences a difference in the flow or passage of time 

compared to a stationary observer, who lies outside the moving observer’s local condition 

of motion, or his frame of reference, which may be computed by using the Lorentz 

transformation.   

 

The Lorentz transformation determines the local time that is experienced by a moving 

observer compared to a stationary observer by multiplying the local time of a stationary 

observer by two factors.   

 

The first factor, called the Lorentz factor, is the reciprocal of the square root of one less the 

ratio of the velocity of the moving observer squared to the speed of light squared.  It is 

generally small or negligible unless the moving observer is moving at a speed that is 

relativistic, or an appreciable fraction of the speed of light, much faster than by using 

automobiles or jet aircraft.   
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The second factor, which is multiplied by the Lorentz factor, is the time of the stationary 

observer from which is subtracted the ratio of the moving observer’s velocity multiplied 

by the distance traveled to the speed of light squared.   

 

Algebraically, the Lorentz transformation is 1/ √ (1- v2/c2) multiplied by (t – vx /c2), where 

v is the velocity of the traveler, c is the speed of light, t is the time of the stationary observer, 

and x is the distance traveled by the moving observer.   

 

When v is small compared to the speed of light or c, the Lorentz transformation gives only 

a small adjustment.  But as v approaches the speed of light, the transformation starts to 

show the effect of time dilation, where the local time of the moving observer appears to 

slow down with respect to the stationary observer.   

 

For example, consider a moving observer traveling at a velocity of 0.9 c in a straight line 

for a year, who travels a distance of 0.9 light years during the course of the year.    

 

Plugging in values, the local time of the moving observer is: 

 

1/ √ (1 – (0.9 c)2/c2) x (1 year – 0.9 c x 0.9 light years /c2) =  

 

1/ √ (1 – (0.9)2 c2/c2) x (1 year – 0.9 c x 0.9 light years /c x c) =  

 

1/ √ (1 – (0.81)) x (1 year – 0.9 x 0.9 light years /c (1 light year per year)) =  

   

1/ √ 0.19 x (1 year – 0.81 light years/ 1 light year / 1 year) =  

 

1/ 0.44 x (1 year – 0.81 years) =  

 

2.29 x (0.19 years) =  

 

0.44 years 

 

In other words, for a moving observer who approaches the speed of light, the effect of time 

dilation is noticeable, and when he reaches the speed of light, time appears to come to a 

standstill, or reaches a point of equilibrium since it is no longer running forward.   

 

When the moving observer moves faster than the speed of light, time appears to run 

backwards.  In other words, a moving observer traveling faster than the speed of light 

outruns the flow of time experienced by a stationary observer.   
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Mathematically, time that moves into the past takes the form of an imaginary number.  An 

imaginary number is a real number multiplied by the square root of negative one, and is 

commonly denoted as i.      

 

For example, consider a moving observer traveling at 10 c for a year, who travels in a 

straight line.  Plugging in values, the local time of the moving observer becomes: 

 

1/ √ (1 – (10 c)2/c2) x (1 year – 10 c x 10 light years /c2) =  

 

1/ √ (1 – (100 c2/c2) x (1 year – 10 c x 10 light years /c x c) =  

 

1/ √ (1 – 100) x (1 year – 100 light years /c (1 light year per year)) =  

   

1/ (√-1 x √99) x (1 year – 100 years) =  

 

(1/i x 1/√99) x (-99 years) =  

 

-i x 1/ 9.95 x (-99 years) =  

 

i x 1/ 9.95 x (99 years) =  

 

i 9.95 years 

 

So, while a fast moving observer travels back in time, there is a limit on the length of time 

he travels back, since he does not observe his point of departure.  He never runs fast enough 

to observe his point of departure, at least by using light, which propagates at the speed of 

light.    

 

In other words, a fast moving observer who travels faster than the speed of light travels 

back in time, but no further than the time of his departure, while reaching a point in space 

that is far from his point of departure.   

 

As a result, for this linear geometry of a fast moving observer, the popular notion of time 

travel is not accomplished.  Since the fast moving observer does not travel back in time at 

the same location, but trades distance for time, the popular idea of time travel requires a 

different geometry.   

 

For this case of a moving observer who travels in a straight line, the algebra of the Lorentz 

transformation simplifies to t x √ (1 – v2/c2), where v is the velocity or speed of the moving 

observer, c is the speed of light, and t is the time of the stationary observer.  In other words, 

a linear geometry of speed gives a simpler expression for a moving observer’s local time.   
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The Elements of One   

 

Since, for a moving observer travels faster than the speed of light the Lorentz 

transformation for time results in a number multiplied by the square root of negative one, 

or an imaginary number, it may be helpful to recall how i is a derivative of negative one 

that, along with one and negative i, forms a group of four elements that is closed under 

multiplication.   

 

A derivative of an element uses an operation of arithmetic to alter its sense or location on 

a number line while retaining its absolute value or magnitude just as negative one has the 

same absolute value of one but lies on the opposite side of a number line with zero as a 

point of origin.    

 

A group is a set of mathematical elements that uses an operation such as addition or 

multiplication to compute or specify another element of the set.  A group is considered to 

be closed under an operation when the result of the operation always returns or computes 

an element that is a member of the set.    

 

The proposition that the set consisting of 1, -1, i, and -i forms a group under multiplication 

is supported by the following table, which shows the multiplication of each element of the 

set by the elements of the set.     

 

Multiplication Table 

 

1  -1  i  -i 

 

1 x 1 = 1 -1 x 1 = -1 i x 1 = i -i x 1 = -i  

1 x -1 = -1 -1 x -1 = 1 i x -1 = -i  -i x -1 = i 

1 x i = i -1 x i = -i i x i = -1 -i x i = 1 

1 x -i = -i   -1 x -i = i i x -i = 1  -i x -i = -1 

 

Since the operation of multiplication may be applied to all the elements of the set, and its 

product is another element of the set, which does not default to a single element, as in the 

case of multiplication by zero, the set forms a group that is closed under the operation of 

multiplication.   

 

The proposition that the set consisting of 1, -1, i, and -i forms a group under multiplication 

extends to the operation of division, which is the reverse of multiplication.  The proposition 

is supported by the following table, which shows the division of each element of the set by 

all the elements of the set.   
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Division Table 

 

1  -1  i  -i 

 

1 / 1= 1 -1/ 1 = -1 i/ 1 = i  -i/ 1 = -i 

1/ -1 = -1 -1/ -1= 1 i/ -1 = -i -i/ -1 = i  

1/ i = -i  -1/ i = i  i/ i = 1  -i/ i = -1 

1/ -i = i  -1/ -i = -i i / -i = -1  -i/ -i = 1 

 

In summary, the tables show that the set consisting of one and its three derivatives is closed 

under both operations of multiplication and division, and that one is the identity element, 

just as one is the identity element for the set of real numbers under the operations of 

multiplication and division.    

 

While i is defined as the square root of negative one, i may also be viewed as that element 

when multiplied by itself or squared results in the product of negative one, when no element 

from the set of real numbers multiplied by itself or squared results in the product of a 

negative number.    

 

With this in mind, i may be viewed as the key multiplier or mirror element, which generates 

the set of imaginary numbers as a reflection or a mirror image of the set of real numbers 

by multiplying a real number with itself.  The linear combination of a real and imaginary 

number is called a complex number.  A Cartesian coordinate system represents a complex 

number by using one line of axis to represent the set of real numbers and the other line of 

axis to represent the set of imaginary numbers.     

 

Imaginary numbers are encountered in solving problems that involve the square root of a 

negative number, which effectively reduces to taking the square root of negative one as a 

multiplier of a real number.    

 

In contrast to square roots, which are often encountered in solving quadratic equations and 

inverse square relationships, cube roots occur less frequently, and do not require i since the 

cube root of a negative number is a negative number just as the cube root of negative one 

is negative one.   

 

In other words, (-1)1/3 = -1 since (-1)3 = -1 x -1 x -1 = (-1 x -1) x -1 = 1 x -1 = -1.   

 

From another point of view, where a magnetic compass uses North, South, East, and West 

to describe directions on a globe or map, a mathematical compass uses1, -1, i, and -i to 

describe the sets of real and imaginary numbers, where the negative sign indicates a reverse 

direction within a set or number line.   
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From another perspective, a physicist would see i as the elementary particle that results 

from splitting apart negative one into two equal parts or components in taking its square 

root, the reverse process of multiplying a number by itself or squaring it, or a process 

similar to splitting an atomic nucleus.    

 

From another point of view, where negative one represents the opposite of one as an 

element that is equal in value but opposite in sense or direction, lying on the opposite side 

of a number line, i represents an element that is the opposite of itself, which is not found 

on a number line based on the set of integers or real numbers.   

 

In a sense, i comes from a number line that generates a negative number using 

multiplication, or splits a negative number into two equal parts under division like a dark 

mirror, whose reflection subdivides an element into two equal parts.     

 

In contrast, the square root of one is one.  The square root does not split it apart.  The 

difference in square roots between one and negative one is due to how the negative sign 

changes the sense or direction of a number on a number line, rather than changing its 

absolute value or magnitude.   

 

This may suggest that i could be viewed as the square root of the negative sign.  In other 

words, i subdivides the negative sign into an intermediate value that enables it to change 

the sense or direction of a number halfway, instead of moving it all the way to the other 

side of a number line with zero as a point of origin.        

 

To generate one using the imaginary numbers and multiplication, i and -i may be multiplied 

together from a number line consisting of positive and negative multiples of i.  One may 

also be obtained by multiplying i by itself two times to obtain -1 and -1, and multiplying -

1 by -1 in a double reverse of a dark mirror.      

 

To recount, where multiplying a number by negative one gives a number that is the opposite 

of it, like a reflection on the opposite side of a number line, multiplication by i subdivides 

a number into the opposite of itself.   

 

The idea that i is obtained by splitting apart negative one into two equal parts, which are 

the opposite of themselves, makes it a key element of mathematics like the first counting 

or natural number of one.  This is supported by the following table.    

 

Powers of i  

 

i 1 = i 

i 2 = i x i = -1 

i 3 = i x i x i = (i x i) x i = -1 x i = -i 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.2, pp.38-95, July 2020 

       Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                     Online ISSN: 2053-2210 (Online) 

50 

 

i 4 = i x i x i x i = (i x i) x (i x i)  = -1 x -1 = 1 

 

When these four elements are added together, their sum is a sum of two zeroes, or zero, so 

that zero represents the center of the four points of a mathematical compass of sets that 

consists of the real and imaginary numbers.  In other words, i can generate the set of i, -1, 

-i, and 1 using the operation of multiplication, and it can generate zero by adding the 

elements of the set.    

 

Regarding the splitting apart of negative one under multiplication, it may be observed that 

i-1 = -i, and -1/i = -1 x i-1 = i, while -1-1 = -1 and -1/-1 = 1, making i appears as an 

intermediate value, lying between one and negative one, under both the operations of 

multiplication and division.   

   

The Flow of Time   

 

Where the coordinates of space are viewed as being fixed with respect to a point of origin 

that is found in space, the coordinates of time appear to flow in a single direction and at a 

uniform rate through the boundaries of space.   

 

In other words, where a spatial coordinate system measures distance with respect to a point 

of origin that is fixed in space, the coordinates of time flow past a point in space in a single 

direction and at a uniform rate.  This flow of time represents a consistent trait or 

characteristic from another dimension, which apparently lies outside the boundaries of a 

spatial coordinate system.      

 

In other words, since the coordinates of time flow in a single direction and at a uniform 

rate, a stationary observer perceives a steady flow of time, like a flowing river, which is 

consistent across space.      

 

The idea that the coordinates of time flow in a single direction and at a uniform rate is 

commonplace.  For example, the calendar organizes the flow of time in a single direction 

and at a uniform rate as it counts the months and days to match how the Earth orbits the 

Sun on a consistent basis, defined by the laws of gravity.     

 

While the calendar has been revised in history to use more accurate methods of 

astronomical time keeping, it has been used for thousands of years to count or measure the 

flow of time in a single direction and at a uniform rate.   

 

As an aside, a calendar month is based on the lunar month, which is the time it takes the 

Moon to orbit the Earth in twenty-eight days.  But since the calendar year, which is based 

on the Earth’s orbit around the Sun, does not divide evenly into lunar months that consist 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.2, pp.38-95, July 2020 

       Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                     Online ISSN: 2053-2210 (Online) 

51 

 

of twenty-eight days, the calendar month usually includes additional days, making it longer 

on average than the lunar month.    

 

Like the calendar year, the lunar month illustrates how the flow of time is measured 

indirectly by using the consistent motion of an object like the Moon, whose orbit around 

the Earth is repeated on a consistent basis.    

 

Another example of the flow of time in a single direction and at a uniform rate is given by 

the hands on the face of a clock, which organize the flow of time in a single direction and 

at a uniform rate as they count the hours in the day, to match how the Earth rotates about 

its axis in a twenty-four hour day on a consistent basis.   

 

As illustrated by the clock, lunar month, and calendar year, time flows in a single direction 

and at a uniform rate, measured in terms of distance by the motion of an object, which is 

repeated on a consistent basis.   

 

In other words, time may be viewed as flowing through space in a linear manner, as 

represented by its flow in a single direction and at a uniform rate.  While the flow of time 

is often measured by using a circular motion which is repeated on a consistent basis such 

as the orbit of a planet, a circular motion may be viewed as essentially linear in nature since 

it flows in a single direction and at a uniform rate.   

 

This similarity between a linear and circular motion, in flowing in a single direction and at 

a uniform rate, is similar to how a polar coordinate system may be used to describe the 

location of a point like a Cartesian coordinate system.   

 

Moreover, time flows in a single direction like a one way street rather than a two way 

highway.  Time flows past a point in space similar to how a pencil and straightedge are 

used to draw a line between two points, where the pencil moves in a single direction along 

the straightedge.      

 

In other words, time flows through space with geometric efficiency along a line rather than 

meandering, or twisting and turning, or doubling back upon itself like the Colorado River 

flowing through the Grand Canyon.   

 

Since time flows through space in a linear manner, it may be viewed as representing the 

projection of a four dimensional coordinate system into the three dimensions of space.  In 

other words, the flow of time may be depicted as a line moving past a point in space, just 

as how a line in two dimensions may project past a point along a line, or in one dimension, 

from any direction.   
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Moreover, the flow of time may appear from any direction since it flows through space 

from outside its boundaries.  In other words, the flow of time is essentially non-spatial as 

its flow is not apparent from within a spatial coordinate system, which views only a single 

point in time across its boundaries.    

 

From another point of view, time is like a clothes closet, with a pole going across at the top 

from which clothes are hung in order.  But instead of clothes, boxes of space are hung in 

chronological order, which display the activity in a region or volume of space for a given 

moment or interval of time.   

 

Instead of picking out a dress or shirt, an observer picks out the hanger for a box of space 

to observe the activity within it for a given moment, using its chronological order to view 

past events, although space and time curve around large concentrations of mass such as 

stars and black holes.    

 

The flow of time through space provides a means by which mass and energy are able to 

change their composition and move through space.  Moreover, the flow of time through 

space may viewed as being consistent across its expanse, flowing in a single direction from 

the future, and at a uniform rate, just as the laws of physics are viewed as being consistent 

across space.   

 

While the flow of time is consistent across space, variations in its flow may occur due to 

local conditions such as the presence of a black hole, or an object moving faster than the 

speed of light, or other conditions that lie outside the general parameters of space, as 

defined by the speed of light and gravity.   

 

Moreover, time always flows from the future.  In order to occupy the present, time flows 

from the future as it flows past a point in space, and enters the past.  In other words, time 

flows in an opposite direction compared to a timeline, which gives a chronological ordering 

of past events.   

 

Rate of Flow – Quantum Argument 

 

Since the flow of time may be viewed as a linear projection of another dimension into space, 

where both time and space measure distance in terms of displacement along a line, the flow 

of time may be measured in terms of its displacement along a line, or a linear rate of motion 

where distance is divided by time.     

 

In other words, the flow of time in a single direction and at a uniform rate may be measured 

like any other motion where distance is divided by time.  However, its units of distance, 

while consistent with a spatial coordinate system, represent a displacement in the 

dimension of time.   



International Journal of Mathematics and Statistics Studies 

Vol.8, No.2, pp.38-95, July 2020 

       Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                     Online ISSN: 2053-2210 (Online) 

53 

 

 

With this in mind, velocity, speed, or rate of motion, as described in a spatial coordinate 

system, may be defined by using two equations.   

 

First, velocity, speed, or rate of motion as observed in a spatial coordinate system equals 

distance divided by time.  This calculation may include an indication of direction, using a 

positive or negative sign.   

 

Second, time equals distance or displacement in the dimension of time, divided by time.  

In other words, time may be defined in terms of a distance or displacement along a line that 

measures time in terms of distance.   

 

Combining these two equations, velocity, speed, or rate of motion equals distance in space 

divided by distance in the dimension of time, where the units of time cancel each other out.   

 

However, the units of distance found in the numerator of the equation represent a distance 

or displacement in space, while the units of distance found in the denominator represent a 

distance or displacement in the dimension of time.   

 

Moreover, the units of distance in denominator, which represent the dimension of time, 

flow through space at a rate that is invisible with respect to a stationary observer since time 

flows from outside the boundaries of space.   

 

In other words, a spatial coordinate system views the passage of time at a single point 

across its expanse.  As a result, a spatial coordinate system observes the flow of time by 

quantizing it into an element of time, which represents a linear rate of motion in the 

dimension of time.    

 

In other words, the flow of time through space represents a unit of distance in the dimension 

of time, which is quantized into time instead of being expressed as a distance since the flow 

of time through space is invisible, appearing only as a point, and its flow may appear from 

any direction.     

 

While a second or any other unit of time may be replaced with a unit of distance in the 

dimension of time to determine the rate of motion, speed, or velocity of a moving object in 

space, the flow of time is observed only at a point, rather than a distance or displacement 

in the dimension of time.   

  

In other words, since the flow of time through space is invisible, as it comes from outside 

the boundaries of space, and its flow may appear from any direction, its quantization into 

an element of time is a practical necessity.    
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Moreover, a displacement in the dimension of time may translate from any type of motion 

in space, whether linear, circular, or elliptical.  For example, the orbit of the Earth around 

the Sun, which is repeated on a consistent basis and is commonly used to measure time, 

translates into a linear displacement in the dimension of time.    

 

A clue to the rate of flow of time is suggested by how time is commonly measured by using 

the Earth’s orbit around the Sun, and the Earth’s rotation about its axis, or motions that are 

repeated on a consistent basis, and astronomical in scale.    

 

In other words, since time is commonly observed by using the Earth’s orbit and rotation 

about its axis, which involve long distances, it may be suggested that time flows at a high 

rate of speed, so that it quickly travels over long distances.  This makes it practical to 

quantize its rate of flow into units of time rather than a distance.      

 

In other words, the flow of time is quantized into units of time as a matter of practical 

convenience, instead of requiring the observation of the distance that a moving object 

travels in the dimension of time.   

 

For example, consider a car traveling down a street at a speed of 60 miles per hour or “a 

mile a minute,” which is considered a high rate of speed in everyday life, and equivalent 

to a speed of about 88 feet per second.   

 

If time flows at a high rate of speed like the speed of light, the speed of the moving car at 

88 feet per second compared to the rate of flow of time at 186,000 miles per second in the 

dimension of time, further divided by 5,280 feet per mile, makes the car’s relative 

displacement in time difficult to observe.     

 

In other words, the quantization of a distance or displacement in the dimension of time into 

time is a practical necessity in determining the motion of a moving object in space since it 

is difficult to directly observe the distance or displacement in the dimension of time of a 

moving object in space.      

 

The difficulty of directly observing the flow of time in space is due to how time flows 

through space to where it is observed at a single point, rather than a span of time, the flow 

of time may appear from any direction with respect to a point in space, and the flow of time 

at a high rate of speed.   

 

The idea that time flows at a high rate of speed, which is the speed of light, is confirmed 

by the Lorentz transformation.   
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For example, as a moving object approaches the speed of light, the Lorentz transformation 

shows that time seems to slow down, or dilate, so that the flow of time through space 

appears to reach a limit at the speed of light.   

 

As a moving object reaches the speed of light, the flow of time appears to become frozen, 

where its rate of flow reaches a point of equilibrium compared to the speed of the moving 

object.  This point of equilibrium strongly suggests how time flows at a rate equal to the 

speed of light.    

 

Finally, as the speed of the moving object exceeds the speed of light, time appears to run 

backwards, a condition indicated by the presence of imaginary numbers used to describe 

its flow.  A moving object that travels faster than the speed of light appears to outrun the 

flow of time through space.  (Hughes, “The Accelerated Wave”).    

 

From another point of view, since a moving object in space seems to approach the rate of 

flow of time through space as its speed approaches the speed of light, it may be deduced 

that time flows at the speed of light.   

 

The flow of time at the speed of light would explain how time is commonly measured 

indirectly, by using motions, such as the Earth’s orbit around the Sun or its rotation about 

its axis that are repeated on a consistent basis, instead of direct observation within the 

dimension of time.    

 

 

Rate of Flow – Indirect Observation 

 

Since time flows from outside the boundaries of a spatial coordinate system, and may 

appear from any direction, its rate of flow is measured indirectly by observing the motion 

of an object, which is repeated on a consistent basis.   

 

In other words, the consistent or repetitive motion of an object, which is commonly used 

to measure time, resembles the flow of time since its motion occurs in a single direction 

and at a uniform rate.  Moreover, its rate of motion may provide a way to evaluate an 

estimate of the rate of flow of time.   

 

With this in mind, the Earth’s orbit around the Sun, which defines the calendar year, and 

the Earth’s rotation about its axis, which defines the twenty-four day, give two examples 

of a moving object whose motion may be used to evaluate an estimate of the rate of flow 

of time through space.      
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In other words, since the Earth’s orbit around the Sun and the Earth’s rotation about its axis 

are commonly used to measure time, they provide a natural baseline for evaluating an 

estimate of its rate of flow.   

 

This evaluation may be performed by using a ratio, which compares the motion of the 

Earth’s orbit or rotation about its axis to the estimated rate of flow of time, by placing the 

rate of motion of the Earth’s orbit or rotation in the numerator, and the estimated rate of 

flow of time in the denominator.    

 

This ratio places the rate of motion of the Earth’s orbit or rotation in the numerator, and 

the estimated rate of flow of time in the denominator since the flow of time may be seen 

as a benchmark or point of reference, while the motion of the Earth is local.   

 

In other words, in using a ratio to compare two quantities, a local or specific value is 

generally placed in the numerator, while a benchmark or point of reference is generally 

placed in the denominator.   

 

Analytically speaking, it may be expected that rate of flow of time should be faster than 

the motion of an object, which is commonly used to measure time, since the flow of time 

may be viewed as a benchmark or point of reference.   

 

In other words, for the flow of time to be stable compared to the Earth’s orbit or rotation, 

time must flow at a high rate of speed.   Otherwise, the ratio will show the measurement of 

time changes markedly for small differences in the motion of an object, which is commonly 

used to measure it.    

 

In other words, using a low estimate for the rate of flow of time is appropriate for when its 

flow is viewed as a component of the motion of an object rather than a benchmark or 

reference point.    

 

From a geometrical point of view, if the flow of time is like a smooth plane moving through 

space, a high rate of flow will make its flow appear to be stable compared to the motion of 

objects, which are commonly used to measure it.  But a low rate of flow will make the 

motion of objects, which are commonly used to measure time, appear as tall mountains, 

making its flow appear inconsistent.   

 

From another point of view, the ratio that compares the motion of an object, which is 

commonly used to measure time, to its estimated rate of flow has an interpretation that is 

similar to a coefficient of correlation, which is used in statistics to identify a cause and 

effect relationship.     
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Viewing this ratio like a coefficient of correlation, a ratio of one implies a cause and effect 

relationship, where the flow of time depends directly upon the moving object that is chosen 

for its measurement, making the flow of time dependent upon local circumstances.   

 

On the other hand, a ratio that is a tiny fraction implies that the flow of time is largely 

independent of the moving object that is chosen for its measurement, making the flow of 

time appear to be stable or consistent across space, or as a common benchmark or point of 

reference.   

 

From another point of view, since the Earth’s orbit and rotation about its axis provide an 

adequate baseline of motion or distance to measure the flow of time, it may be expected 

that time flows faster than either motion.  In other words, since the measurement of time 

using the distance that the Earth travels as it orbits the Sun or rotates about its axis are 

viewed as stable measurements of time, it may be expected that time flows faster than either 

motion.   

 

While a comparison of the Earth’s orbit around the Sun and its rotation to the flow of time 

involve rates of motion, the comparison may also use distance since the flow of time may 

be measured in terms of the distance that time travels during the same period or cycle of 

motion.   

 

Evaluating the rate of flow of time may help identify the type of energy that drives its flow 

through space.  In other words, the flow of time through space implies the existence a type 

of energy that drives its flow through space instead of a moving object or electromagnetic 

wave.   

 

Using the Earth’s orbit around the Sun, a ratio of comparison based on distance would 

compare the distance that the Earth travels as it orbits the Sun in a year to an estimate of 

the distance that time travels in the same period of a year.   

 

Since the Earth orbits the Sun at a distance from about 147 to 152 million kilometers, or 

about 93 million miles, and its orbit is nearly circular, the distance that the Earth travels 

during its orbit is roughly equal to the circumference of a circle, calculated by multiplying 

the radius of its orbit by 2π.    

 

Using a midpoint value for the radius of the Earth’s orbit of 149.5 million kilometers, or 

about 93 million miles, and multiplying this value by 2π, or 6.28, results in a distance that 

the Earth travels in its orbit of about 939 million kilometers, or 584 million miles.  The 

ratio would compare this distance to the estimated distance that time travels in the same 

period of a year.   
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Likewise, using the Earth’s rotation about its axis, a ratio based on distance would compare 

the distance that the Earth rotates during a day to an estimate of the distance that time 

travels in the same period of a day.   

 

Since the Earth has a diameter of about 12,756 kilometers, or 7,918 miles, the distance it 

rotates over during a day is its circumference, calculated by multiplying its diameter by π, 

or 3.14.  This gives a distance traveled of about 40,054 kilometers, or 24,863 miles.  The 

ratio of comparison would then compare this distance to the estimated distance that time 

travels in the same period.   

 

To compare the two ratios for the same period of a year, the distance that the Earth rotates 

in a day may be multiplied by 365 days in a year.  Multiplying 40,054 kilometers, or 24,863 

miles per day by 365 days per year gives a distance traveled of about 14.62 million 

kilometers, or 9.07 million miles per year.    

 

The ratio may be completed by making an assumption about the rate of flow of time.  Two 

assumptions will be evaluated.  One assumption will use a low rate of flow.  The other 

assumption will use a high rate of flow.     

 

To calculate the ratio when time is assumed to flow at a low rate of speed, its flow may be 

estimated to be one kilometer per year, a value chosen for convenience of calculation.   

Using this estimate of 1 kilometer per year for the flow of time, the ratio using the Earth’s 

orbit around the Sun in the numerator is 939 million kilometers per year divided by 1 

kilometer per year, or a value of 939 million.   

 

Likewise, using an estimate of 1 kilometer per year for the flow of time, the ratio of 

comparison using the Earth’s rotation about its axis in the numerator is 14.62 million 

kilometers per year divided by 1 kilometer per year, or a value of 14.62 million.   

 

While these two ratios of 939 million and 14.62 million are somewhat similar in terms of 

their order of magnitude, their wide arithmetic difference of about 924 million shows that 

the measurement of time is greatly affected, many times over, by the moving object that is 

chosen for its measurement.   

 

In other words, when 939 million and 14.62 million are compared to the flow of time at a 

rate of one kilometer per year, these ratios appear as very tall mountains, making the flow 

of time highly dependent upon the moving object chosen for its measurement.    

 

On the other hand, time may be assumed to flow at a high rate of speed.  To emphasize the 

contrast between using a low and high rate of flow, the estimate of a high rate of flow may 

use the highest rate of speed observed in nature, which is the speed of light, so the ratio is 

constructed at its limit.    
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In other words, in assuming that time flows at a high rate of speed, it is reasonable to 

assume that it flows at the highest speed observed in nature, which is the speed of light, or 

299,792 kilometers per second, or 186,000 miles per second so that the ratio of comparison 

is constructed at a natural limit.   

 

While time could be assumed to flow faster than the speed of light, the assumption that 

time flows at the speed of light marks a high end estimate, consistent with the highest speed 

that is observed in nature.   

 

In other words, if time flows faster than the speed of light, some explanation would needed 

for why it flows faster than the speed of light since light is assumed to propagate freely 

through space.   

 

In other words, since space is considered to be a void or vacuum, which does not resist the 

propagation of light and other electromagnetic waves, time may be viewed as flowing 

through space at the same rate of speed as light and other electromagnetic waves, which 

propagate freely through space.     

 

Assuming that time flows at the speed of light results in a distance traveled by the flow of 

time in a year of one light year, which is a distance of 9.46 trillion kilometers, or nearly 6 

trillion miles.    

 

Using this estimate of the distance traveled by the flow of time in a year, the ratio that is 

calculated using the Earth’s orbit around the Sun in the numerator is equal to 939 million 

kilometers divided by one light year or about 9.46 trillion kilometers, or 900 million 

divided by 9 trillion, or about 1 x 10-4 or 0.0001.    

 

Likewise, using this estimate for the distanced traveled by the flow of time in a year, the 

ratio that is calculated using the Earth’s rotation about its axis in the numerator is equal to 

14.62 million kilometers divided by one light year or about 9.46 trillion kilometers, or 

14.62 million divided by 9.46 trillion, or about 2 x 10-6 or 0.000002.     

 

While these values of 1 x 10-4 and 2 x 10-6 are also somewhat similar in terms of their order 

of magnitude, both are tiny fractions, showing that the flow of time through space is like a 

smooth plain instead of a tall mountain range.   

 

In other words, under the assumption that time flows at a high rate of speed, these ratios of 

comparison show the measurement of time through space is largely independent of the 

moving object chosen for its measurement.   
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In other words, when time is assumed to flow at the speed of light, the measurement of 

time appears as a point of stability compared to the motion of objects that are commonly 

used to measure it.   

 

In conclusion, the observation of the rate of flow of time by indirect motion strongly 

suggests that time flows through space at the speed of light, as the highest rate of speed 

that is observed in nature.    

  

Moreover, it may be argued that it is the flow of time at the speed of light that allows light 

to propagate through space at the speed of light.  Time must flow through space at a rate 

that is no less than the speed of light since it is the flow of time that makes room within 

space for light to propagate.   

 

From another point of view, the propagation of light at the speed of light requires time to 

flow at a rate that is no less than its speed of propagation since time is used as a basis for 

measuring the speed of light.  Time must flow at a rate that is no less than its basis of 

measurement.   

 

The rate of flow of time that is used to determine the speed of light must capture enough 

distance to let light propagate at the speed of light.  With this in mind, the propagation of 

light at the speed of light may be viewed as a mirror image, or a reflection of how time 

flows through space since it is the flow of time through space that allows speed to be 

determined.     

 

Since the flow of time at the speed of light is difficult to observe directly, it is measured 

indirectly by using the motion of an object, such as the Earth’s orbit around the Sun or its 

rotation about its axis, which is repeated on a consistent basis.   

 

Since time flows through space at the speed of light, its flow appears to be consistent, at 

least as measured by the motion of stars and planets, which move much more slowly than 

the speed of light.   

 

In other words, where a spatial coordinate system establishes its sense of stability by using 

a point of origin that is fixed in space, the flow of time through space establishes its sense 

of stability by flowing at the highest rate of speed that is observed in nature, or the speed 

of light.   

 

As a result, since the Earth moves so slowly compared to the speed of light, the flow of 

time appears to be stable and is easily measured by the consistent motion of the Earth’s 

orbit, which defines the calendar year, and the Earth’s rotation about its axis, which defines 

the twenty-four day.   
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This is one of reasons why before the early 20th century, with its advances such as the 

theory of relativity, scientists were able to think of time as being static in its rate of flow, a 

universal constant, instead of dependent upon its frame of reference.   

 

From another point of view, since time is measured indirectly by using the motion of an 

object, which is observed by using light or some other type of electromagnetic wave that 

travels at the speed of light, its rate of flow is measured by the speed of light.    

 

Since time flows at the speed of light, the time dilation effect for most moving objects will 

appear to be negligible for a stationary observer, letting its flow appear to be stable or 

invariant, except under conditions of special relativity.    

 

For example, the time dilation of a chemical rocket compared to the flow of time at the 

speed of light may be determined by using the Lorentz transformation, which applies to 

two moving frames of reference.    

 

A rocket launched into space will generally have a velocity of about 40,000 kilometers per 

hour, or 25,000 miles per hour, the Earth’s escape velocity.  To compare the rocket’s 

velocity to the speed of light, which is usually given as 300,000 kilometers per second or 

186,000 miles per second, the rocket’s velocity needs to be converted into kilometers or 

miles per second instead of kilometers or miles per hour.   

 

When the rocket’s speed of 40,000 kilometers or 25,000 miles per hour is divided by 60 

minutes per hour and 60 seconds per minute, its speed becomes 11 kilometers per second, 

or about 7 miles per second.    

 

Comparing the speed of the rocket, which is 11 kilometers per second or 7 miles per second, 

to the speed of light, which is 300,000 kilometers per second or 186,000 miles per second, 

results in a ratio of v/c that is less than 0.004 percent.   

 

Putting this small ratio of v/c into the equation of 1/ √ (1- v2/c2) multiplied by (t – vx /c2) 

gives a result that is negligible.  In other words, for these two moving frames of reference, 

the time dilation determined by the Lorentz transformation is negligible.       

 

Furthermore, the flow of time at the speed of light is suggested by the Lorentz 

Transformation itself, which adjusts the local time of an observer in relationship to the 

velocity of a traveler with respect to the speed of light.     

 

The Elements of Time  

 

As time flows through space, it creates a frame of reference that may be used to determine 

the speed or rate of motion of a moving observer in space and his displacement in time 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.2, pp.38-95, July 2020 

       Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                     Online ISSN: 2053-2210 (Online) 

62 

 

with respect to a stationary observer.  This frame of reference consists of the flow of time 

through space, the moving observer, and a stationary observer, who is at rest compared to 

the moving observer.   

 

Since the stationary observer is at rest compared to the moving observer, he views his 

motion against the background of viewing the flow of time through space at the speed of 

light.  In other words, the stationary observer views the moving observer in comparison to 

his view of the flow of time at the speed of light.    

 

Since the stationary observer views both the motion of the moving observer and the flow 

of time through space at the speed of light, he can determine his relative displacement in 

time by comparing his speed or rate of motion to his view of the flow of time through space 

by dividing his speed or rate of motion by the flow of time at the speed of light, which 

results in the familiar ratio of v/c.   

 

The ratio of v/c has a physical interpretation.  Since the stationary observer is at rest, the 

ratio allows him to view the moving observer catch up to the flow of time through space 

as he views both his motion with its resulting displacement in time, and the flow of time 

through space at the speed of light.     

 

In effect, the stationary observer is able to view the moving observer catch up to the flow 

of time since he possesses two lines of sight that view his relative displacement in time as 

described by the ratio of v/c.  These two lines of sight are based on their common view of 

the flow of time through space, and the stationary observer’s state of rest as compared to 

the moving observer.   

 

Since these lines of sight allow the stationary observer to view the moving observer’s 

relative displacement in time, it may be inferred that they intersect it at its endpoints or its 

top and bottom if the displacement is viewed as a vertical line.     

 

Geometrically speaking, an observer requires two lines of sight to view the length of a line, 

which intersect it at its endpoints.  Preferably, one of the lines of sight intersects the line at 

a right angle to simplify the calculation of its length by using the Pythagorean Theorem.    

 

This geometric interpretation of the moving observer’s relative displacement in time as a 

straight line instead of a curve is consistent with the construction of v and c as linear rates 

of motion in a spatial coordinate system that is flat, rather than curved, like a Cartesian 

coordinate system in three dimensions.     

 

Since the stationary and moving observer share an identical view of the flow of time, which 

flows through space in a consistent or uniform manner, regardless of the distance or motion 
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between them, their identical view of its flow gives the stationary observer a line of sight 

to the moving observer that intersects the tip of his displacement.   

 

In other words, since the stationary and moving observer share an identical view of the 

flow of time, a line connects them in the dimension of time, with each observer located at 

its endpoints, where the length of the line represents their identical view of the flow of time 

through space at the speed of light.     

 

In other words, since time flows through space in a consistent or uniform manner, a 

stationary and a moving observer have an identical view of its flow through space.  Their 

identical view of its flow through space may be represented by a line that connects them in 

the dimension of time, where the length of the line represents the rate of flow of time 

through space at the speed of light.   

 

More generally, since any two observers share an identical view of the flow of time through 

space, their identical view of its flow lets them be connected by a line of sight in the 

dimension of time, which represents its rate of flow at the speed of light.   

 

Since this line of sight represents the flow of time through space, the line may be defined 

to have a length of one by dividing how each observer views its rate of flow at the speed 

of light, by the flow of time through space at the speed of light.   

 

With this in mind, this line of sight between two observers that represents the flow of time 

through space is fixed or invariant in length, since time flows through space in a consistent 

or uniform manner.     

 

Using this line of sight, the stationary observer is able to view the moving observer catch 

up to the flow of time through space, since he views the moving observer at the tip or end 

point of his displacement in time as described by the ratio of v/c, while he maintains his 

view of the flow of time through space at the speed of light.   

 

In other words, this line of sight connects the stationary observer directly with the moving 

observer and his relative displacement in time, while he views the flow of time through 

space independently of the moving observer.      

 

Unlike a spatial coordinate system, where a line of sight represents a distance in space, a 

line of sight in the dimension of time represents a common observation of its rate of flow 

by two observers, making the dimension of time relative in terms of how two observers 

view its flow.     

 

This line of sight intersects the tip of the moving observer’s displacement in time since it 

represents his speed or rate of motion.  If the displacement is viewed as a vertical line that 
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lies parallel to a vertical line of axis that converts the moving observer’s speed or rate of 

motion into a displacement in time by using the ratio of v/c, then the line of sight intersects 

it at its top endpoint.    

 

From the perspective of the stationary observer, since this line of sight intersects the tip of 

the moving observer’s displacement in time, it intersects it an angle, compared to his other 

line of sight, which is based on his state of rest.  These two lines of sight form a plane in 

the dimension of time that measures their relative views of the flow of time through space.   

 

Since this first line of sight is fixed in length, the angle it forms with respect to the 

stationary observer shifts or changes in value, depending on the degree or magnitude of the 

moving observer’s displacement in time.   

 

In other words, for a slow moving observer with a small value of v/c, who has a small 

displacement in time, a stationary observer views his displacement at a small angle with 

respect to his state of rest compared to the moving observer.   

 

In contrast, for a fast moving observer with a large value of v/c, who has a large 

displacement in time, a stationary observer views his displacement at a large angle with 

respect to his state of rest compared to the moving observer.     

 

In other words, the size or magnitude of the moving observer’s displacement in time affects 

the stationary observer’s view of the angle of this line of sight to his displacement in time, 

since he views the angle with respect to his state or condition of rest compared to the 

moving observer.   

 

The stationary observer’s state of rest compared to the moving observer defines his second 

line of sight to the moving observer’s displacement in time, and the baseline by which he 

measures the angle of the first line of sight.   

 

Moreover, this second line of sight, which measures the state of rest between the two 

observers, is relative since it measures the degree of stability between them, as a measure 

of their state of rest, and is independent of the first line of sight, which represents the flow 

of time through space at the speed of light.    

 

While this second line of sight does not directly connect the stationary observer to the 

moving observer in the dimension of time, it connects him to a measurement of the state 

of rest between them, which varies in an opposite sense or direction, compared to their 

relative motion.   

 

With this in mind, this second line of sight, which measures the state of rest between the 

two observers, enables the stationary observer to view the start, or beginning point of the 
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moving observer’s displacement in time, since his motion and relative displacement in time 

start from a condition of rest.   

 

In other words, where the first line of sight intersects the tip or top of the moving observer’s 

displacement in time, this second line of sight intersects the start or beginning of the 

displacement at its opposite end, or its bottom if it is viewed as a vertical line.    

 

These two lines of sight enable the stationary observer to view the full length of the moving 

observer’s displacement in time, from top to bottom, from its tip to its start or beginning 

point.      

 

Since this second line of sight is based on the degree of rest between the stationary and 

moving observer, which represents the opposite condition of their relative motion and the 

moving observer’s displacement in time, it intersects it at a right angle.   

 

If the displacement is viewed as a vertical line, parallel to a vertical line of axis like the y 

axis in a Cartesian coordinate system, the first line of sight intersects it at its top, and the 

second line of sight intersects it at its bottom, along a horizontal line of axis like the x axis 

in a Cartesian coordinate system.   

 

The intersection between the second line of sight and the displacement in time forms a right 

angle, where the point of intersection measures the degree of rest between the two 

observers along the horizontal x axis.      

 

Using this second line of sight, the stationary observer is able to view the start or beginning 

of the moving observer’s displacement in time, while he maintains his view of the flow of 

time through space, which remains connected to the tip or top of the moving observer’s 

displacement in time.   

 

Since this second line of sight, which connects the stationary observer to the start or 

beginning point of the moving observer’s displacement in time, rather than his location in 

the dimension of time like the first line of sight, measures the state of rest between them, 

may be called a line of stability, which measures the degree of spatial stability between 

them as an equivalent statement of their state of rest.       

 

Since this line of stability measures the degree of stability between the two observers, it 

decreases in value or length with the degree or magnitude of their relative motion, which 

represents the opposite condition of their stability.    

 

In other words, a slow moving observer with a small value of v/c, who has a small 

displacement in time, has a high degree of stability with respect to a stationary observer in 

space, and so the line of stability between them is close to its ideal value or length.    
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In contrast, a fast moving observer with a large value of v/c, who has a large displacement 

in time, has a low degree of stability with respect to the stationary observer in space, and 

so the line of stability between them is noticeably shorter than its ideal value or length.      

 

The ideal value or length for the line of stability between two observers may be defined by 

a system of two stationary observers.  Since they are completely stable with respect to each 

other in space and have no motion between them, they represent a state of complete rest 

between themselves, or spatial equilibrium.     

 

For a system of two stationary observers, their line of stability attains its ideal value or 

length.  This ideal value may be defined as one, by using a process similar to defining the 

length of the line of sight between a stationary and moving observer, whose length 

represents the flow of time at the speed of light.   

 

In other words, since a system of two stationary observers represents an ideal system of 

stability between two observers, the value or measurement of its stability may be defined 

as one, to represent how the two observers are completely stable in space with respect to 

each other.    

 

The use of one, as the identity element of multiplication and first natural or counting 

number, may be used to represent a state of fullness or completeness, such as the spatial 

equilibrium between two stationary observers.   

 

In other words, as a counting number, one may be viewed as representing a value of 

wholeness or completeness, as in counting an object or element.  In contrast, the absence 

of stability between two observers may be represented mathematically by zero, which 

represents the absence of a value or element.   

 

From another perspective, since a system of two stationary observers represents a system 

of ideal stability, with its two observers in state of spatial equilibrium, they view the flow 

of time for each other in the same way that they view the flow of time through space at the 

speed of light.   

 

In other words, a system of two stationary observers represents an ideal system of spatial 

stability, which gives a perfect reflection, or has a mirror element of one, to describe how 

its two observers view the flow of time for each other, or internally, as compared to its rate 

of flow through space at the speed of light.   

 

With this in mind, a stationary observer views the start or beginning of the moving 

observer’s displacement in time as a change in the degree of spatial equilibrium within an 

ideal system of two stationary observers.   
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Since this line of stability is independent of the flow of time through space, as the relative 

motion or stability between two observers is independent of its flow through space, how a 

stationary and moving observer view the flow of time for each other is conserved with a 

value equal to its rate of flow at the speed of light, or their identical view of its flow through 

space at the speed of light.   

 

In other words, how two observers view the flow of time for each other is relative, since it 

is dependent on the degree of their relative motion, which affects their line of stability, and 

its total value is conserved with respect to the spatial equilibrium that is found between two 

stationary observers.    

 

In other words, how two observers view the flow of time for each other is related to the 

degree of spatial stability between them, which represents the opposite condition of their 

relative motion, and the moving observer’s displacement in time.   

 

In other words, as a moving observer creates a displacement in time, which is viewed by a 

stationary observer, his speed or rate of motion reduces or shortens the line of stability 

between them, and this reduction is conserved with respect to a system of two stationary 

observers who view the flow of time for each other at the same rate as its rate of flow 

through space at the speed of light.    

 

In other words, as a moving observer creates a displacement in time with respect to the 

stationary observer, it shortens or reduces the line of stability between them that measures 

the stability between them, since the moving observer converts some of the stability 

between them into relative motion.   

 

Since this reduction in the line of stability, which measures the degree of stability between 

the observers, is proportional to the displacement in time of the moving observer, it occurs 

at a right angle to the displacement since motion and stability represent opposite conditions.  

As a result, the Pythagorean Theorem may be applied to calculate the length of the line of 

stability.     

 

From another perspective, the stationary observer serves as a point of origin for viewing 

the moving observer’s displacement in time by using two lines of sight that intersect it at 

its top and bottom, where the displacement is viewed lying parallel to a vertical line of axis, 

like the side opposite of a right triangle.    

 

The first line of sight, which represents the identical view that the two observers share of 

the flow of time through space, intersects the displacement at its top, as the hypotenuse of 

a right triangle, while the second line of sight, or line of stability, intersects it at its bottom 

at a right angle, as the side adjacent of a right triangle.     
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The line of stability, which lies on a horizontal line of axis at a ninety degree angle to the 

moving observer’s displacement in time, intersects the displacement at a right angle since 

the stability between the two observers represents the opposite condition of the moving 

observer’s motion and displacement in time.      

 

To apply the Pythagorean Theorem, the stationary observer may take the moving 

observer’s displacement in time as represented by the ratio of v/c, square it, and add it to 

the square of the line of stability, which equals the square of the hypotenuse or first line of 

sight, which has a length of one to represent the flow of time through space at the speed of 

light.    

 

In other words, (v/c) 2 + (line of stability) 2 = 12      

 

Rearranging terms, and since 12 = 1, (line of stability) 2 = 1 – (v/c) 2    

 

Taking the square root of both sides, line of stability = √ ((1 – (v/c) 2) 

 

Applying the square of (v/c) 2 inside the parentheses results in 

 

Line of stability = √ (1 – v2/c2), or the Lorentz transformation.     

 

In other words, the line of stability gives the time dilation effect between a stationary and 

moving observer.   

 

The line of stability gives the time dilation effect since its point of intersection with the 

moving observer’s displacement in time forms a bridge between how the stationary and 

moving observer view the flow of time for each other, compared to its rate of flow through 

space at the speed of light.   

 

As a bridge, the point of intersection between the line of stability and moving observer’s 

displacement in time lets the stationary observer view the moving observer’s state of rest 

compared to his view of the flow of time through space, and it lets the moving observer 

view the stationary observer’s state of rest compared to his view of the flow of time through 

space.    

 

In other words, the line of stability lets the stationary observer and moving observer see 

how they each view the flow of time for the other in terms of their respective view of the 

flow of time through space, as an equivalent statement of the degree of rest or spatial 

stability between themselves.    
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In other words, the line of stability lets the moving observer see how the stationary observer 

views the flow of time, and it lets the moving observer see how the stationary observer 

views the flow of time.      

  

From another perspective, as a moving observer creates a displacement in time, the line of 

stability lets the stationary observer see how the moving observer experiences a slower 

flow of time in comparison to how he views the flow of time.  

 

And the line of stability lets the moving observer look back to his state of rest in comparison 

to the stationary observer, to see how he has left the stationary observer so far behind that 

time moves at a slower pace for him.     

 

Since the line of stability is shorter than the hypotenuse, the flow of time that is viewed by 

its endpoints, or by the two observers viewing their relative state of rest, is slower than the 

flow of time at the speed of light.     

 

In other words, as the moving observer catches up to the flow of time through space, the 

line of stability lets him see how his relative speed or rate of motion is letting him leave 

the stationary observer so far behind that he sees the flow of time for the stationary observer 

slow down in comparison to his own view of the flow of time.    

 

Likewise, the line of stability lets the stationary observer see how much slower the flow of 

time is the moving observer in comparison to his own state of rest, while he continues to 

view the flow of time through space at the speed of light.   

 

In other words, the stationary observer continues to view both the same flow of time that 

the moving observer continues to observe as time flows through space, even as he views 

the slower flow of time that is described by the line of stability, which compares their 

relative states of rest.      

 

With this in mind, a stationary observer only needs to multiply his view of the flow of time 

by the length of the line of stability, or √ (1 – v2/c2), to see how the moving observer views 

his state of rest, or is able to look back and see his relative state of rest in comparison to 

himself.     

 

Second Perspective   

 

To use a Cartesian coordinate system to describe how a stationary and moving observer 

view the flow of time through space and the moving observer’s displacement in time, the 

x axis may be used to depict the degree of stability between the two observers, while the y 

axis is used to depict the moving observer’s displacement in time.    
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Since the stationary observer serves as a point of reference for determining the moving 

observer’s displacement in time, he may be placed at the point of origin for the Cartesian 

coordinate system.  As a result, the stationary observer views the moving observer’s 

displacement in time as starting from a point on the x axis, where the displacement appears 

as a vertical line that is parallel to the y axis.   

 

The y axis may be used to depict the moving observer’s displacement in time since his 

motion and its resulting displacement represents the opposite condition of his state of rest 

or stability in comparison to the stationary observer.  A Cartesian coordinate system is 

often used to represent opposite conditions.   

 

With this in mind, the moving observer’s displacement in time may be measured at a right 

angle from the x axis, which measures the degree of rest or spatial stability between the 

two observers, or how they view the flow of time for each other compared to its rate of 

flow through space at the speed of light.    

 

How two observers view the flow of time for each other depends upon their degree of 

spatial stability since the flow of time through space, which flows at the speed of light, is 

itself a rate of motion.   

 

The stationary observer views the moving observer’s displacement in time like the side 

opposite of a right triangle, using two lines of sight that intersect its top and bottom just as 

how the hypotenuse and side adjacent intersect the side opposite.   

 

The first line of sight, which represents the hypotenuse of the triangle, represents the 

identical view that the two observers share of the flow of time through space at the speed 

of light.  This line of sight, which is fixed in length, connects the stationary observer with 

the top of the side opposite and it is from this position he views the moving observer catch 

up to the flow of time at the speed of light.   

 

The second line of sight, which represents the side adjacent of the right triangle and lies on 

the x axis, represents the degree of stability between the two observers, as the opposite 

condition of their relative motion.  Its length varies in an opposite sense compared to the 

moving observer’s displacement in time.   

 

This second line of sight connects the stationary observer to the bottom of the side opposite 

since it is from this position he views the moving observer’s state of rest or the degree of 

rest between them.     

 

Since this second line of sight represents the degree of stability between the two observers 

as the opposite condition of their relative motion, it represents how they view the flow of 

time for each other in comparison to its rate of flow through space at the speed of light.    
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In other words, this second line of sight represents how the stationary observer views the 

flow of time in comparison to the moving observer’s state of rest, while he is catching up 

to the flow of time.  As a result, this line of sight is shorter or represents a slower flow of 

time than its rate of flow through space at the speed of light.        

 

Likewise, this second line of sight represents how the moving observer views the stationary 

observer from his state of rest, being left behind, since he sees that time seems to slow 

down for the stationary observer while he still views the flow of time through space at the 

speed of light, using the hypotenuse.     

 

Since these two lines of sight are independent of each other, as the flow of time through 

space is independent of the relative motion and stability between the two observers, when 

both observers are stationary, their relative stability has value of one to represent a state of 

complete rest or spatial equilibrium between them.   

 

In other words, when both observers are stationary, the side adjacent has a length of one, 

while the side opposite, which represents the relative displacement in time of the moving 

observer, has a length of zero since he is actually stationary.   

 

In other words, when both observers are stationary, a one sided right triangle appears where 

these two lines of sight are superimposed upon each other with the same length.  In other 

words, two stationary observers view the flow of time for each other at the same rate as its 

rate of flow through space at the speed of light.    

 

But when motion appears, the stationary observer notices a change in how he views the 

flow of time for the moving observer, compared to the background of space, where time 

flows through space at the speed of light.        

 

In other words, time is conserved between how the stationary and moving observer view 

the flow of time for each other, compared to when they were both stationary or at a state 

of rest or spatial equilibrium.   

 

The motion of the moving observer changes how the stationary observer views the flow of 

time for him, just as it changes how the moving observer views the flow of time for the 

stationary observer.   

 

 

Third Perspective 

 

From another perspective, a stationary observer views the moving observer against the 

background of space as an independent point reference or origin.  This lets him view his 
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relative displacement in time by comparing it to the flow of time through space at the speed 

of light.   

 

Since a stationary and moving observer view the flow of time at the speed of light at the 

same point of its flow through space, their view of its flow identical.  More generally, any 

two observers share an identical view of the flow of time at the speed of light since time 

flows through space in a uniform or consistent manner.    

 

With this in mind, a diagram of a stationary and moving observer as two points in space 

may be used to illustrate their identical view of the flow of time through space by using a 

line to connect them, whose length represents their identical view of the rate of flow of 

time at the speed of light, rather than a timeline or chronology of past events, or a distance 

in space.   

 

In other words, a line may be used to represent the rate of flow that is viewed by its 

endpoints since the meaning of a line depends on the trait or characteristic that is depicted 

by its coordinate system.  Since time may be quantized into a rate of flow rather than a 

timeline or a chronology of past events, how two observers in space view the flow of time 

through space may be depicted by a line or line segment.   

 

Since a stationary and moving observer share an identical view of the flow of time through 

space, their view of its flow has a smooth gradient, which replicates or gives an exact image 

of its rate of flow through space at the speed of light.   

 

This smooth gradient means that dividing the length of the line between a stationary and 

moving observer, which represents their identical view of the flow of time through space 

by the speed of light, gives it a value of one, for representing their identical view of the 

flow of time at the speed of light.   

 

In other words, dividing the length of the line that describes how two observers view the 

flow of time through space at the speed of light by the speed of light gives it a unit value 

of one, so that the dimension of time may be described in terms of how two observers in 

space views its rate of flow.     

 

Moreover, a line in a plane or two dimensional Cartesian coordinate system may be 

described by using the linear equation of y = mx + b, where y is a variable that represents 

the value of a point (x, y) on the y axis, as determined by the value of x drawn from the x 

axis, m represents the slope of the line, and b is a constant that represents the point of 

intercept with the y axis.   

 

With this in mind, the line that connects a stationary observer with a moving observer in 

dimension of time, which represents their identical view the flow of time through space at 
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the speed of light, has a slope of one as its multiplier or mirror element, which replicates 

the flow of time through space at the speed of light exactly.   

 

However, the stationary and moving observer may lie in different time zones, as 

represented by the numerical constant b in the equation of y = mx +b, which adjusts the 

local time of a point in space for the local time of another point in space by adding or 

subtracting a constant.    

 

Moreover, another line connects a stationary with a moving observer in the dimension of 

time, a line of sight for how they view the flow of time for each other.  Two observers in 

space not only share an identical view of the flow of time through space, they may view 

the flow of time for each other in comparison to its rate of flow through space at the speed 

of light.   

 

However, how two observers in space view the flow of time for each other will vary, 

according to their relative motion, since time is defined in terms of a rate of motion based 

on distance as it flows through space at the speed of light.  With this in mind, the motion 

of a moving observer creates a displacement in time, which affects how two observers view 

the flow of time for each other.   

 

In other words, the line of sight between two observers in the dimension varies in length 

with the degree of their relative motion, to reflect the displacement in time that is created 

by a moving observer.    

 

This line of sight between two observers represents a different rate of flow for time than 

its rate of flow for two stationary observers, who may be in different time zones, to where 

the difference in how they view the flow of time for each other may be represented by a 

numerical constant. 

 

Time Zones 

 

The idea of time zones is illustrated by how the surface of the Earth is divided into twenty-

four basic time zones, which allow clocks inside a zone to count the same hour or time of 

day based on the local noon of when the Sun is at its highest point of transit across the sky 

as viewed within the zone.    

 

Time zones generally have equal shapes and areas, but are often adjusted for political or 

geographic boundaries.  They recognize how, as the Earth rotates about its axis on a daily 

basis, an observer on its surface views the Sun reach its highest point at a different time or 

local noon, than an observer located further East or West.      
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Since time zones follow how the Sun transits across the sky, going from East to West, they 

follow the lines of longitude that identify a location on the Earth’s surface in terms of 

degrees East or West, and which run from North to South on a globe or map.   

 

The lines of longitude consist of two sets, East and West, each with one hundred and eighty 

degrees, which are divided by a line of zero degrees longitude that runs through Greenwich, 

England.     

 

In contrast to the lines of longitude, the lines of latitude, which run from East to West on a 

globe or map, identify a location on the Earth’s surface in terms of its degrees North or 

South with respect to the Sun’s maximum position above the horizon, or the rotation of the 

stars at night.   

 

In the northern hemisphere, the stars rotate around the North Star or Polaris in the 

constellation of the Little Dipper, or Ursa Minor, whose position above the horizon gives 

the latitude for a location on the Earth’s surface.       

 

Like the lines of longitude, the lines of latitude consist of two sets, North and South, each 

with one hundred and eighty degrees, which are divided by a line of zero degrees latitude, 

called the equator that lies midway between the North Pole and South Pole.   

 

The advantage of having time zones is simple.  They help people in cities and nearby areas 

to organize their activity by using clocks and watches that are set to the same hour of the 

day, or the same local time.  And they help people in different time zones to coordinate 

their activity.   

 

For example, if a person in New York City, which is located on the East Coast of the United 

States, a large country on the continent of North America, wants to know the time in the 

city of Los Angeles, which is located on the West Coast of the United States, he subtracts 

three hours from his local time.   

 

This three hour difference in time zones reflects how New York City lies in the Eastern 

Time Zone of the United States, separated from the Pacific Time Zone, where the city of 

Los Angeles, is located by the Central and Mountain Time Zones, which are each one hour 

apart.     

 

This three hour difference also means that a person in Los Angeles can view the time in 

New York City by adding three hours to his local time or view of the flow of time since he 

has the same view of the flow of time as the person in New York City, except for the 

difference in time zones.    
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In other words, since time flows smoothly across space, two observers on the Earth’s 

surface, who are stationary with respect to each other have the same view of its flow, and 

can view the time of the other on the same basis, adding or subtracting a constant to account 

for any difference in time zones.    

 

In other words, since two observers on the Earth’s surface are stationary with respect to 

each other, they view of the flow of time for each other at the same rate as its rate of flow 

through space at the speed of light, even as the Earth moves through space, orbiting the 

Sun and rotating about its axis.    

 

Two Stationary Observers 

 

Since two observers who are stationary in space view the flow of time for each other at its 

rate of flow through space of the speed of light, their line of sight in the dimension of time 

may be given a length of one by dividing how they view the flow of time for each other by 

its rate of flow through space at the speed of light.   

 

In other words, since the line of sight between two observers in the dimension of time 

represents the rate of flow of time that they view for each other, it is like a mirror element 

whose length compares how they view of the flow of time for each other to its rate of flow 

through space at the speed of light.   

 

Since two observers who are stationary view the flow of time for each other at its rate of 

flow through space, they are stationary in time as well as space, since time is measured in 

terms of distance as it flows through space at the speed of light.  As a result, the line of 

sight between two observers in the dimension of time measures their relative stability 

compared to a system of two stationary observers.   

 

In other words, since two stationary observers view the flow of time for each other at its 

rate of flow through space, the stability between them provides an equivalent measure of 

how they view the flow of time for each other, since their line of sight is adjusted for their 

relative motion.    

 

In other words, the line of sight between two observers in the dimension of time has a 

length of one when they are stationary since it captures the flow of time through space in 

its entirety.  When two observers are stationary, their line of sight has a length of one to 

reflect how they view the flow of time for each other at its rate of flow through space at 

the speed of light.   

 

But, when one of the two stationary observers starts to move, their relative motion and 

displacement in time take on a positive value, which is greater than zero.  Since relative 

motion reduces their relative stability, the length of their line of sight becomes less than 
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one, as they view the flow of time for each other at a slower rate than its rate of flow 

through space at the speed of light.    

 

Since relative motion and relative stability represent opposite conditions, they may be 

described by a pair of axis lines in a Cartesian coordinate system that represents how two 

observers view the flow of time for each other and its flow through space, so that the line 

of sight between observers is measured along the line of axis that measures their relative 

stability.      

 

Since each observer looks across the full length of their line of sight to view the rate of 

flow that it represents, they are located at its endpoints.  In a Cartesian coordinate system, 

each of the endpoints of a line or curve views the full length of the line or curve from 

opposite directions.   

 

For convenience, the stationary observer may be located at the point of origin for the line 

of axis that measures their relative stability, which may be placed in a horizontal position, 

like the x axis in a Cartesian coordinate system.  The line of axis that measures their relative 

motion may be placed in a vertical position, like the y axis in a Cartesian coordinate system.     

 

When both observers are stationary, their relative motion is zero, so their line of sight, 

which measures their relative stability, reaches its maximum value of one.  Moreover, a 

second line connects the observers, which represents their identical view of the flow of 

time, and has a length of one to represent the flow of time at the speed of light.   

 

Since the observers are located at the endpoints of their line of sight and the line that 

represents their identical view of the flow of time through space, when the two observers 

are both stationary, their line of sight is equal in length to the line that represents their 

identical view of the flow of time through space, since it captures the flow of time through 

space exactly.   

 

Moreover, since there is no relative motion, both lines are superimposed upon the line of 

axis that measures their relative stability, and they are independent of each other since the 

line of sight between the two observers is defined by how they view of the flow of time for 

each other, while the line that represents their identical view of the flow of time through 

space represents a physical constant.   

 

In summary, for two observers are stationary, two independent lines are superimposed on 

the line of axis that measures their relative stability in the dimension of time.  Where one 

line represents their line of sight in the dimension of time, the other line represents their 

identical view of the flow of time through space.   
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A Stationary and Moving Observer 

 

Since two stationary observers may be represented by two lines of equal length that are 

superimposed upon a line of axis that measures their relative stability in the dimension of 

time, this system gives one of the simplest representations of the three elements of time, 

which consist of the flow of time through space, a moving observer, and a stationary 

observer, who is at rest compared to the moving observer.   

 

With this in mind, a moving observer’s displacement in time may be analyzed by the 

appearance of motion in a system of two stationary observers, which alters their geometry 

as two lines superimposed upon each other along a line of axis that measures their relative 

stability.    

 

In other words, as one of two stationary observers starts to move, he creates a displacement 

in time.  This displacement appears parallel to the line of axis that measures his relative 

motion, while it shortens his line of sight to the remaining stationary observer since his 

motion decreases their relative stability.    

 

Since the moving observer’s displacement in time lies parallel to the line of axis that 

measures relative motion, it appears at a right angle to his line of sight to the remaining 

stationary observer, along the line of axis that measures their relative stability since he 

vacates his position on his line of sight to lead his motion or displacement in time, like the 

tip of an arrow or a vector that measures his displacement in time.   

 

While the line that represents the identical view that the two observers share of the flow of 

time through space retains its length of one, the appearance of relative motion between 

them shifts its position off the line of axis that measures their relative stability so that it 

appears as a separate line, which is distinct from their line of sight and connects the 

stationary observer directly to the moving observer.   

 

With this in mind, the moving observer’s line of sight to the stationary observer becomes 

relative as he vacates his position at its endpoint, which becomes the point of intersection 

between his line of sight and displacement in time.   

 

In other words, with the appearance of relative motion, the two observers no longer view 

each other directly along their line of sight.  Instead, they view the flow of time for each 

other by using the point of intersection between the moving observer’s displacement in 

time and their line of sight.        

 

In summary, three distinct lines or measurement of the flow of time appear in analyzing 

how a stationary and moving observer view the flow of time for each other and the flow of 

time through space.   
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One line represents the identical view that the two observers share of the flow of time 

through space.  This line connects them to each other independently of the degree of their 

relative motion or relative stability, and its length is invariant since it represents the flow 

of time through space at the speed of light.     

 

A second line represents their line of sight, or their view of the flow of time for each other, 

or relative stability in the dimension of time.  This line is measured along the line of axis 

that measures their relative stability, and its length contracts with the degree of their relative 

motion.    

 

A third line measures the moving observer’s relative motion or displacement in time.  This 

line lies parallel to the line of axis that measures their relative motion, and its length is 

equal to the moving observer’s speed or rate of motion divided by the flow of time through 

space at the speed of light, or the familiar ratio of v/c.   

 

When both observers are stationary, their line of sight has a length of one since they view 

the flow of time for each other at its rate of flow through space.  Since the observers have 

no relative motion, the line that measures a moving observer’s relative motion or 

displacement in time has a length of zero.     

 

In other words, when both observers are stationary, with no relative motion, the general 

case of a moving and stationary observer with its three lines that measure the flow of time 

simplifies to just two lines superimposed upon each other, along the line of axis that 

measures their relative stability.     

 

In other words, when the line of sight between two observers equals the rate of flow of 

time through space, it displaces any relative motion.  When two observers are stationary, 

the condition of being stationary displaces any motion between them.     

 

But, when one observer starts to move, their line of sight starts to contract since it converts 

the flow of time they view between themselves into measuring the speed or rate of motion 

of the moving observer and his displacement in time.   

 

Their line of sight contracts since the moving observer disturbs their state of rest or 

equilibrium measured by their line of sight, whose length of one represented a state of 

equilibrium in space, or how they viewed the flow of time for each other at its rate of flow 

through space.   

 

Their line of sight contracts since its full length was used to represent the condition that the 

two observers were stationary, or viewed the flow of time for each other at the speed of 

light with no motion or displacement in time between them.   
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With this in mind, the stationary observer views the moving observer’s motion and 

displacement in time by converting part of their line of sight into a displacement in time, 

since he views the moving observer move off of their line of sight at an angle to the line of 

axis that measures relative stability by using the line that represents their identical view of 

the flow of time through space.     

 

In other words, the stationary observer views the moving observer’s displacement in time 

through the contraction of their line of sight.  The motion of the moving observer changes 

how they view the flow of time for each other since it decreases their relative stability while 

it does not create new time.   

 

Since the moving observer’s motion or displacement in time does not create time, or add 

or subtract from the flow of time through space, the flow of time that is measured by the 

line of sight between the two stationary observers is conserved.  Its total value does not 

change when one of the observers starts to move.  What changes is how the observers view 

its total value.   

 

From another perspective, the line of sight between two stationary observers uses their 

identical view of the flow of time through space as a benchmark for measuring how they 

view the flow of time for each other.  When both observers are stationary, the two lines are 

equal in length.   

 

But, when one of the observers starts to move, their line of sight contracts since the moving 

observer’s displacement in time cause him to change position with respect to the stationary 

observer.  The moving observer’s displacement in time affects how they view the flow of 

time for each other, rather than adding or subtracting from the flow of time through space.   

 

In other words, the flow of time that was measured by the line of sight between two 

stationary observers is conserved when one of them becomes a moving observer since the 

remaining stationary observer uses a part of its flow to view the moving observer’s 

displacement in time.    

 

The stationary observer sees the moving observer create a displacement in time since he 

diverts or channels part of the flow of time that was measured by their line of sight when 

they were both stationary into a perpendicular displacement parallel to the line of axis that 

measures their relative motion.   

 

Since the moving observer’s displacement in time is conserved with respect to their 

identical view of the flow of time through space, and is measured along a line of axis that 

is perpendicular to their line of sight, the Pythagorean Theorem may be applied to 

determine the length of their line of sight.   
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In other words, since the line that represents the identical view that the two observers share 

of the flow of time through space is invariant in length, the Pythagorean Theorem may be 

applied to conserve the length of their line of sight when they were stationary compared to 

their current or shortened line of sight and the moving observer’s displacement in time.     

 

In other words, the Pythagorean Theorem may be applied to conserve a total value of one 

for the length of the line of sight between two stationary observers by adding together the 

square of the length of line of sight between a stationary and moving observer and the 

square of the moving observer’s displacement in time.   

 

The resulting sum equals the square of the length of the line of sight between two stationary 

observers, and it equals the square of identical view that any two observers share of the 

flow of time through space.   

 

In other words, adding the square of the line of sight between two observers to the square 

of the moving observer’s displacement in time, gives a sum that equals the square of their 

identical view of the flow of time through space, which has a value or length of one, and 

is equal to one when squared.   

 

Since the square of the identical view that two observers share of the flow of time has a 

value of one, by rearranging terms and taking a square root, the length of the line of sight 

between a stationary and moving observer is equal to the square root of one less the square 

of v/c, or √ (1 – v2/c2).      

 

Since the line of sight between two observers describes how they view the flow of time for 

each other, for the stationary observer to see how the moving observer views the flow of 

time, he may multiply his view of the flow of time by √ (1 – v2/c2) to see the flow of time 

for the moving observer dilate or slow down as he approaches the flow of time through 

space at the speed of light.    

 

Second Perspective  

 

A stationary observer views a moving observer’s displacement in time from outside the 

boundaries of space by using a line of sight that is based on the moving observer’s speed 

or rate of motion compared to the flow of time through space at the speed of light, or the 

familiar ratio of v/c, since the flow of time through space is independent of his relative 

motion.   

 

In other words, a stationary observer views a moving observer’s displacement in time 

against the background of space of where time flows through it at the speed of light, so that 
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two observers view the rate of flow of time for each other compared to its rate of flow 

through space.   

 

With this in mind, how two observers view the flow of time for each other is affected by 

their relative motion.  Since relative motion represents the opposite condition of relative 

stability, these two conditions may be represented by a pair of axis lines in a Cartesian 

coordinate system.   

 

In other words, as a moving observer creates a displacement in time with respect to a 

stationary observer, his motion changes how the two observers view the flow of time for 

each other, while the stationary observer views the displacement at a right angle to the line 

of axis that measures their relative stability.   

 

With this in mind, the stationary observer is able to view the time dilation of the moving 

observer as he catches up to its flow through space at the speed of light since he remains 

connected to him by their identical view of the flow of time through space.   

 

The effect of time dilation may become clearer by considering a foot race with a runner as 

a moving observer, and an observer stationed at the starting point.  As the runner starts to 

run, he leaves the stationary observer behind, while the stationary observer sees the runner 

quickly moving away from him.    

 

While for the usual foot race a stationary observer and runner will perceive the flow of 

time for each other to be the same, as the runner picks up more and more speed and starts 

to run at an appreciable fraction of the speed of light, the stationary observer sees that the 

runner is moving so fast that he is catching up to the flow of time through space at the 

speed of light.   

 

In other words, the stationary observer starts to see the runner catch up to the flow of time 

through space at the speed of light by using the ratio of v/c, independently of their line of 

sight in the dimension of time.   

 

As the stationary observer views the moving observer catch up to the flow of time through 

space, he sees the normal passage of time for the moving observer slow down as he catches 

up to the flow of time at the speed of light, and approach the point where time stands still.  

At the same time, the runner sees that he is leaving the stationary observer behind in the 

dust to the point of where he sees that time moves very slowly for the stationary observer.   

 

In summary, a high rate of speed at an appreciable fraction of the speed of light will 

heighten the normal effects of motion to where they affect the perception of time between 

a stationary and moving observer.    
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Geometrical Setting 

 

The idea that a stationary observer views a moving observer’s displacement in time as a 

vertical line that rises from their line of sight in the dimension of time, where their line of 

sight has an initial length of one for a system of two stationary observers, gives the 

stationary observer a clear view of his displacement in time.   

 

An observer needs a line of sight that is of some practical length to view an object.  A line 

of sight must be neither too long so an object appears practically invisible as a speck on 

the far horizon, nor too short so an observer sees only part of it from up close.     

 

While a displacement in time involves relativistic time effects, which tend to occur under 

laboratory conditions or in astronomy, the principle remains of where an observer needs a 

line of sight to view an object, or moving observer’s displacement in time.   

 

To view a moving observer’s displacement in time, a stationary observer needs a line of 

sight compares that how the two observers view the rate of flow of time for each other to 

its rate of flow of time through space at the speed of light.  A non-spatial geometry may 

use lines that represent rates of flow rather than distances in space.    

 

With this in mind, a stationary observer views a moving observer’s displacement in time 

as rising vertically from their line of sight in the dimension of time, like the side opposite 

in a right triangle, even though this displacement is essentially invisible within a spatial 

coordinate system.   

 

To view the displacement in time, the stationary observer uses the line that represents their 

identical view of the flow of time through space to connect with its top, and his line of sight 

in the dimension of time to connect with its bottom since the two observers still view the 

flow of time for each other, although indirectly.     

 

From a different perspective, two observers possess a line of sight to each other in the 

dimension of time, where they view the flow of time for each other since they view the 

flow of time through space at the same point of its flow.   

 

In other words, since the observers exist or share a common point or interval where they 

share the same view of the flow of time through space, they are not separated in time by 

being in the past or future.     

 

In other words, when two observers share the same plane of existence, or exist at the same 

point of flow of time through space, they possess a line of sight to each other in the 

dimension of time, which lets them view each other in its flow with respect to their local 

condition of motion, or relative motion.    
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In other words, how two observers view the flow of time for each other is based on their 

local condition of motion, since time is defined as a rate of motion flowing through space 

at the speed of light.   

 

When two observers have the same local condition of motion, or the same motion in space, 

they are stationary with respect to each other.  In other words, the condition of two 

stationary observers may be explained by their possessing the same local condition of 

motion, regardless of their location in space.   

 

With this in mind, the relative stability of two observers may be defined in terms of their 

local condition of motion.  When the local condition of motion of one observer is equal to 

the local condition of motion for another observer, the two observers are stationary with 

respect to each other.   

 

As a result, when the local condition of motion for one observer is equal to the other, their 

relative stability may be defined to have a value of one, since their local condition of motion 

reflect each other exactly.   

 

In other words, one serves as the measure of equality between the condition of local motion 

for two observers and how they view the flow of time for each other.  With this in mind, 

the flow of time between two observers has a line of sight between them with a length of 

one when they have the same local condition of motion.   

 

But when the local condition of motion varies between the two observers, they view the 

flow of time for each other with respect to the variation in their local condition of motion, 

compared to the flow of time through space at the speed of light.   

  

In other words, two observers view the flow of time for each other by comparing their local 

condition of motion to the flow of time through space at the speed of light, and with respect 

to how two observers with the same local motion view the flow of time for each other at 

the same rate as its rate of flow through space.     

 

Since two stationary observers in the dimension of time have a line of sight with a length 

of one, a change in their local condition of motion, or the appearance of relative motion is 

viewed by a stationary observer by diverting part of their line of sight into a displacement 

in time, which forces their line of sight to contract in length with the degree of change in 

their local condition of motion.   

 

In other words, since a change in the local condition of motion for a moving observer 

appears on the line of axis for measuring his motion, which the stationary observer views, 
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this motion reduces his stability with respect to the stationary observer since the flow of 

time is conserved.    

 

In other words, as one observer starts to move with respect to an observer who remains 

stationary, the flow of time that is represented by their line of sight when they were both 

stationary, which had a length of one, is channeled from the line of axis for measuring their 

relative stability into measuring their relative motion along the line of axis that measures 

their relative motion.      

 

In other words, two observers view the flow of time for each other by comparing the local 

motion of one observer to the other as compared to the flow of time through space, which 

is independent of their local condition of motion.    

 

As a result, when there is no relative motion between two observers in space, their line of 

sight in the dimension of time possesses the full quality of being stationary, which means 

it has a length of one, so the observers view the flow of time for each other at the same rate 

as the flow of time through space at the speed of light.   

 

Since there is no relative motion between the observers, the line that represents their 

identical view of the flow of time, which has a length of one as an invariant, folds onto 

their line of sight in the dimension of time, which represents their degree of being stationary 

with respect to each other.    

 

Therefore, this line of sight in the dimension of time may be treated as a line of axis in the 

dimension of time, which measures the degree of the two observers being stationary with 

each other as compared to the condition of their relative motion, which creates a 

displacement in time.   

 

In other words, since the dimension of time, as viewed by two observers in space, has a 

line of axis for representing their condition of being stationary, a second line of axis may 

be introduced, like the y axis in a Cartesian coordinate system, which represents their 

condition of relative motion.    

 

In summary, how two observers view the flow of time for each other may be represented 

by a line of axis that measures their degree of being stationary, or relative stability, and a 

line of axis that measures their relative motion.   

 

The One Sided Right Triangle 

 

A right triangle consists of two sides, called the side opposite and the side adjacent, that 

intersect at a right angle, and a third side, called the hypotenuse, that intersects those two 

sides at their other endpoints.   
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A right triangle is usually viewed by placing the side adjacent in a horizontal position and 

the side opposite in a vertical position with their point of intersection at the right endpoint 

of the side adjacent, as the hypotenuse stretches in a diagonal from the left endpoint of the 

side adjacent to the top of the side opposite.   

 

A one sided right triangle uses a single line to represent all three sides of a right triangle 

when they are superimposed on each other.  This occurs when either the side opposite or 

the side adjacent has no length, and the hypotenuse is fixed in length.  The Pythagorean 

Theorem requires the other side to have the same length as the hypotenuse, which is 

superimposed upon it.    

 

A Cartesian coordinate system usually depicts a right triangle the same way by using its 

point of origin as the point of intersection between the side adjacent and hypotenuse.  The 

side adjacent is placed on the x axis in a horizontal position.  The side opposite is placed 

parallel to the y axis in a vertical position, and the hypotenuse stretches in a diagonal from 

the point of origin to the top of the side opposite.    

 

A Cartesian coordinate system depicts a one sided right triangle as a horizontal line on the 

x axis when the side opposite has no length, and depicts a one sided right triangle as a 

vertical line on the y axis when the side adjacent has no length.     

 

While in a one sided right triangle either the side opposite or the side adjacent has no length, 

the two sides still intersect at a right angle, since a side with no length retains its identity 

as a line by possessing two endpoints.   

 

A line with no length connects its two endpoints, which define its boundary, and the 

directions to traverse its domain, even if the line has no length or interior line segment.   

 

Since the superposition of one line upon another does not require their merger, each side 

in a one sided right triangle retains its identity.  However, the retention of their identities 

means that a one sided right triangle has a more complex mathematical structure than its 

appearance suggests, as it consists of two superimposed lines, and a line with no length 

that intersects one of the lines at a right angle.    

 

For example, when the side opposite has no length, its bottom endpoint serves as the point 

of intersection with the side adjacent, while its top endpoint is superimposed on the bottom 

endpoint.    

 

However, this superposition of endpoints requires a sense of order, or point of information 

that lies outside the visual appearance of a single endpoint, or a mathematical structure 
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more complex than a single endpoint since it superimposes a point from one dimension 

onto another dimension.   

 

This point of information orders the superimposed endpoint as the top of the side opposite 

that lies on the bottom endpoint.  Otherwise, the top endpoint lies just above the bottom 

endpoint, using a line with no length as a substitute for the order in the superposition of 

endpoints.   

 

Where geometry describes visual relationships using lines and angles, a one sided right 

triangle describes a state of equilibrium or balance within a group three elements, where 

each element is represented by the side of a right triangle.   

 

A group of three elements may be described by the sides of a right triangle when two 

elements represent opposite conditions, described by the length of the side opposite and 

the side adjacent that intersect at a right angle, and the third element represents a fixed 

value or constant, described by the length of the hypotenuse, which is conserved with 

respect to the length of the side opposite and the side adjacent using the Pythagorean 

Theorem.     

 

In other words, when in a group of three elements, two elements represent opposite 

conditions that are conserved with respect to a third element that represents a fixed value, 

the Pythagorean Theorem may be applied to describe their relationship like the sides of a 

right triangle.   

 

With this in mind, a one sided right triangle may represent a state of equilibrium or balance 

in a group of three elements described by the sides of a right triangle when either the side 

opposite or the side adjacent has no length and the hypotenuse is fixed in length, so that 

the other side has a length equal to the hypotenuse.     

 

An example of such a group is found in the sine curve, which graphs the sine of a right 

triangle, or the length of the side opposite divided by the length of the hypotenuse, which 

is fixed in length since the length of the side opposite and the side adjacent represent 

opposite conditions that are conserved with respect to the length of the hypotenuse.   

 

For a right triangle with an angle of zero degrees, the sine curve displays a one sided right 

triangle since the side opposite has no length, while the hypotenuse is superimposed upon 

the side adjacent on the x axis in a horizontal position.     

 

For a right triangle with an angle of ninety degrees, the sine curve displays a one sided 

right triangle since the side adjacent has no length, while the hypotenuse is superimposed 

upon the side opposite on the y axis in a vertical position.   
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The sine curve is based on the Pythagorean Theorem, which determines the length of the 

side opposite and side adjacent as a function of the angle of a right triangle and length of 

the hypotenuse.      

 

Another example of a one sided right triangle is found in the geometry of two stationary 

observers in the flow of time through space, who may be represented by the endpoints of 

two lines that are superimposed on a line of axis that measures their relative stability or the 

degree of equality in their local condition of motion.   

 

One line represents the identical view that the two observers share of the flow of time 

through space, a physical constant.  The other line represents how the two observers view 

the flow of time for each other, a condition that is relative since its value depends on the 

degree of stability between the observers as the opposite condition of their relative motion.   

 

The second line has a length equal to the first line only when the two observers are 

stationary with respect to each other, or have the same local condition of motion, with no 

relative motion between them.    

 

In other words, when two observers are stationary with respect to each other, a one sided 

right triangle represents a state of balance in their local condition of motion compared to 

the flow of time through space, seen in the superposition of the hypotenuse on the side 

adjacent since the side opposite has no length.    

 

Second Perspective 

 

From another perspective, two observers in space possess two relationships in how they 

view the flow of time.  One relationship is defined by their identical view of the flow of 

time through space.  Since this relationship is based on their identical view of a constant, 

it may be described by a hypotenuse of fixed length in a right triangle, whose length 

represents the flow of time at the speed of light.    

 

In this relationship, the observers are located at the endpoints of the hypotenuse since they 

each view its full length or the flow of time through space that its length represents.  One 

observer is stationary while the other observer is moving.    

 

The other relationship is defined by how two observers view the flow of time for each other.  

This relationship is relative since it depends on a moving observer’s displacement in time 

or relative motion with respect to a stationary observer.  It may be described by the side 

adjacent and the side opposite of a right triangle, whose intersection at a right angle 

connects the observers to each other indirectly, without the hypotenuse that describes a 

fixed relationship.     
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In this relationship, the two observers do not view each other directly by being at the 

endpoints of a line.  Instead, they view each other indirectly by using the vertex, or point 

of intersection between the side opposite and side adjacent that represent the opposite 

conditions of their relative motion and relative stability.     

 

Since a stationary observer views a moving observer’s displacement in time at a right angle 

to condition of their relative stability, or the line of axis that represents their relative 

stability as the opposite condition of their relative motion, his displacement in time may be 

described by the side opposite of a right triangle.   

         

The side opposite of a right triangle is ideally suited to represent a moving observer’s 

displacement in time compared to a stationary observer since it is joined to the flow of time 

through space represented by the hypotenuse, forming a baseline to compare his motion to 

the flow of time through space, while its point of intersection with the side adjacent lets 

the moving observer look back and view his displacement in time with respect to the 

stationary observer.     

 

Likewise, the point of intersection between the side opposite and the side adjacent lets the 

stationary observer view the moving observer’s displacement in time from its beginning 

point with respect to their state of rest, which is compared to the flow of time through space 

represented by the hypotenuse.     

 

Third Perspective  

 

For two stationary observers in the flow of time through space, the superimposed sides of 

a one sided right triangle represents their identical view of the flow of time through space, 

and their view of the flow of time for each other, or their line of sight in the flow of time.   

Both views are represented by lines of equal length whose value is equal to the flow of 

time through space at the speed of light.   

 

In the one sided right triangle, the hypotenuse represents the identical view that two 

observers share of the flow of time through space.  Since it represents a physical constant, 

its length is fixed and independent of whether the two observers are stationary or moving 

with respect to each other.   

 

Moreover, the hypotenuse is superimposed upon the side adjacent that represents the view 

that the two observers have of the flow of time for each other since its length, which 

depends on their relative stability, has a value equal to the flow of time through space since 

both observers are stationary.     

 

If the left endpoint of the side adjacent identifies the location of the stationary observer, 

the right endpoint identifies the start or beginning of a moving observer’s displacement in 
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time as the point of intersection with the side opposite that intersects the side adjacent at a 

right angle, even though the angle is nascent, or not yet visible since the side opposite has 

no length.      

 

But as the second stationary observer starts to move, he disturbs their state of spatial 

equilibrium as he vacates his position on the right endpoint of the side adjacent since he is 

located at the top of the side opposite.    

 

Since the motion of a moving observer does not add or subtract from the flow of time 

through space, a stationary observer views his displacement in time by subtracting it from 

their line of sight represented by the side adjacent, using the Pythagorean Theorem to 

conserve the flow of time represented by their line of sight when they were both stationary, 

which represented the flow of time through space.   

 

In other words, when one of two stationary observers starts to move, his motion creates a 

displacement in time at a right angle to the line of sight between the observers in the flow 

of time that is represented by the side opposite, which starts at the right endpoint of their 

line of sight on the side adjacent.   

 

As the moving observer approaches the speed of light, another one sided right triangle 

starts to appear.  When the moving observer attains the speed of light, this one sided right 

triangle appears as a vertical line to represent how his speed or rate of motion is equal to 

the flow of time through space.     

 

In this one sided right triangle, the side adjacent has no length since the two observers are 

in a state of total disequilibrium compared to the flow of time through space, with no 

stability between them.   

 

With this in mind, a vertical one sided right triangle represents the opposite condition of 

two stationary observers.  It represents the condition of no stability, or two observers who 

are poles apart in viewing the flow of time for each other, as one observer has a speed or 

rate of motion equal to the flow of time through space.    

 

The Imaginary Right Triangle 

 

As a moving observer exceeds the flow of time at the speed of light, a stationary observer 

may view his displacement in time by using an imaginary right triangle as an extension of 

the vertical one sided right triangle for when the length of the side opposite exceeds the 

hypotenuse.     

 

In other words, when in a group of three elements, two elements represent opposite 

conditions that are conserved with respect to a third element that represents a fixed value, 
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and one of the elements that represents the opposite conditions exceeds the fixed value, the 

Pythagorean Theorem may be applied to describe their relationship, using a right triangle 

with a side that is imaginary in length.   

 

In other words, a right triangle may lie outside the normal bounds of plane geometry based 

on the set of real numbers, or a Cartesian coordinate system, when either the side opposite 

or the side adjacent exceeds the length of the hypotenuse, which the Pythagorean Theorem 

requires to be imaginary.    

 

For example, when a moving observer exceeds the flow of time through space, the right 

triangle that describes how a stationary observer views his displacement in time and their 

line of sight has a side adjacent that is imaginary since the side opposite is longer than the 

hypotenuse.  In other words, their line of sight lies outside the spatial coordinate system of 

the stationary observer as an indicator of time travel.   

 

In other words, when the speed or rate of motion of a moving observer exceeds the flow of 

time through space, his relative stability with respect to a stationary observer becomes 

imaginary.  The moving observer has crossed the threshold of being in the same flow of 

time as the stationary observer, and lies outside it.   

 

As the speed or rate of motion of a moving observer exceeds the flow of time through space, 

a stationary observer is unable to see him.  The moving observer has crossed into a different 

section of the flow of time, or traveled in time compared to the stationary observer.     

 

Since the moving observer has caught up to and exceeds the flow of time through space, 

he is moving to where time was before, or back in time, or into the past compared to the 

stationary observer.     

 

In other words, since time may be viewed as a rate of flow moving through space, when a 

moving observer exceeds its rate of flow, he moves ahead in its flow to a point before, or 

that lies ahead of its flow as viewed by the stationary observer, whom he views as lying in 

the future.   

 

This condition of time travel between the two observers is represented by an imaginary 

number since it lies outside the boundaries of space and time as viewed by the stationary 

observer.  A moving observer who moves outside the boundaries of space and time that are 

viewed by the stationary observer is represented by an imaginary number, since the motion 

is real, but outside his view of space and time.    

 

The flow of time is not interrupted or destroyed, as would be implied by a negative value 

for the relative stability of a stationary and moving observer.  Rather, the imaginary value 
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for their relative stability shows how the moving observer has moved outside the 

boundaries of space and time that are viewed by the stationary observer.    

 

Second Perspective 

 

Where a spatial coordinate system counts or measures distance based on a fixed point of 

origin, which uses an identity element of zero since counting is like addition, an observer 

views the flow of time based on a comparison to its rate of flow through space, or using 

the operation of division that has an identity element of one.   

 

In other words, since time flows through space in a uniform manner and steady rate, its 

stability resides in its consistent rate of flow at the speed of light rather than a fixed point 

in space.  Comparisons of its flow between observers are made by using a ratio, or the 

operation of division, rather than addition or subtraction.   

 

In other words, a stationary and moving observer may view the flow of time for each other 

by computing a ratio that divides their view of the flow of time for each other by its rate of 

flow through space at the speed of light, using the operation of division that has an identity 

element of one.      

 

This use of division in describing the flow of time through space between different 

observers means that the representation of a point in the flow of time that lies outside a 

spatial coordinate system is mathematically represented by an imaginary number as a 

multiplier of its flow, rather than a negative number.    

 

The use of negative imaginary numbers to describe the flow of time is relative, not absolute, 

since it is made with respect to a stationary observer to indicate the motion of a moving 

observer who is traveling into the future, in the flow of time, with respect to his view of 

the flow of time in the present.   

 

Moreover, a moving observer’s displacement in time translates into a linear displacement 

in the flow of time regardless of whether the motion in space is linear or circular since the 

flow of time through space is essentially non-spatial, or comes from outside a spatial 

coordinate system.    

 

In other words, since a stationary observer views a moving observer’s displacement in time 

by dividing his speed or rate of motion by the rate of flow of time through space, his 

displacement in time is independent of whether his motion is linear or circular.   
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Third Perspective 

 

When a moving observer exceeds the flow of time through space, his line of sight to a 

stationary observer in the flow of time becomes imaginary since it represents a condition 

that lies outside the flow of time through space viewed by the stationary observer, or a 

condition of time travel.    

 

In other words, in a Cartesian coordinate system that measures how two observers view 

the flow of time for each other by using relative motion and relative stability as lines of 

axis, a speed or displacement in time that is greater than the flow of time through space lies 

outside its boundaries, or is imaginary, so that a moving observer lies outside the flow of 

time viewed by a stationary observer.   

 

In other words, while the moving observer has moved outside the boundaries of space that 

are viewed by the stationary observer, he remains within those boundaries of space, but at 

a different point in the flow of time.     

 

Returning to the example of an observer moving at a speed of 10c, or ten times the speed 

of light, applying the Pythagorean Theorem to the elements of time gives his local time as 

9.95i compared to a stationary observer.   

 

In other words, an observer moving at a speed of 10c has a local time with respect to a 

stationary observer of 9.95i.  For every interval of time viewed by a stationary observer, 

the moving observer moves back in time by a factor of 9.95.   

 

For example, as the stationary observer views the passage of an hour, the moving observer 

has moved back in time by 9.95 hours, assuming his speed or rate of motion of 10c remains 

constant.   

 

In geometric terms, a right triangle that measures the moving observer’s relative motion or 

displacement in time with respect to a stationary observer has a side opposite of 10c, a 

hypotenuse of one c, and a side adjacent of 9.95i.   

 

The Pythagorean Theorem holds since the length of the side opposite squared added to the 

length of the side adjacent squared is equal to the length of the hypotenuse squared, or (10)2 

+ (9.95i)2 = 12 (√99 is rounded to 9.95).     

 

While this imaginary right triangle has a side adjacent that is imaginary, the side opposite 

and hypotenuse are real.  Only one side is imaginary, while the other two sides are real in 

a Cartesian coordinate system that measures the relative motion and relative stability of 

two observers.    
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From another point of view, where distance in a spatial coordinate system is generally 

expressed in terms of a real number line, a flow of time that lies outside the local time of a 

stationary observer uses an imaginary number to indicate a point in the flow that lies in the 

past or future.     

 

Since time flows from the future into the past, as a moving observer exceeds its rate of flow 

at the speed of light, he travels into the past so that an imaginary number represents travel 

into the past, while a negative imaginary number represents travel into the future.   

 

A negative imaginary number may be regarded as a reverse direction in a moving 

observer’s speed or rate of motion that reverses the direction of his displacement in time, 

since time is fundamentally measured in terms of distance with its rate of flow through 

space at the speed of light.   

 

Since reversing the direction of a moving observer’s motion or displacement of time 

reveres the direction of his movement in the flow of time, a moving observer may return 

to the present after traveling into the past.  A moving observer may depart and return to the 

present after traveling back in time, crossing a bridge where he travels back into the future 

after traveling back in time.      

 

Returning to the example of a moving observer traveling at a speed of 10c to a nearby star 

system, when the moving observer returns to Earth, he does not travel farther into the past 

during his return but restores himself to the present by traveling into the future.  In other 

words, during his return, the moving observer travels into the future since he reverses his 

direction of travel compared to his departure.   

 

In the linear geometry of a moving observer traveling from Earth to a nearby star system, 

the moving observer does not travel farther into the past on his return, but forms a bridge 

in time, which allows him to return to the present or to the current flow of time with respect 

to a stationary observer on Earth.    

 

Time Loop  

 

In the example of a moving observer traveling at a speed of 10c to a nearby star system, a 

linear geometry was used, which traded distance for time.  The moving observer was able 

to travel back in time, compared to an observer on Earth, but had not traveled back in time 

from his point of departure.      

 

However, a different geometry could let the moving observer achieve time travel if he 

traveled in a loop, or circle, so the distance he travels does not move him away from his 

initial point of departure.  If this were done, he would travel back in time by 9.95 years 

compared to his point of departure.    
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To return to the future, or the present compared to an observer on Earth, the moving 

observer would only need to reverse the direction of his travel, or the direction of travel in 

the loop to cross the flow of time, or a bridge in the flow of time through space.    

 

In other words, since time flows in a straight line, like a beam of light, it may be traversed 

by using a time loop, where a moving observer travels in a loop across the flow of time 

through space.  Such travel requires a way to travel faster than the flow of time through 

space, or a way to fold space itself, as an alternate means of quickly traveling over long 

distances.     

   

 In a sense, a time loop enables you to meet a different part of the flow of time in the same 

location, or to travel in time.  In a sense, it captures the flow of time and puts it into a bank 

account of time, which allows a person or observer to buy back the future, or return to the 

present.    

 

Moreover, a time loop or circle may be repeated many times to increase the length of time 

travel over its circumference, similar to how many car races use a track instead of a long 

course.     

 

From another perspective, if a moving observer is given the ability to run faster than the 

speed of light, as he runs faster and faster in a circle, before he reaches the speed of light, 

he will seem to disappear to a stationary observer, just as the whirling propellers of an 

airplane seem to disappear as they turn faster and faster.   

 

This disappearance of a moving observer from a stationary observer gives another 

indication of how the moving observer has moved outside the coordinates of space that are 

viewed by the stationary observer, and traveled in time.    
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