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ABSTRACT: Multivariate isotonic regression theory plays a key role in the field of testing 

statistical hypotheses under order restriction for vector valued parameters. This kind of 

statistical hypothesis testing has been studied to some extent, for example, by Kulatunga and 

Sasabuchi (1984) when the covariance matrices are known and also Sasabuchi et al. (2003) 

and Sasabuchi (2007) when the covariance matrices are unknown but common. In the present 

paper, we are interested in a general testing for order restriction of mean vectors against all 

possible alternatives based on a random sample from several p dimensional normal 

populations when the unknown covariance matrices are common. In fact, this problem of 

testing is an extension of Bazyari and Chinipardaz's (2012) problem. We propose a test statistic 

by likelihood ratio method based on orthogonal projections on the closed convex cones, study 

its upper tail probability under the null hypothesis and estimate its critical values for different 

significance levels by using Monte Carlo simulation. The problem of testing and obtained 

results is illustrated with a real example where this inference problem arises to evaluate the 

effect of Vinylidene fluoride on liver damage.  

KEYWORDS: Monte Carlo simulation; Multivariate isotonic regression; Multivariate normal 

population; Testing order restriction.  

AMS (2000) subject classification: Primary 62F30; secondary 62F03, 62H15.  

  

 

INTRODUCTION  

Problems concerning estimation of parameters and determination the statistic, when it is known 

a priori that some of these parameters are subject to certain order restrictions, are of 

considerable interest. There are many sizeable literatures dealing with means testing problem 

under order restrictions. Bartholomew (1959), considered the problem of testing the 

homogeneity of several univariate normal means against an order restricted alternative 

hypothesis.  

In many applications researchers are interested in testing for inequality constraints among 

population means vectors μi , i 1,2, ,k , after adjusting for covariates. For instance, 

toxicologists are often interested in studying the effect of a chemical on the mean weight of a 

specific organ of an animal after adjusting for its body weight (Kanno et al. 2002a, 2002b).  

Instead of the usual two-sided alternative μi μ j i j, researchers are often interested in testing 

against inequalities among the parameters (known as order restrictions). Some common order 

restrictions of interest in the multivariate distributions (with at least one strict inequality) are; 

(a) Simple order μi μ j , for i j , where this unequal means that all the elements of μ j μi 

are non-negative. (b) Simple tree order μ1 μ j , for 1 j, (c) Umbrella order (with peak at i )  
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μ1 μ2 μi μi 1 μk . The null hypothesis being H0 :μ1 μ2 μk  

(with at least one strict inequality).  

Robertson and Wegman (1978), obtained the likelihood ratio test statistic for testing the 

isotonicness of several univariate normal means against all alternative hypotheses. They 

calculated its exact critical values at different significance levels for some of the normal 

distributions and simulated the power by Monte Carlo experiment. Also they considered the 

test of trend for an exponential class of distributions.  

Sasabuchi et al. (1983), extended Bartholomew's (1959) problem to multivariate normal mean 

vectors with known covariance matrices. They computed the likelihood ratio test statistic and 

proposed an iterative algorithm for computing the bivariate isotonic regression. Sasabuchi et 

al. (2003), generalized Bartholomew's (1959) problem to that of several multivariate normal 

mean vectors with unknown covariance matrices. They proposed a test statistic, studied its 

upper tail probability under the null hypothesis and estimated its critical values. Sasabuchi 

(2007), provided some tests, which are more powerful than Sasabuchi et al. (2003).  

Bazyari (2012), presented some properties of testing homogeneity of multivariate normal mean 

vectors against an order restriction for two cases, the covariance matrices are known, and the 

case that they have an unknown scale factor. He computed the critical values for the proposed 

test statistic by Kulatunga and Sasabuchi (1984) for the first case at different significance levels 

for some of the two and three dimensional normal distributions. The power and p value of test 

statistic are computed using Monte Carlo simulation. Also when the covariance matrices have 

an unknown scale factor the specific conditions are given which under those the estimator of 

the unknown scale factor does not exist and the unique test statistic is obtained. Bazyari and 

Chinipardaz (2012), generalized Robertson and Wegman's (1978) problem to that of several 

multivariate normal mean vectors with unknown covariance matrices. They proposed a test 

statistic, studied its upper tail probability under the null hypothesis and estimated its critical 

values using Monte Carlo simulation. Bazyari and Pesarin (2013), considered testing the 

homogeneity of k mean vectors against two-sided restricted alternatives separately in 

multivariate normal distributions and examined the problem of testing under two separate 

cases. One case is that covariance matrices are known, the other one is that covariance matrices 

are unknown but common. In two cases, the test statistics are proposed, the null distributions 

of test statistics are derived and its critical values are computed at different significance levels. 

The power of tests studied via Monte Carlo simulation. Bazyari (2016), considered testing 

homogeneity of multivariate normal mean vectors under an order restriction when the 

covariance matrices are completely unknown, arbitrary positive definite and unequal. The 

bootstrap test statistic proposed and because of the main advantage of the bootstrap test is that 

it avoids the derivation of the complex null distribution analytically and is easy to implement, 

the bootstrap p value defined and an algorithm presented to estimate it. The power of the test 

estimated for some of the p dimensional normal distributions by Monte Carlo simulation. 

Also, the null distribution of test statistic evaluated using kernel density. The problem of 

estimating the unknown parameter μi , i 1,2, , p , under inequality constraints has received 

considerable attention in many books. For an excellent review on this subject one may refer to 

the books by Silvapulle and Sen (2005) and van Eeden (2006).  

Suppose that Xi1,Xi2, ,Xini are random vectors from a p dimensional normal distribution 

Np μi,  with unknown mean vector μi , i 1,2, ,k , and nonsingular covariance matrix . 

We assume that  is unknown. Consider the problem of testing  
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 H0 :μ1 μ2 μk ,  

against the hypothesis H1 , where H1 is all possible alternatives on the mean vectors. Still 

consider p dimensional normal distributions Xi ~ Np μi, , i 1,2, ,k , where μi (μ i(1) 

,μ i(2) ) , i 1,2, ,k . In general, we say that μ (μ1,μ2, ,μk ) R p k , for any μi 

( 1i, 2i, , pi ) R p , i 1,2, ,k , is ordered on columns, or simply μ is on ordered matrix, 

if μ1 μ2 μk . Suppose that the dimension of μ i(1) ’s is  r and the dimension of μ i(2) is 

p r . In the present paper, we are interested in the problem of testing  

  

H0 :μ1(1) μ2(1) μk(1),μ1(2) μ2(2) μk(2),  

against all alternative hypotheses on the mean vectors.  

Also in the present paper, we suppose that the common covariance matrices are unknown. It is 

clear that if r 0, this testing problem is  the testing problem given in Bazyari and Chinipardaz 

(2012). Therefore this testing problem is an extension of Bazyari and Chinipardaz (2012). Such 

tests may be used in some fields. This kind of testing representation is common, for instance, 

in selection and ranking problem for finding the largest element of several normal means (see 

Shimodaira, 2000). Sarka et al. (1995) and Silvapulle and Sen (2005) discuss other examples 

from different areas, especially in medicine. Also their applications can be found in clinical 

trails design to test superiority of a combination therapy (Laska and Meisner, 1989 and Sarka 

et al., 1995). Consider the following example.  

Example 1. A survey is conducted among the students in 4th grad, 5th grad and mixed grads 

in distinct I, and among the students in 4th grad and 5th grad in distinct II. Observations on 

four variables: the age, the household income, the height and the number of hours for non-

academic activities per week in schools are collected. The means are represented as elements 

in matrix μ R4 5 and given in Table 1.  

Table 1. Structure of the mean vector elements in experiment on the students  

   4th grad  5th grad  Mixed  4th grad  5th grad  

Dstinct I  Dstinct I  grads  Dstinct  Dstinct 

Dstinct I  II  II  

 

Age  11  12  13  14  15  

Income  21  22  23  24  25  

Height  31  32  33  34  35  

Play  41  42  43  44  45  

hours  
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One may assume that the inequalities  

  

11 12 13 14 

15, 

31 32 33 34 

35, 

21 22 23 24 

25 

  

41 42 43 44 

45, 

with at least one strict inequality in one of them is established. So we have the ordered 

hypothesis H0 : μ1 μ2 μ3 μ4, with at least one strict inequality.  

The rest of this paper is organized as follows. In Section 2, the problem of testing is described, 

two definitions are given and a test statistic is proposed. In Section 3, the null distribution of 

the test, two lemmas and main theorem are given. In Section 4, the critical values of the test 

statistic when the sample sizes are identical and also when they are different are estimated 

using Monte Carlo simulation. The problem of testing is applied to an application example in 

Section 5. Concluding remarks are given in Section 6. The complete source programs are 

written in softwareS PLUS .  

The problem of testing  

Consider p dimensional normal distributions Xi ~ Np μi, , with observations Xij , j 

1,2, ni , i 1,2, ,k . In the present paper, we are interested in testing  

  

H0 :μ1(1) μ2(1) μk(1),μ1(2) μ2(2) μk(2),  

  

against all alternative hypotheses on the mean vectors when the unknown covariance matrices 

are common.  

 1 ni k ni 

Let Xi ni j 1 Xij and S i 1 j 1 (Xij Xi )(Xij Xi )  be the sample mean vector 

of  

i th population and sample mean variance covariance matrix respectively.  

  

Definition 1 (Sasabuchi et al., 1983). Given p variate real vectors X1, X2 , , Xk and p p 

positive definite matrices 1, 2, , k , a p k real matrix  

(μˆ1,μˆ2, ,μˆk) is said to be the multivariate isotonic regression (MIR) of  

X1, X2 , , Xk with weights 1
1, 2

1, , k
1, if  (μˆ1 μˆ2 μˆk) and  

(μˆ1,μˆ2, ,μˆk) satisfies  
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 k k 

μmin2 μk (Xi μi) i
1(Xi μi ) (Xi μˆ i) i

1(Xi μˆ i),  

μ1  

 i 1 i 1 

  

where μˆ i ' s can be computed by the iterative algorithm proposed by Sasabuchi et al. (1983).  

In fact, this definition includes the definition given in Barlow et al. (1972) for univariate 

variables.  

Definition 2. c is called a convex cone if x, y c , 0, 0 , then x y c. Also c is 

called a closed convex cone if it is convex cone and close set. Define two closed convex cones 

c0 and c1 in R pk by  

  μ1   

c0 μ μ1(1) μ2(1) μk (1) p ,i 1,2, ,k ,  

,μ1(2) μ2(2) μk (2) ,μi R 

  μk   

  μ1   

c1 μ μi R p ,i 1,2, ,k ,  

  μk   

where under the closed convex cone c1 there is no any restriction on the mean vectors μi .  

Suppose that μˆ i , i 1,2, ,k , is the MIR of unknown parameter μi under the closed convex 

cone c0 . Then we have  

 k k 

i 1 ni (Xi μˆ i ) S 1(Xi μˆ i ) minμ c0 i 1 ni (Xi μi ) S 1(Xi μi 

) .  

  

For pk dimensional real vectors x (x1 ,x 2, ,x k )  and y (y1 ,y 2, ,y k )  their 

inner product in R pk is defined as  

k 

x,y Λ nix iΛ
1yi 

i 1 
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n1 1 0 y1  (x1 ,x 2, ,x k 

) . 

 0 n 1 yk  

  k  

Also define a norm || .||  in R pk by || x ||2 x,x Λ. Suppose that for x R pk ,  

Λ(x,c) be the point which minimizes || x w ||Λ, where w c. We note that, since c is a closed 

convex cone, so the uniqueness of Λ(x,c) is clear.  

Let A B be the Kronecker product of matrices Ar m (aij ) and Bh s (bkl ) and defined as  

a11B a1mB  

   

 A B  .  

ar1B armB  

Therefore  

x,y Λ x (D Λ 1)y,  

  

where  

 

n1 

 

D 0 

 

0 

 

  

The test statistic  

0 0  

0 

 

.  

  

 

0 nk 

 

The likelihood function for testing H 0 versus H1 is  

L(μ1,μ2 , ,μk , ) i k1 (2 1) p/2 ni n2i exp

1 n i (Xij μi ) 1(Xij μi )  

  | | 2 j 1  

n 

  1   n2 exp  1 k n  
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 (2 ) p/2 | |  2 i 1 j i1 (Xij μi ) 1(Xij μi )

   

 

 n n 

 

| 

 (2 1) p/2  2 exp 1 tr 1 k ni (Xi μi )(Xi μi )

S , 

  |  2 i 1  

k where S is 

distributed with Wishart distribution Wp (n k, ) and n ni .  

i 1 

Suppose that A is a p p non-negative definite real (symmetric) matrix, 1, 2, , p are the 

characteristic roots of A and  is a positive number, then  

 p p 

  I p A (1 i ) 1 i O( 2 ) 1 tr( A) O( 2 ).                (1)  

 i 1 i 1 

By Anderson (1984), it is well known that the supremum of the function  

L(μ1,μ2, ,μk , ) on 0 which is the supremum for all the p p positive definite matrices 

given by  

np 

  max L(μ1,μ2 , ,μk , ) 2 ne 2 S i k1 ni (Xi μi )(Xi μi ) ,               

(2)  

 0  

Therefore we have  

np 

 Hmax0, 0 L(μ1,μ2 , ,μk , )  2 ne 2 S i k1 ni (Xi μˆ i )(Xi μˆ i ) ,             

(3) and also it is completely clear that  

np 

 2 e 2n 

  max L(μ1,μ2 , ,μk , )   S 2 .                                      (4)  

2 
n 
 

2 
n 
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2 
1 

  

 H1, 0  n  

From equations (1) and (2) we get that  

np 

max 0 Ln L(μ1,μ2 , ,μk , ) Ln 2 ne 2 n Ln S k ni (Xi μi 

)(Xi μi )  

 2  i 1  

np 

 

 Ln    

  2 ne 2 n2 Ln S I p S 12 i k1 ni (Xi μi )(Xi μi 

) S  

 

np 

 2 ne 2 n2 Ln S Ln I p S 12 k ni (Xi μi )(Xi μi 

) S  

Ln i 1  

np 

Ln

2 e 2 

n Ln S 

Ln 1 tr k ni S 1 (Xi μi )(Xi μi )  

 n    i 1  

 k 1 (Xi 

μi )(Xi μi 

) i 

2 
1 

( 1 
2 2 

2 

1 
2 2 

2 

2 

2 

2 

 
       

 

 
 
 

 

 
      

 

 
 
 

 

 

 

 

 

i i i 

np 

np 

n Ln 
n 

S Ln 
n 

n 

e 
Ln 

S n tr Ln 
n 

S Ln 
n 

n 

e 
Ln 

μ X  

 

On the other hand   

2 2 

' ) ˆ )( ˆ ( 

2 

1   

  

   

np 

k 

i 
i i i i i 

e 

n S Ln μ X μ X 
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   i 1  

  k 1(Xi μi ) , 

) S 

   i 1  

    max Ln L(μ1,μ2 , ,μk , ) 

  n n  H0, 0                              (5)  

Ln S minμ H0 k ni (Xi μi ) S 1(Xi μi )  

i 1 k 

Ln S ni (Xi μˆ i ) S 1(Xi μˆ i ). 

i 1 

By equations given in (3) and (4), the likelihood ratio test statistic is  

Then from equation 

(5) we have  

k 

2Ln n i 1 

ni (Xi μˆ i 

) S 1(Xi μˆ i )  

n|| X μˆ ||2S , 

where X (X1 ,X 2, ,X k )  and μˆ (μˆ1 ,μˆ 2, ,μˆ k ) . Thus the test statistic by 

LRT method given by  

T n|| X μˆ ||2S .  

  

For given significance level , we reject the null hypothesis H 0 , when T t , where t  is a 

positive constant depending on the significance level.  

  

The null distribution of the test statistic  

T 

To obtain the null distribution of the statistic T , first we denote   by T . Then n 

 T || X μˆ ||2S || X S (X,c0) ||
2

S                                               (6) If H2 :μ1 μ2 μk , 

then H 2 is the least favorable among hypotheses satisfying H0 with the largest type I error 

probability (Silvapulle and Sen, 2005). Therefore for given the significance level , we have 

sup Pμ0, (T t ) , where  

. 

' ) ˆ )( ˆ ( 

2 

2 

1 
n 

n 
k 

i 
i i i i i 

S 

n S 

 

 

  
   

  

μ X μ X 

  

Therefore   

. ' ) ˆ )( ˆ ( 2 
1  

 
 

 
 
 
 

 
         

S Ln n S Ln n Ln 
k 

i 
i i i i i μ X μ X   
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0 

μ0 is the common value of μ1, ,μk under H2 .  

Now, easily we have the following theorem.  

Theorem 1. Under the hypothesis H2 , the distribution of T given in (6) is independent of μ0 .  

Proof. Define the random vector Y by  

  

 Y1  X1 μ0  μ0  

       

 Y   X .  

 Yk  Xk μ0  μ0  

  

Then it is clear that the distribution of Y in independent of μ0 and is distributed with  

N p (0, ). On the other hand  

ni 

T || X S (X,c0) ||
2

S || Y S (Y,c0) ||
2

S .  

  

Since the distribution of || S (Y,c0) Y||2S is independent of μ0 , so the distribution of T 

statistic is independent of μ0 and this completes the proof.    Define the closed convex 

cone c2 as  

  μ1   

    

c2 μ μ1(1) μ2(1) μk(1) , 1(2)1 2(2)1 k(2)1 ,  

  μk   

where i(2)1 er 1μi , i 1,2, ,k and er 1 is a p dimensional vector with the  

(r 1) th element being one, others are zero. Also we define another statistic  

  

T * || X S (X,c0) ||
2

S || X S (X,c2) ||
2

S .  

Since the computation of the critical values from the formula supsupPμ, (T t )  

H0 
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is difficult, we will show that the distribution of T * is independent of μ0 and , where μ0 is the 

common value of μ1,μ2 , ,μk .  

If μˆˆ (μˆˆ 1 ,μˆˆ 2 , ,μˆˆ k )  is the multivariate isotonic regression of X1, X2 , , Xk under 

the closed convex cone c2 , then  

 k k 

T * ni (Xi μˆ i ) S 1 (Xi μˆ i ) ni (Xi μˆˆ 
i ) S 1 (Xi μˆˆ i ).  

 i 1 i 1 

Suppose that M is a p p nonsingular positive definite matrix given by  

 M11 0  

 M M 21 M 22 ,                                                            (7) where M11 is a r r dimension 

matrix and M22 is a (p r) (p r) dimension matrix. Also put  

  

 I 0  

 D  1           and         DM.  

 0 M 22  

Then we get that  

  

 M11 0  

1M 21 I . M 22 

Put   

 E 0 

   11  1 M11 1 0 .                                   (8)  

 E21 E22 M 22 1M 21M11 1 I  

  

Lemma 1. For matrix M given in (7), we have  

a) For any p p orthogonal matrix H ,  

(I (HM ))c0 c0.  

  

b) There exists a p p orthogonal matrix H which satisfies:  

(I (HM))c2 c2.  
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 Proof. The proof of part (a) is easy to derive. We only prove the part (b). Put  

Ir
* [Ir 0], then by (8) it is clear that Ir

* 1 [M11
1 0] . Let r 1 er 1 . Then  

 T μ1   

 (I )c2  μ1(1) μ2(1) μk (1) ,μ1(2)1 μ2(2)1 

μk (2)1  

 T μk   

k 1 T μ1  Ir* μi Ir* μ(i 1) ,er 1 μi er 1 

μ(i 1) i 1 T μk   

k 1 1 * 1 Ir* 1 (i 1) ,er 1 1 i 

er 1 1 (i 1)  

  Ir i  

 i 1 k   

 

 

k 1 1  M11 1 i(1) M11 1 (i 1)(1) ,er 1 

1 i er 1 1 (i 1)  

 i 1 k   

 

 k 1 1   

i(1) (i 1)(1) , r 1 i r 1 (i 1) i 1 

k   

 

 k 1 1    

 

i(1) (i 1)(1) , i(2)1 (i 1)(2)1 c2. i 1 

k   

  

On the other hand  

(I M )c2 (I (D 1T)) c2 (I D 1 )c2 

 k 1 D 1 μ1   
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μi(1) μ(i 1)(1) ,μi(2) μ (i 1)(2) i 1 D 1 

μk   

k 1 D 1 μ1  * Ir*μ(i 1) ,er 1 μi er 1 μ 

(i 1)  

   Ir μi  

 i 1 D 1 μk   

k 1 1 * D i Ir* D (i 1) ,er 1 D i 

er 1 D (i 1)  

  Ir 

 i 1 k   

 

 

 k 1 1 * Ir* (i 1) ,er 1 D i er 1 D (i 1) . 

  Ir i  

  

 i 1 k   

 

Put a1 11
1 M 22

1 e1,( p r) 1, where e1,( p r) 1 is a (p r) -dimensional vector of the form  

(1,0, ,0) , and 11 is the positive number such that a1 a1 1. There exists a  

(p r) (p r)  orthogonal  matrix  H22  such  that  H22 a1 

e1,(p r) 1 .  

Put  

 I 0  

H 0 H22 . Then for matrix H , we have  
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(I (HM))c2 (I H)(I M)c2 

H  

 k 1  1 * Ir* (i 1) ,er 1 D i er 1 

D (i 1)  

   Ir i  

 i 1 H k   

 

 

 

 k 1 1 * H i Ir* H (i 1) ,er 1 D H i er 1 

D H (i 1)  

  Ir 

 i 1 k   

 

 

 k 1 1  * I * ,e M 1 H e M 

1 H 

I 

 

 

 

 r i r (i 1) 1 ,( p r) 1 22 22 i(2) 1 ,( p r) 1 22 22

(i 1)(2) i 1 k   

 

 

 k 1 1 * Ir* (i 1) , 11 e1 ,( p r) 1 i(2) 11 

e1 ,( p r) 1 (i 1)(2)  

  Ir i  

 i 1 k   
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 k 1 1 * Ir* (i 1) , er 1 i er 1 (i 1) 

c2,   

  Ir i  

 i 1 k   

 

and this completes the proof.     

Lemma 2. Under the hypothesis H2 , the distribution of T * is independent of μ0 and  

, where μ0 is the common value of μ1,μ2, ,μk .  

Proof. It is clear that the distribution of T * is independent of μ0 .  

Put W (X μ0) J , where J is the vector of k 1’s. To arbitrary positive definite real matrix 

, there exists lower triangular non-singular matrix M with positive diagonal elements 

satisfying M M I p . Let H be the orthogonal matrix which satisfies the part (b) of lemma 

1. Then  

  

T * ||W S (W,c0 ) ||
2

S ||W S (W,c2 ) ||
2

S 

 ||(I (HM ))W HMSM H ((I (HM ))W,(I (HM ))c0 ) ||
2

HMSM H    

||(I (HM ))W HMSM H ((I (HM ))W,(I (HM ))c2 ) ||
2

HMSM H . 

Put  

  

Z1  HMW1     

 Z2  HMW2  * HMSM H .  

 Z   (I (HM ))W        and        S  

   Zk  HMWk  

Then by lemma 1, we have  

  

T * || Z S (Z,c0 ) ||
2

S* || Z S (Z,c2 ) ||
2

S* .  

By their definitions, S* and Z1, ,Zk are mutually independent, S* and Zi distributed as Wp 

(n k, I p ) and N p (0,ni
1 I p ), i 1, ,k , respectively. This completes the proof.    

Suppose that  
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 Ir 0  

 Fn 0 An ,  

 

where Ir is the r r identity matrix and An is a (p r) (p r) nonsingular matrix defined by  

 1  0  

   

n 1 An .  

   

 n 0 1  

It is clear that if r 0, then Fn is given in lemma 6 of Bazyari and Chinipardaz  

(2012).   

Now, we have the following main theorem.  

Theorem 2. For the real number t  depending on the significance level ,  

supsup Pμ, (T t ) P0,Ip (T * t ).  

  H0 

Proof. It is completely clear that T T * . Then by lemma 2, we get that  

supsup Pμ, (T t ) sup P0, (T t ) 

  H0  

                                        (9)  

sup P0, (T * t ) P0,Ip (T * t ). 

 

On the other hand, we show that  

supsup Pμ, (T t ) P0,I p (T * t ).  

  H0 

Using the lemmas 7 and 8 given in Bazyari and Chinipardaz (2012), it is easy to show that  

P0, n (T t ) P0,Ip || X S (X,c0 ) ||2S ,  

where n (Fn Fn)
1. Also  

limP0, n (T t ) lim P0,Ip || X S (X,c0 ) ||2S t n  n 
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P0,Ip || S (X,c2 ) X ||2S t  

  

P0,Ip T * || S (X,c0 ) X ||2S t t  

P0,Ip (T * t ), 

since || S (X,c0) X||2S 0. So that  

supsup Pμ, (T t ) sup P0, (T t ) 

   H0                            (10)  

lim P0, n (T t ) P0,Ip (T t ). n 

From (9) and (10) the proof of theorem is complete.       

Therefore to compute the critical values of the test statistic it is enough to obtain that of T * 

when μ 0 and I p .  

  

The critical values  

In this section, the critical values of the test statistic T are estimated by Monte Carlo 

simulation method. To obtain these values, by theorem 2, we only need to obtain that  

k 

of T * when μ 0 and I p . In this simulation, we generate n ni sets of  

i 1 

p variate normal vectors from Np (0,I) and compute the statistic T * . This computation is 

repeated 10000 times to get an estimated upper  point of T * . We further repeat this process 

10 times and compute the average of the 10 estimated upper  point for 0.01,0.025,0.05, 

(p 3,k 4,r 1) , (p 4,k 5,r 2) , (p 5,k 4,r 3) , and ni 5,10,15, 20, 25, i 

1,2, ,k , respectively. The estimated critical values are given in Table 2. Also the critical 

values of test statistic are estimated when the sample sizes are different. The estimated critical 

values are given in Table 3.  
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Table 2. Estimated critical values of test statistic by simulation when the sample sizes 

are identical  

n n 

n  

  

 p  k  r  

 0.01  3  4  1  2.734 

  4  5  2  2.916  1.049  0.825  0.535  0.414  

  5  4  3  1.250  0.635  0.341  0.251  0.123  

0.025  3  4  1  1.687  1.216  0.732  0.418  0.084  

  4  5  2  1.662  0.841  0.615  0.416  0.240  

  

0.05  

5  

3  

4  

5  

4  

4  

5  

4  

3  

1  

2  

3  

0.631  

1.120  

0.547  

0.346  

0.452  

0.667  

0.623  

0.381  

0.243  

0.395  

0.352  

0.187  

0.142  

0.223  

0.335  

0.065  

0.046  

0.055  

0.071  

0.026  

 

  

Table 3. Estimated critical values of test statistic by simulation when the sample sizes 

are different  

  p  k  r  
n1  n2  n3  n4  

n5  Critical 

value  

0.01  3  4  1  8  12  11  18    4.012  

        10  14  20  15    3.209  

        16  20  12  18    2.544  

  4  5  2  17  18  15  14  10  2.112  

        22  21  13  20    1.730  

        23  21  14  20    1.275  

  5  4  3  15  18  16  31    1.015  

        23  28  17  21    0.883  

        26  19  29  25    0.441  

0.025  3  4  1  8  12  11  18    3.725  

k 2 1       

5   10   15   20   25   

  2.381   1.160   0.742   0.273   
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        10  14  20  15    2.850  

        16  20  12  18    2.152  

  4  5  2  17  18  15  14  10  2.006  

        22  21  13  20    1.429  

        23  21  14  20    0.803  

 

  5  4  3  15  18  16  31    0.425  

        23  28  17  21    0.081  

        26  19  29  25    0.036  

0.05  3  4  1  8  12  11  18    3.452  

        10  14  20  15    2.840  

        16  20  12  18    2.573  

  4  5  2  17  18  15  14  10  1.861  

        22  21  13  20    1.200  

        23  21  14  20    0.723  

  5  4  3  15  18  16  31    0.395  

        23  28  17  21    0.074  

        26  19  29  25    0.024  

 

  

An example  

The problem we are considering comes from Dietz (1989). Vinylidene fluoride is suspected of 

causing liver damage. An experiment was carried out to evaluate its effects. Four groups of 10 

male Fischer-344 rats received, by inhalation exposure, one of several dosages of vinylidene 

fluoride. Among the response variables measured on the rats were three serum enzymes: SDH, 

SGPOT, and SGPT. It is known in the scientific considerations that the response level of the 

enzyme SDH would not be affected by the dosage levels of vinylidene fluoride and the 

responses of the other two enzymes would be affected monotonically. The data are given in 

Table 4. Let Xij (Xij1, Xij2, Xij3)  denote the observations on the three enzymes for j th subject  

( j 1, ,10) in treatment i(i 1, ,4). Let ik denote the mean response for ith treatment (i.e. 

dose) and kth variable and let μi ( 1i , 2i , 3i )  for i 1, ,4.  

Suppose that we define μ i(1) 1i and μ i(2) ( 2i , 3i ) . Now, one formulation of the null 

and alternative hypothesis is  
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H0 :μ1(1) μ2(1) μ4(1),μ1(2) μ2(2) μ4(2),  

against all alternative hypotheses on the four mean vectors for significance level  

0.05.  

  

Table 4. Serum enzyme levels in rats  

Rat within dosage Enzyme  

 0 SDH   SGPOT  101  103  90  98  101  92  123  105  92 

 88   SGPT  65  67  52  58  64  60  66  63  68  56  

                        

 1500 SDH  25  21  24  19  21  22  20  25  24  27  

 SGPOT  113  99  102  144  109  135  100  95  89  98  

 SGPT  65  63  70  73  67  66  58  53  58  65  

                        

 5000 SDH  22  21  22  30  25  21  29  22  24  21  

 SGPOT  88  95  104  92  103  96  100  122  102  107  

 SGPT  54  56  71  59  61  57  61  59  63  61  

                        

 15000 SDH  31  26  28  24  33  23  27  24  28  29  

 SGPOT  104  123  105  98  167  111  130  93  99  99  

  SGPT  57  61  54  56  45  49  57  51  51  48  

  

From the data, we have  

22.7 22.8 27.3 27.3 X 99.3 108.4 100.9 112.9 .  

   

 61.9 63.8 60.2 52.9  

Then by iterative algorithm to compute multivariate isotonic regression given by Sasabuchi et 

al. (1992), under the closed convex cone c0 the estimate of μ is  

  

26.75 26.75 26.75 26.75 μˆ 99.3 102.4 108.8 114.2 ,  

                  
Dosage   1   2   3   4   5   6   7   8   9   10   

18   27   16   21   26   22   17   27   26   27   
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 61.90 65.3 66.03 68.1  

and under the closed convex cone c2 the estimate of μ is  

26.75 26.75 26.75 26.75 μˆˆ 122 129.7 129.7 140.2 .  

   

 65.33 65.33 65.33 65.33  

So that     

4.05 

X μˆ 0 

 

0 

and  

3.95 

6 

1.5 

0.55 

7.9 

5.83 

0.55  

1.3 ,  

15.2  

4.05 

X μˆˆ 22.7 

 

3.43 

3.95 

21.3 

1.53 

0.55 

28.8 

5.13 

0.55  

27.3 .  

12.43  

The sample mean variance covariance matrix and its inverse are  

  

47.98 

S 3.80 

 

1.021 

and  

  

2.084652e-002 S 1 

6.153974e-006 

 

1.888551e-004 

Also the value of test statistic 

T * is  

4 

6.153974e-006 0.00018885506 1.007236e-004 -

0.00008568268 .  

 

-8.568268e-005 0.00919379028  

 4  

T * 10 (Xi μˆ i ) S 1 (Xi μˆ i ) (Xi μˆˆ i ) S 1 (Xi μˆˆ i 
) 4.887.  

 i 1 i 1  

3.80 

10007.8 

93.347 

1.021 

93.347 ,  

109.66  
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Since at significance level 0.05, T* 0.667, therefore we reject the null hypothesis.  

  

CONCLUDING REMARKS  

Bazyari and Chinipardaz (2012) considered the problem of testing order restriction of mean 

vectors against all possible alternatives based on a sample from several p dimensional normal 

distributions. They obtained a test statistic and also presented Monte Carlo simulation to 

estimate its critical values. In this article, the general form for this problem of testing is 

considered. In fact, this paper did numerical study based on the claim that the tail probability 

of a proposed test statistic T for testing order restricted null hypothesis can be simplified by 

another simpler statistic T * . We proposed a test statistic by likelihood ratio method based on 

orthogonal projections on the closed convex cones. Monte Carlo simulation is used to obtain 

the critical values of test statistic. We also applied this test to a real example where this 

hypothesis problem arises to evaluate the effect of Vinylidene fluoride on liver damage. For 

computing the test statistic in numerical example the estimation of unknown parameter vector 

is done by the iterative algorithm proposed by Sasabuchi et al. (1983).  
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