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Abstract: The stochastic integral is expressly designed as a tool for financial modeling and it is now the backbone 
of a large body of academic teaching and research on asset pricing, corporate finance and investment behavior. 
The note offers an outline of the nature of the subject along with a brief exposition of why it is so. This lecture note 
will serve as the basis for asset pricing at the graduate class. It should be accessible even to advanced 
undergraduates. The note also at the end contains several exercises without solution for the practitioners. This 
note is written with a certain mathematical rigor because of   the complexity of the material. 
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1.0 The Stochastic Integral as a Model in Finance 

In standard calculus and ordinary differential equations, a central object of study is the derivative dt / df of a 

function    t) ( f . If f is a function and X is continuous, then the Riemann-Stieltjes integral  ∫
t

0

 
df X    is well 

defined. The Lebesgue - Stieltjes integral can then be generalized by measurable integrands. However, this process 
is much less well behaved. For example, with probability one, the sample paths of standard Brownian motion are 
nowhere differentiable. Furthermore, they have infinite variation over bounded time intervals. Consequently, if  ξ  

is such a process, then the integral  ∫ ζ
t

0
dX   can not defined using the standard methods1.The typical stochastic 

calculus-based financial model describes the random variation of the market price, say X, at time t , of some 
financial  asset. For proper formulations, one fixes a probability space ( P , ,ℜΩ ) (a measure space with 

  )  ( p =Ω 1) as well as a filtration {        t  :  t ∈ℜ [0, ∝ ] } of sub-- −σ algebras of ℜ that determines  the timing Of   

the revelation of information. The ‘usual condition’ for a filtration is laid out by Protter (2004). One may loosely 
view tℜ  as the set of events (elements ofℜ ) whose outcomes are certain to be revealed to investigate as true or 

false by or at time  t.  For any event   A the probability assigned to A by ors is  P (A ). The price process 

                                                   
1
In finance often a more direct approach is taken. The idea is that we simply define the stochastic integral such that 

the required elementary properties are satisfied. That is, it should agree with the explicit expressions for certain 
simple integrands, and should satisfy the bounded and dominated convergence theorems. Much of the theory of 
stochastic calculus follows directly from these properties, and detailed constructions of the integral are not required 
for many practical applications. Note that, whereas the value of a standard Lebesgue integral is just a real number, 
stochastic integrals take values in the space of random variables. It is therefore possible to weaken some of the 
properties required of such integrals. First, any identity is only required to be satisfied almost surely. That is, on a set 
of probability one. Second, the notion of convergence of a sequence of real numbers can be replaced by the much 
weaker idea of convergence in probability. 
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X= { ]  , 0 [   t : ∝∈tX } is adapted2 to the filtration, meaning that  Ξ→Ω   :  Xt  is a random number whose outcome 

is revealed to investigate at or before time t3.   

 

Occasionally the market efficiency is meant to imply that the price process X must meet a martingale4, meaning 
essentially that the current price tX  is a conditionally unbiased predictor of the price uX  at any future time u. This 

is a misconception. Investors would generally not take the risk of owning an asset unless they are compensated by 
an expected returns. Beyond a compensation for risk, even a risk-free asset must offer a certain return that 
compensates the investor for tying up capital. Allowing for nonzero expected changes, it is, therefore, natural to treat 
the price process X as, loosely speaking, a ‘martingale plus something’ or, to pick a precise and a natural definition, 
a semi martingale.5 The most classical example of a semi martingale used in financial modeling is a geometric 
Brownian motion as given by Paul Samuelson (1965). 

The stochastic integral should satisfy bounded convergence in probability. That is, if is a sequence of predictable 
processes converging to a limitξ , and is uniformly bounded   | k    ≤′′ξ  or some constant K > 0, then the integrals 

converge. These properties are enough to define stochastic integration for bounded and predictable integrands 

                           dX        dX   
t

0

n ∫∫ ξ→ξ
t

0
           

 

2.0 A trading strategy 

 

 A trading strategy θ  determines the quantity )( t ωθ  of the asset held in each state Ω∈ω    and   at each time  t, for 

a model of a well-functioning market, it is crucial to rule out trading strategies that are based on unlimited profits at 
no risk. The natural corresponding measurability restriction is that θ  is a predictable process. Given price process   

                                                   
2 A process X is adapted if for all t, tX  is tℜ - measurable. 
3 Stochastic integration with respect to standard Brownian motion was developed by Kiyoshi Ito. This required 
restricting the class of possible integrands to be adapted processes, and the integral can then be constructed using the 
Ito isometric; see Ito (1944. Ito laid the foundation for stochastic calculus with his model of a stochastic process X 

that solves a stochastic differential equation of the form:  dB )(X     ds )(X    X  s

t

0
s

t

 0
s0 ∫∫ σ+µ+=tX where B is a 

standard Brownian motion and µ and σ are functions from Ξ to Ξ  satisfying some technical conditions.  (A 

Lipchitz condition suffices). As a generalization of it, Ito has generalized a class of processes of this form 

 dB V    dsH     X   s

t

0
s

t

0
 s0 ∫∫ ++=tX for adopted process H and V satisfying suitable technical conditions. Such a 

process is now called the ‘Ito Process’, a special case of what later became known as a semi martingale. 

 
4  A martingale is an integrable adapted process M  whose conditional change expected change tu  M-  M( E | ) ℜ  
is zero whenever u ≥  t  , see Harrison and Pliska (1981), Harrison and Kreps (1979), Das (2011) 
 
5A semi-martingale is defined as the sum  M + A  of local martingale M, a slight relaxation of a martingale and  
adopted process A whose sample paths have finite variation on each bounded time integral. 
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X and a trading strategy θ  satisfying some technical conditions, the total financial gain udX ∫ θu  between any 

two times s and   s  ≥t  as defined as stochastic integral6.  

Definition 1  

Let be a process. The stochastic integral up to time t > 0   with respect to , if it exists, is a map  

                                     Bp 0L  →    ,        ∫↔
t

0
dX      ξξ            

  Which agrees with this explicit expression for bounded elementary integrands   ξ  , satisfies bounded convergence 

in probability.  

Proving the existence of the stochastic integral for an arbitrary integrator is, in general, quite a difficult problem. 
However, uniqueness is a simple consequence of the monotone class theorem. Also, note that the requirement that 
the integral is a linear function of the integrand was not mentioned in the definition above. However, this property is 
again a simple consequence of the monotone class theorem. 

Lemma 1  

Let X be a stochastic process. If the stochastic integral up to time t > 0 as given by Definition 1 exists, then it is 
uniquely defined. Furthermore, linearity in the integrand is satisfied.  

Definition 2 

A semi martingale X  is a cad lag adapted process7 such that, for each   t  > 0, the stochastic integral given by 
Definition 1 exists.  

An elemental type of trading strategy is a ‘buy and hold’ strategy θ which indicates a position immediately after 

some stopping time T and close it at some later time stopping type U. For a position sizeθ that is Tℜ -measurable, 

the trading strategy θ is defined by   =θt { θ∠∠    U t  1 T . The total gain from trade for this ‘buy and hold’ strategy is 

naturally ) X X (    TU −θ=θ∫ t

U

0
tdX  the position size multiplied by the interim price change. The gain from trade 

for a general stochastic trading strategy can be defined as the total gain of an  approximating portfolio of ‘buy and 
hold’ strategies, in a particular limiting sense8. For the cases most commonly encountered in financial applications, 
based on Brownian motion, Shreve (2004) gives a clear  explanation of this limit. 

 

A typical financial model allows for n different securities, with price processes    X nX              . . . .  An investor can 

choose an associated   n –dimensional trading strategy    =θ ( n     . . θθ ,1 ) from some allowable set ψ  determining 

the total gain from trade process  

                                                   
6 For general settings, minimal restrictions on the trading strategyθ and the price process X  for ∫ tθ tdx  to be a well-

defined stochastic integral in Protter (2004) 
 
7 A cadlag function is a function, defined on or a subset of , that is right continuous and has a left limit. The 
acronym Cadlag comes from the French "continue à droite limit à gauche," which translates to the English "right-
continuous with left limits" (sometimes abbreviated "RCLL").  All continuous functions are "cadlag" See Davidson 
(1994). 
8 See Protter ( 2004) for the case of semi-martingale 
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          ∫ ∑=θ
n

 -1i
t       dX t ∫ itdX  itθ  

In addition to incorporating technical restrictions under which these stochastic integrals are well defined, the 
allowable set Ψ  can enforce budget limits, credit constraints, short-sales limitations or various other natural 
investment restrictions. Significant strands of research literature address the following two classes of problems: 

 

• Given some utility functional  U on the space of potential gains from trade, solve the optimization problem  

 U     sup ψθ ∈ ( ss dX  ∫ θ
t

0
). The utility functional U among other properties can encode preferences regarding risk, 

inter temporal substitution and the timing of information about trading gains. 
 

• Apply the laws of supply and demand to characterize the price processes of the available financial securities. A 
minimal restriction on the behavior of prices is the absence of arbitrages; demand and supply could never be 
matched in the presence of arbitrage.9 

The field of finance is replete with many other applications of stochastic calculus such as the financial policies of 
corporations, the design of securities and risk management, which usually involves control of characteristics of the 

left tail of the probability distribution of the gain from trade  ∫ θ
t

0 
ss dX   

 

3.0 Asset Pricing: Black - Scholes Theory 

 

In its simplest form, the Black- Scholes (- Merton) model (1973) involves only two underlying assets, a riskless 
asset, cash bond and a risky asset, stock. The asset cash bond appropriates at the short rate or riskless rate of return, r 
which (at least for now) is assumed to be non random, although possibly time-varying. Thus the price of the cash B 
bond at time t is assumed to satisfy the differential equation. 

         B r     
td

B d
tt

t =       

Where unique solution for the value    B =0 1 is  

       sd r   exp   B
t

0
st ∫=    

The share price tS   of the risky asset stock at time t is assumed to follow a stochastic differential equation of the 

form 

    tttt t  d  S    dt  S dS ωσ+µ=  where }      tt ≥ω 0 

where tµ  is a non random (but not necessarily constant) function of  t and σ > 0 a constant called the volatility of  

the stock10. 

                                                   
9Karatzas and Shreve (2005) Shreve’s work (2005) focuses on arbitrage free asset pricing perhaps because most of 
the readers for whom the book is intended are aiming for business careers in finance. The theory of optimal 
investment, while a significant subject area in academia, has achieved much less traction in business practice. Shreve 
and others provide a detailed treatment of mathematical models of optimal investment. 
10 The Black-Scholes model can be derived in all detail from a special portfolio called the delta hedge, Black-Scholes 
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Proposition 1 

If the drift coefficient function tµ  is bounded11, then the stochastic differential equation has a unique  

solution with initial condition 0S  and is given by  

  exp    S S 0t = (  sd        ) 2
t (   -  

t

0
s

2
t ∫ µ+σωσ ) 

Moreover, under the risk-neutral measure, it must be the case that  

             r t  t µ=  

 Corollary 1  

Under the risk neutral measure the log of the discounted stock price at time t is normally distributed with  

mean 2
t    -   S 2

0 σlog    and variance T 2σ  

Exercises 

Exercise 1   

Assume that the value of an index X follows geometric Brownian motion with drift  σ  An asset V promises that 
when  X  reaches Q, the bearer will be paid  R  and the asset will be retired The economy is risk neutral and the risk-
free discount rate is r . 

a. What is the value of the asset?  [Hint: γ= X A  V  where A and γ  are constants. Also the boundary condition 

requires V (Q) = R  

b. What are the sufficient conditions for γ > 0 ? 

Exercise 2 

Refer to page 3, footnote 3. 

a. Establish that for any smooth function          :  f Ξ→Ξ  

       sss
t

0

2
ssss

t

0
0t dB V X ( f        Sd ) V ) X ( f  

2

1
  H )X ( f (      ) X ( f    )  X ( f )∫∫ ′+′′+′+=  

This is actually the Ito’s formula12 

 

                                                                                                                                                               
 (1973). Black and Scholes produced two separate proofs one from the delta hedge and the other via CAPM. The 
CAPM assumes a different risk-reduction strategy. 

11 If exact valuations, as in exotic options are usually difficult, it is always useful to narrow the searching of the prices 
by placing boundary restrictions. Exotic options are very powerful and widely used tools of risk management. 
However, because of the complexity of those contracts, the basic characteristics of many exotic options are not clearly 
understood, or are even misunderstood. See Ye (2009), Fackler (2000) 

 
12 Jarrow and Protter (2004) offer a colorful and ex excellent but complete history of these of this type of development 
up to the time of modern financial theory. 
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Exercise 3 

Assume X follows geometric Brownian motion, with drift α and volatility σ . Assume Y follows geometric 
Brownian motion with drift β  and volatilityλ . The correlation between the Wiener13 components of the two 

processes is ρ ; dt    dz z d yx ρ=  

a   Let  XY  V=    What process does V follow?  Define your process 9 i.e., define vv   , σα and vdz  so that it can be 

written as vvv dZ   dt        V
dV σα +=  

 

4.0 Remarks 

I operated within the conceptual apparatus of the modern theory of asset pricing. This note is based largely on my 
own previous published contributions and which can be seen as a synthesis of work accomplished over the last 15 
years. In spite of a technical presentation, this work may be difficult, however, and it might require a certain 
intellectual investment from students... 
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