Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

Synthesis, Characterization and Anti-Microbial Studies of Metal(II) complexes with 4-methoxybenzaldehyde with *p*-anisidine

¹Sayeed, A., ²Na'aliya, J., ³Ethan, W.

¹Department of Science Laboratory Technology, School of Science and Technology. The Federal Polytechnic, Mubi, P M B 35. Adamawa State – Nigeria.

 ²Department of Pure and Industrial Chemistry, Bayero University, P.M B. 3011, Kano -Nigeria.
 ³Adamawa State College of Agriculture, Department of Basic Sciences, P M B 2088, Ganye, Adamawa State - Nigeria.

Citation: Sayeed, A., Na'aliya, J., Ethan, W. (2022) Synthesis, Characterization and Anti-Microbial Studies of Metal(II) complexes with 4-methoxybenzaldehyde with p-anisidine, Global Journal of Pure and Applied Chemistry Research, Vol.10, No.1, pp.23-38,

ABSTRACT: Some divalent transition metal complexes were synthesized by the reaction of the chlorides of Co(II), Fe(II), Mn(II) and Ni(II) with Schiff bases derived from the reaction of 4-methoxybenzaldehyde with p-anisidine in methanolic solution. The Schiff base [L] was obtained as grey colored crystals with a melting point of 153°C. *The metal(II) complexes [ML] obtained were all colored and decomposed at the range* of 171-177 °C. Molar conductivity measurements for the complexes carried out using DMSO were found to be at the range of $1.19-16.07\Omega^{-1}$ mol⁻¹ cm². The small values could be an indication for non-electrolytic nature of the complexes. From the values of the magnetic moment (4.40-5.85 B.M), all the complexes were found to be paramagnetic and soluble in most common solvents. The infra-red spectral analysis indicates complexation has taken place due to metal-nitrogen bands at the range, 632-645 cm⁻¹ for [ML]. The metal-ligands ratio in all the complexes was 1:2 as obtained from the Job's method of continuous variation. The percentage composition of the metals and their corresponding ligands were found gravimetrically and the results obtained were in good agreement with the calculated values. The ligands and their corresponding complexes were screened in-vitro for their antimicrobial activity against Escherichia coli, Aspergillus fumigatus, Salmonella typhi, Staphylococcus aureus, Aspergillus flavus and Mucor species using the paper-discs diffusion method. Inhibition properties of the compounds showed that the complexes have higher antimicrobial activities than the ligands which could be attributed to chelation.

KEYWORDS: Imine, ligands, complexes, paramagnetic, antimicrobial activity and chelation.

INTRODUCTION

Schiff bases, imines or azomethines named after Hugo Schiff (1834-1915) are the nitrogen analogs of ketones and aldehydes but imine is the preferred name and it is so commonly used. These compounds can be prepared by condensation of primary amines with ketones or aldehydes. For a favorable equilibrium constant, the reaction is usually driven forward by removal of water.

Scheme 1. Equation of reactions

R here stands for a phenyl or alkyl group which makes the Schiff base a stable imine. It is able to coordinate metal ion through the imine nitrogen and another group, usually linked to the aldehyde. Mechanistically, the formation of an imine involves two steps; first the amine nitrogen acts as a nucleophile, attacking the carbonyl atom; the nitrogen is deprotonated, and the electron from this N-H bond "push" the oxygen off from the carbon, leaving behind a C=N double bond (an imine) and a displaced water molecule. The common Schiff bases are crystalline solids which are feebly basic but at least some form insoluble salts with strong acids (Mahmud, 2010), in complete derivatives the C=N linkage is essential for biological activity, several azomethines were reported to possess remarkable antimicrobial activity, antifungal, anticancer and diuretic activities (Barboiu et al., 1996). Schiff bases have wide applications in food industry, dye industry, analytical chemistry, catalysis, fungicidal, agrochemical and biological activities. Schiff base complexes are considered to be among the most important stereochemical models in main group and transition metal coordination chemistry due to their preparative accessibility and structural variety (Keypour et al., 2009). A considerable number of Schiff base complexes have potential biological interest, being used as more or less successful models of biological compounds. Not only have they played a seminal role in the development of modern coordination chemistry, they can also be found at key points in the development of inorganic biochemistry, catalysis and optical materials. Their use in birth control and as an O2 detector is also outlined (Anant and Deviani, 2011). Schiff base chelates are also used in quantitative analysis as an analytical chemical reagent and as separation reagents (Bader, 2010) and also in synthetic applications in the field of organic and inorganic chemistry (Pallavi et al., 2014).

LITERATURE REVIEW

Jain and Valecha in 2015 reported the Synthesis and characterization of Schiff base derived from 4-benzoyl-3-methyl-1-phenylpyrazol-5-one and *p*-anisidine respectively. The Schiff base slightly inhibited only gram positive bacteria (*Bacillus subtilis* and *Staphylococcus aureus*), while the Ni(II) and Co(II) complexes also inhibited the growth of only gram positive bacteria and was reported as a highly active complex. Mn(II) complex inhibited only a single gram positive bacteria (*S. aureus*). The least activity was shown by Cr(III) complex as no bacteria was inhibited. Feroza *et al*, (2012) reported the Synthesis, spectroscopic characterization and antibacterial activities of three Schiff bases derived from dehydroacetic acid with various substituted anilines. Their antibacterial activities were investigated against four bacteria, two gram positive (*Staphylococcus aureus, Bacillus subtilis*), and two gram negative bacteria strains (*Escherichia coli* and *Pseudomonas aureginosa* by the agar well diffusion method. The

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

Schiff base showed better antibacterial activity when compared with other Schiff bases against the studied microbes. Conclusively, these newly reported Schiff bases have potential antibacterial activities against four strains of bacteria like Staphylococcus Bacillus subtilis, Escherichia coli and Pseudomonas aureginosa. aureus, Dioxouranium(VI) complexes of some monovalent bidented Schiff base ligands derived from aniline were reported by Didarul et al., in 2011. The results suggested that the Schiff base is a monovalent anion with bidented ON donor atoms of the phenolic oxygen and the azomethine nitrogen atoms. The formulae were found to be UO_2L_2 for the 1:2 non-electrolytic complexes, and six coordinate structures were proposed for it. The temperature effect on solution stability constants of metal complexes with Schiff bases derived from 5-aldehydrosalicylic acid-aniline and its related compounds were reported by Basavaraj et al. (2011). The solution stability constants of their complexes with bivalent metal ions Cu(II), Zn(II), Ni(II), Co(II), Cd(II) and Mg(II) was determined at four temperatures in 50% water-ethanol mixture at an ionic strength of 0.1M(NaClO₄). The order of solution stability constants was found to be Zn < Cu >Ni > Co = Cd > Mg which was in agreement with Irving–Williams order. The values of ΔG_0 , ΔH_0 , ΔS_0 was calculated for the various complex equilibrium and copper chelates were found to be more stable than Zn and Ni chelates due difference in their configurations. Cu(II) formed square planar complex while Zn(II), Ni(II) formed a tetrahedral or octahedral complexes. The logK value for Zn chelate was found to be higher as compared to that of Ni chelate in all the reagents used for the investigation. Bilyamin In 2011. Aliyu and reported Studies on bis(paraanisidineacetylacetonato)nickel(II) complex. The molar conductance of the bis(paraanisidineacetylacetonato)nickel(II) complex compound determined was 4.70 Ω^{-1} cm² mol⁻¹, suggesting that the complex was non-electrolyte. The average number of *para*anisidine ligand coordinated to Ni(II) ion determined using potentiometer was 2, suggesting a four coordinated compound. Manimekalai (2011) reported transition metal complexes of phenylacetates with neutral hydrazine as a ligand, where some hydrazine carboxylates of the type $Co(PhAc)_2(N_2H_4)_2$, where M = Co, Ni, Cd and Mn, M(di-PhAc)₂.5N₂H₄, M = Co, Ni and Cd, M(2,4 di-ClPh.Ac)₂.5N₂H₂.H₂O where M = Co, Ni and Cd, have been prepared and studied. The electronic spectra suggested an octahedral geometry for the metal complexes. The IR absorption bands of N-N stretching in the range 958-957cm⁻¹ unambiguously prove the bidented bridging nature of the N₂H₄ ligand. All the prepared complexes underwent two, three or multi step decomposition and the final products were found to be the respective metal oxide, metal carbonate, metal of mixture of metal oxide and metal carbonate or metal as indicated by thermal analysis. In order to know the isomorphous nature among the complexes, the X-ray patterns were compared.

MATERIALS AND METHODS

Reagents

Reagents of analytical grade purity and distilled water were used without further purification. All glassware used were well washed with detergent, concentrated nitric acid (0.1M) and rinsed with distilled water and dried in an oven at $110^{\circ}C$.

Global Journal of Pure and Applied Chemistry Research Vol.10, No.1, pp.23-38, 2022 Print ISSN: ISSN 2055-0073(Print), Online ISSN: ISSN 2055-0081(Online)

Instruments

All weighing were carried out on an electric metlar balance model H3OAR, melting point and decomposition temperatures were measured using Stuart SMP-10 (Digital) melting point apparatus and were uncorrected. Molar conductance measurements were determined using Jenway Conductivity meter 4010 model. IR spectral were recorded using FTIR 8400S (Fourier Transformed Infrared Shimadzu Spectrophotometer) in KBr at the range of 400-4000cm⁻¹ and 300-1000cm⁻¹ respectively. The antimicrobial and antifungal evaluations were performed at the Department of Microbiology, Bayero University, Kano.

Synthesis of the Schiff base

0.1M H₂SO₄ was added to an equimolar amount of 4-methoxybenzaldehyde and *p*-anisidine in a 50cm³ methanolic solution (1:1) molar ratio to give [L]. The mixture was refluxed for one hour after which it was cooled to room temperature. The product formed was concentrated, filtered, washed with 3 x 15cm³ portions of ethanol and dried over anhydrous P₂O₅ in a desiccator (Ndahi *et al.*, 2012).

Scheme 3. Formation of the Schiff base Synthesis of the Metal(II) Complexes

3mmol of the corresponding metal salt (NiCl₂.6H₂O, CoCl₂.6H₂O, FeCl₂.4H₂O or MnCl₂.4H₂O in 25cm³ methanol) was added separately to a solution of the Schiff base ligand [L] in 10cm³ methanol, with constant stirring. The mixture was refluxed for 2 hours using hot plate magnetic stirrer, after which it was allowed to cool at room temperature and the product formed was concentrated, filtered and washed with $3x10cm^3$ portions of ethanol and stored in a desiccator containing anhydrous P₂O₅ (Ndahi *et al.*, 2012). The general equations leading to the formation of the complexes is given below:

 $MCl_2 nH_2O + 2[L] \longrightarrow [M(L)_2] + nH_2O$

where M = Mn(II), Fe(II), Co(II) or Ni(II); [L] = Schiff base derived from 4-methoxybenzaldehyde and *p*-anisidine.

Antibacterial Activity

Potato dextrose (pH of 5.5 at 25°C) and Nutrient agar were prepared separately and autoclaved before used for antibacterial activities. The ligands and complexes were dissolved separately in DMSO at different concentrations per disc, they were then placed separately on the surface of the culture using a sterile wire loop and incubated at 37°C for 24hrs. The diameter of the zones of inhibition surrounding the discs was taken as the measure of inhibitory power of the sample against a particular test

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

organism. The in-vitro antibacterial activity was carried out by paper disc diffusion method

RESULTS

Table 1: Physical properties of the ligand and the complexes

Compounds	Formular	Formular wt (g)	(g) Colour		M.pt/Decomp.
					Tempt (°C)
[L]	$C_{15}H_{15}NO_2$	241.28	Grey	84.64	153
[CoL]	$[Co(L)_2]$	541.50	Yellow	84.94	171d
[FeL]	$[Fe(L)_2]$	538.41	Brown	83.42	176d
[MnL]	$[Mn(L)_2]$	537.51	Yellow	90.87	174d
[NiL]	$[Ni(L)_2]$	541.26	Green	89.20	177d
Key:	$[L] = C_{15}H_{15}NC$) ₂			

Table 2:	Infrared spectral d	lata of the ligands and	complexes
	_	0	-

Compounds	v C=N	v M-N	<i>v</i> M-O	<i>v</i> О-Н
[L]	1623			3719
[CoL]	1610	645	536	
[FeL]	1620	644	533	
[MnL]	1623	632	537	
[NiL]	1620	637	537	
Key:	$[L] = C_{15}H_{15}N_{15}$	IO_2		

Vol.10, No.1, pp.23-38, 2022

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

Schiff base [L]

FTIR ANALYSIS RESULT NATIONAL REASEARCH INSTITUTE FOR CHEVICAL TECHNOLOGY, ZARIA 1 SHIMADZU

FTIR 44005 FOURIER TRANSFORM INFRARED SPECTROPHOTOMETER

Vol.10, No.1, pp.23-38, 2022

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

 $[Co(L)_2]$

FTIR ANALYSIS RESULT

NATIONAL REASEARCH INSTITUTE FOR CHEMICAL TECHNOLOGY, ZARIA

FTIR-\$4005 FOURIER TRANSFORM

INFRARED SPECTROPHOTOMETER

	Peak	intensity	Corr. Intensity	Base (H)	Base (L)	Area	Corr. Area
1	401.21	2 207	0.5522	435.93	349.13	139.122	4.6249
2	536.23	1.878	0.4072	596.02	436.89	266.8	5.9548
3	645.21	2.1314	0.0769	681.86	596.99	141.15	0.7034
1	732.97	2.0755	0.0789	765.77	682.82	138.8443	0.665
5	830.38	1,4647	0.744	896.93	766.73	225.8521	10.2573
6	1020.38	1.5332	0.533	1073.42	897.89	302 7777	9.0619
7	1169.87	1.496	0.054	1181.44	1074.39	190.3714	1.5954
8	1241.23	1.1656	0.5382	1344,43	1182.4	294.7048	10.3928
9	1494,88	1,2928	0.5063	1549.86	1345.39	366.1246	13.0239
10	1610.61	1.2317	0.5634	1717.67	1550.82	300.8339	10.8692
11	1907.66	1.8	0.0294	1940.45	1718.63	382 8436	0.4342
12	2052.33	1.7156	0.0439	2105.37	1941.42	287.9746	0.7993
13	2362.88	1.5659	0.0525	2417.85	2106.34	556 0831	1.9606
14	2557.69	1.5134	0.0117	2578.91	2418.82	289.8739	0.3238
15	2939.61	1.0851	0.1851	3007.12	2579.88	801.911	7.1696
16	3406.4	0.6327	0.5589	3719.85	3008.09	1443.8079	75.3127
17	3756.49	1.1586	0.0114	3808.57	3720.81	169.7068	0.1924

Global Journal of Pure and Applied Chemistry Research Vol.10, No.1, pp.23-38, 2022

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

$[Fe(L)_2]$

FTIR ANALYSIS RESULT

NATIONAL REASEARCH INSTITUTE FOR CHEMICAL TECHNOLOGY, ZARIA

(1) SHIMADZU

	Peak	Intensity	Corr. Intensity	8399 (H)	Base (L)	Area	Corr. Area
1	473.54	2,4504	0.0456	489.94	365.52	195,3552	1,1971
2	533.34	2.3683	0.1669	589.27	490.9	158 2375	1.4055
3	644.25	2.49	0.1686	771.55	590.24	288.1953	2.9583
	832.31	2.1698	0.5933	896.93	772.52	199.7135	5.8262
5	1022.31	2.2076	0.4403	1070.53	897.89	275.8938	5.0544
5	1163.11	2.1209	0.1806	1194.94	1071.49	202.8088	2.5654
1	1243.16	1.9281	0.4061	1342.5	1195.91	242 2086	4.6893
1	1498.74	1.8593	0.4601	1552.75	1343.46	345.8398	10.0943
)	1620.26	1.8068	0.4848	1748.53	1553.71	325 5513	7.3515
10	1907.66	2.3413	0.008	1922.13	1749.49	279.7865	0.0506
11	2061.01	2 2455	0.0191	2058.98	1923.09	272 059	0.2321
2	2278.01	2.1186	0.0447	2324.3	2089.94	389.5714	0.9026
13	2390.85	2.0889	0.0177	2416.89	2325.26	153 5602	0.1763
14	2943.47	1.5399	0.101	2989.76	2417.85	988.7926	1.6312
15	3405.44	0.7968	0.7775	3729.49	2990.73	1418.0152	86.6602
16	3754.56	1.5497	0.0079	3798.93	3730.45	123.8183	0.0504
17	3938.77	1.5239	0.0093	3969.64	3799.89	307.8458	0.4716

Vol.10, No.1, pp.23-38, 2022

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

$[Mn(L)_2]$

FTIR ANALYSIS RESULT

🖽 SHIMADZU

FTIR-8400S FOURIER TRANSFORM

INFRARED SPECTROPHOTOMETER

NATIONAL REASEARCH INSTITUTE FOR CHEMICAL TECHNOLOGY, ZARIA

3802.79

3925.27

3728.53

3803.75

126.0115

206.691

0.0848

0.1812

16

17

3759.39

3914.66

2.003

1.9744

0.0112

0.0046

Vol.10, No.1, pp.23-38, 2022

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

$[Ni(L)_2]$

FTIR ANALYSIS RESULT

⊕ SHIMADZU

NATIONAL REASEARCH INSTITUTE FOR CHEMICAL TECHNOLOGY, ZARIA

FTIR-\$400S FOURIER TRANSFORM INFRARED SPECTROPHOTOMETER

IV.	1020.20	2.2032	U.4700	1/40.04	1000.71	304.9100	0.0000
11	1794.82	2.8436	0.0001	1795.79	1746.6	76.0336	0.0027
12	2280.9	2.491	0.0374	2318.51	1796.75	822.515	1.4713
13	2389.88	2.433	0.0252	2419.78	2319.48	161.4059	0.2241
14	2943.47	1.8692	0.0957	2988.8	2420.74	941.332	1.2214
15	3408.33	1.0212	0.8174	3715.99	2989.76	1330.1376	71.4506
16	3754.56	1.7597	0.0214	3801.82	3716.95	148.6769	0.2226
17	3910.8	1.738	0.003	3917.56	3802.79	201.4508	0.1797
18	3957.1	1.7353	0.0063	4000.5	3918.52	144.2703	0.0721

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

Table 3:	Molar conductivity of the Schiff base complexes								
Compound	Concentration, C	Specific conductance	(S) Molar conductivity: $[\lambda = \frac{s}{c}] \Omega^{-1} \text{cm}^2 \text{ mol}^{-1}$						
	(mol)								
[CoL]	1 x 10 ⁻³	77.58 x 10 ⁻⁶	77.58						
[FeL]	1 x 10 ⁻³	85.10 x 10 ⁻⁶	85.10						
[MnL]	1 x 10 ⁻³	79.95 x 10 ⁻⁶	79.95						
[NiL]	1 x 10 ⁻³	80.55 x 10 ⁻⁶	80.55						

Key: $[L] = C_{15}H_{15}NO_2$ $\lambda = Molar \text{ conductance}$ C = Molar concentration

S = specific conductance

Table 4: Solubility of the compound in water and some	common organic solvents
---	-------------------------

Solvents	[L]	[CoL]	[FeL]	[MnL]	[NiL]
Acetone	S	S	S	S	S
CCl ₄	S	IS	SS	SS	SS
Chloroform	S	S	S	S	S
Diethylether	IS	S	S	S	S
DMF	S	S	SS	S	S
DMSO	S	S	S	S	S
Acetic acid	S	S	S	S	S
Methanol	IS	IS	IS	IS	IS
Pet. Ether	IS	IS	IS	SS	IS
Water	IS	IS	IS	IS	IS

Key: $[L] = C_{15}H_{15}NO_2$

Vol.10, No.1, pp.23-38, 2022

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

Table 5: MAGNETIC SUSCEPTIBILITY OF THE COMPLEXES

Compounds	Gram susc, Xg ergc ⁻² g ⁻¹	Molar susc, Xm m	Effective mag. noment (µeff) B.M	Unpaired 1 electror	Geometry 18
[CoL]	1.62 x 10 ⁻⁵	8.75 x 10 ⁻³	4.62	7	Octahedral
[FeL]] 2.04 x 10 ⁻⁵	1.10 x 10 ⁻²	5.17	6	Octahedral
[MnL]	1.67 x 10 ⁻⁵	8.96 x 10 ⁻³	4.68	5	Octahedral
[NiL]	2.18 x 10 ⁻⁵	1.20 x 10 ⁻²	5.34	8	Octahedral
Key:	$[L] = C_{15}H_{15}NO$	2			

Table 6: ANTIBACTERIAL ACTIVITIES OF THE COMPOUNDS

Compound	Organism	Concentration (µg)/Zone of inhibition (mm)					
		5000	4000	3000	2000	1000	Control (mm)
[L]	S. aureus	18	14	12	07	04	30 (Ampiclox)
[L]	E. coli	24	16	10	10	08	32 (Ampiclox)
[L]	S. typhi	20	18	14	06	04	30 (Ampiclox)
[L]	A. fumigatus	22	20	16	10	07	27(Ciprofoxacin)
[L]	A. flavus	26	26	23	20	15	30 (Ciprofoxacin)
[L]	Mucor. S	24	22	18	20	14	33 (Ciprofoxacin)
[CoL]	S. aureus	24	19	NZI	14	10	32 (Ampiclox)
[CoL]	E. coli	26	19	16	14	NZI	34 (Ampiclox)
[CoL]	S. typhi	22	18	14	NZI	10	34 (Ampiclox)
[CoL]	A. fumigatus	28	20	17	12	08	30 (Ciprofoxacin)
[CoL]	A. flavus	26	20	16	12	NZI	32 (Ciprofoxacin)
[CoL]	Mucor. S	28	18	14	10	NZI	33 (Ciprofoxacin)
[FeL]	S. aureus	19	12	07	04	NZI	28 (Ampiclox)
[FeL]	E. coli	16	12	12	10	06	32 (Ampiclox)
[FeL]	S. typhi	19	13	11	07	04	30 (Ampiclox)
[FeL]	A. fumigatus	16	12	NZI	NZI	02	34 (Ciprofoxacin)
[FeL]	A. flavus	20	14	10	06	NZI	30 (Ciprofoxacin)

@ECRTD UK: <u>https://www.eajournals.org/</u> Journal Level DOI: <u>https://doi.org/10.37745/gjpacr.2013</u>

Vol.10, No.1, pp.23-38, 2022

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

[MnL]	S. aureus	26	16	12	07	03	28 (Ampiclox)
[MnL]	E. coli	18	12	07	04	NZI	31 (Ampiclox)
[MnL]	S. typhi	24	17	14	10	06	34 (Ampiclox)
[MnL]	A. fumigatus	22	16	14	08	04	30 (Ciprofoxacin)
[MnL]	A. flavus	18	12	10	06	02	32 (Ciprofoxacin)
[MnL]	Mucor. S	22	10	03	NZI	NZI	30 (Ciprofoxacin)
[NiL]	S. aureus	28	22	16	10	06	34 (Ampiclox)
Key: [L = C	15H15NO2		NZI =	No zon	e of inh	ibition	
Ampic	lox = (500mg)	per disc))	Ofloxa	cin = (5)	500mg p	per disc)
Table 4.6b: co	ont						
[NiL]	E. coli	22	14	NZI	NZI	02	31 (Ampiclox)
[NiL]	S. typhi	26	18	16	08	NZI	34 (Ampiclox)
[NiL]	A. fumigatus	24	17	13	10	06	30 (Ciprofoxacin)
[NiL]	A. flavus	26	22	14	07	02	32 (Ciprofoxacin)
[NiL]	Mucor. S	NZI	NZI	NZI	NZI	NZI	33 (Ciprofoxacin)
[MnL]	S. aureus	26	16	12	07	03	28 (Ampiclox)
[MnL]	E. coli	18	12	07	04	NZI	31 (Ampiclox)
[MnL]	S. typhi	24	17	14	10	06	34 (Ampiclox)
[MnL]	A. fumigatus	22	16	14	08	04	30 (Ciprofoxacin)
[MnL]	A. flavus	18	12	10	06	02	32 (Ciprofoxacin)
[MnL]	Mucor. S	22	10	03	NZI	NZI	30 (Ciprofoxacin)
[NiL]	S. aureus	28	22	16	10	06	34 (Ampiclox)
[NiL]	E. coli	22	14	NZI	NZI	02	31 (Ampiclox)
[NiL]	S. typhi	26	18	16	08	NZI	34 (Ampiclox)
[NiL]	A. fumigatus	24	17	13	10	06	30 (Ciprofoxacin)
[NiL]	A. flavus	26	22	14	07	02	32 (Ciprofoxacin)
[NiL]	Mucor. S	NZI	NZI	NZI	NZI	NZI	33 (Ciprofoxacin)
$\overline{\mathbf{V}_{\text{aven}}}$ $[\mathbf{I}] = \mathbf{C}$			N7I -	No zon	a of inh	hitian	

Key: $[L = C_{15}H_{15}NO_2]$

NZI = No zone of inhibition

Ampiclox = (500mg per disc) Ofloxacin = (500mg per disc)

DISCUSSION

The interaction between 4-methoxybenzaldehyde with *p*-anisidine gave grey colored crystals of Schiff base [L]. The percentage yield of the Schiff base [L] was 84.64% with melting point at 153°C. The reaction of the Schiff base, [L] with the metal(II) chlorides (NiCl₂.6H₂O, CoCl₂.6H₂O, FeCl₂.4H₂O or MnCl₂.4H₂O) produced complexes that are variously colored with percent yields in the range 84-90%. The ligand [L] have sharp melting point while its complexes decomposed thermally. The sharp melting point observed in the ligand was an indication of purity for the substance prepared. The high values of the decomposition temperatures (Table 1) for the complexes are an indication of thermal stability of the compounds which might be associated with the chelation that has taken place. All the complexes are anhydrous and air stable. The Schiff base and its complexes were found to be soluble in most organic solvents (Table 4). The molar conductance (Table 3) of the complexes in dimethylsulphoxide (DMSO) was found using a conductivity meter (Jenway Conductivity meter 4010). The values was in the range 77.58-85.10 Ω^{-1} mol⁻¹ 1 cm², these large values suggest the presence of anion outside the coordination sphere. These values are in good agreement with those reported earlier (Abbas et al., 2013; Geary, 1971). The magnetic moment values of the complexes obtained (Table 5) was in the range of 4.62-5.34 B.M and is an indication of paramagnetic nature of the complexes due to the presence of unpaired electrons in the partially filled d-orbitals (5, 6, 7 and 8) for Mn^{2+} , Fe^{2+} , Co^{2+} and Ni²⁺ respectively. The values suggest the complexes to be high spin while the spin-only values suggest an octahedral geometry for the complexes. The positive Xm value confirmed the substances to have unpaired electrons; this is in agreement with what has been reported earlier (Yousif et al., 2013). Gravimetric analysis data for the complexes obtained showed that the complexes analyzed as $[M(L)_2]$ and the results obtained were in good agreement with the calculated values. A plot of absorbance (y axis) versus the mole fraction (x axis) of the ligands (Appendix IV) revealed a stoichiometric values of M:L metal-ligand ratio. Table 2 revealed the infrared spectra of the ligand ([L] which showed a characteristic band at 1623 cm⁻¹ which is attributable to v C=N band. These bands shifted to lower frequencies range $1610 \text{ cm}^{-1} - 1623 \text{ cm}^{-1}$ in the complexes [M(L)₂]; this indicates involvement of the azomethine nitrogen in bonding, this is similar to the values reported by Nakamato, 1971; Kolawole and Ndahi, 2004; Reddy et al., 2008. The band at 3719cm⁻¹ in the ligand, [L] which is absent in the spectra of its complexes was assigned to v O-H and could be taken as an indication of deprotonation and involvement of the hydroxyl oxygen in complexation, this is similar to Zahid *et al.*, 2009 and, Ndahi and Nasiru, 2012. The appearance in the complexes of low frequency non-ligand bands around 632-645cm⁻¹ and 533-537cm⁻¹ was assigned to v M-N and v M-O, similar to (Shakir et al., 2006 and Shakir et al., 2014). It was taken as an evidence for the coordination through nitrogen of azomethine and oxygen of -OCH₃ group of [L] with the central metal, similar to those reported by Ndahi and Nasiru, 2012. These bands was absent in the ligand. The shifting of the band at 1623cm⁻¹ in the spectra of the ligand to lower values in the spectra of the complexes, (around 632-645cm⁻¹) and the vibration centered around 3719cm⁻¹ assigned to v O-H revealed that complexation has taken place and that azomethine and hydroxyl oxygen were involved in coordination to the metal ion, this implied that the ligand [L], was tri-dented. The antimicrobial analysis of the compounds obtained (Tables 6), revealed that the metal complexes have higher antibacterial activity than the free ligands. This suggests that chelation increases the antibacterial activity of the compounds as reported by, (Ndahi et al., 2012; Zahid and Maimoon, 2000)

CONCLUSION

The complexes have been synthesized and characterized by melting point/decomposition temperatures, solubility tests in different solvents, molar conductivity, IR spectroscopy, Jobs method of continuous variation, Gravimetric tests and antimicrobial activities. From the results of the analysis conducted on the Schiff base and its complexes, and from available literatures, it could be established that the ligand L, was tridented. The general molecular structure proposed for the Schiff base and its metal(II) complexes is as shown in the figures below.

Fig. 1. Schiff base ligand, L

Fig. 2. Proposed molecular structure for the Schiff base complexes, $[M(L_2)]$ where M = Co(II), Fe(II), Mn(II) or Ni(II)

References

- Abbas, N. A., Salih H. K, and Waleed, A. J. (2013) Synthesis and study of Fe(III), Co(II), Ni(II) and Cu(II) complexes of new Schiff's base ligand derived from 4-aminoantipyrine, *Journal of Applicable Chemistry*, 2(3), 438-446
- Aliyu H. N, and Bilyamin U. L. (2011) Studies on *bis*(paraanisidineacetylacetonato)Nickel (II) Complex; *Bayero Journal of Pure and Applied Sciences*, 4(1):32-35
- Anant P, and Devjani, A. (2011) Application of Schiff bases and their metal complexes A Review. *International Journal of Chem. Tech Research..* 3(4):189-196.
- Bader, N. R. (2010) Applications of Schiff's Base Chelates in Quantitative Analysis: A Review. *Rasayan J. Chem*; 3(4): 660-70.
- Barboiu C.T., Luca M., Pop C., Brewster E., Dinculescu M.E. (1996) Synthesis of mono and bis pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)- and 2-amino-5-(3aminopropyl)-1,3,4-thiadiazole and their interaction with Isozyme II. European Journal of Medicinal Chemistry. 31, 597.

@ECRTD UK: <u>https://www.eajournals.org/</u> Journal Level DOI: <u>https://doi.org/10.37745/gjpacr.2013</u>

Vol.10, No.1, pp.23-38, 2022

Print ISSN: ISSN 2055-0073(Print),

Online ISSN: ISSN 2055-0081(Online)

- Basavaraj, M. Kalshetty., Suvarnakhandi, S. S., Sheth, R. C., Hiremath, P. S., and Kalashetti, M. B. (2011) Temperature effect on solution stability constants of metal complexes with Schiff bases derived from 5-aldehydosalicyclic acid aniline and its related compounds. *International Journal of Applied Biology and Pharmaceutical Technology*, 2(2):88-93. ISSN:0976-4550
- Daniel C. Harris, (2007) Quantitative Chemical Analysis Seventh Edition, W. H. Freeman and Company New York Pp. 629-637 ISBN: 0-7167-7041-5
- Didarul, A. C., Mohammad N. U, and Farhana H. (2011) Dioxouranium(VI) complexes of some monovalent bidentate Schiff base ligands derived from aniline *J. Nat, Sci.* 10(2): 261-268
- Feroza, H. W., Hafeez, U., Muhammad, H. S. W., Muhammad, G., Syed, A. T., Sadia, A, and Abdul Wadood, (2012) Synthesis, spectroscopic characterization and antibacterial activities of three Schiff bases derived from dehydroacetic acid with various substituted anilines, *Turkish Journal of Biochemistry*, 37(4):386- 391
- Geary, W. J. (1971) The use of conductivity measurements in organic solvents for the characterization of coordination compounds, *Coord. Chemistry Review.* 7, 8 122.
- Jain, A and Valecha, S. (2015) Synthesis and Characterization of Schiff base derived from 4benzoyl-3 methyl-l-phenylpyrazol-5-one and *p*-anisidine. *ActaChim. Pharm. Indica*: 5(2): 55 -59
- Keypour H., Rezaeivala M., Valencia L., Perez- Lourido P., Raza Khavasi H. (2009) Synthesis and Characterization of some new Co(II) and Cd(II) macroacylic Schiff-base complexes containing piperazine moiety, *Polyhedron*, 28(17), 3755.
- Kolawole, G. A., N. P. Ndahi. (2004) Cobalt(III) complexes of dimethylglyoxime with no direct cobalt-carbon as possible non organometallic models of vitamin B12. Synth. React. Met. Org. Chem, 34(9):1563-1580.
- Mahmud, T. (2010) Synthesis and characterization of the amino acid Schiff bases and their complexes with copper(II). in School of Chemistry; University of Manchester, Manchester. Pp. 4-5.
- Manimekalai, R. (2011) Transition metal complexes of phenylacetates and substituted phenylacetates with neutral hydrazine as a ligand. *International Journal of Applied Biology* and Pharmaceutical Technology, 2(3):251-262
- Nakamato, K. (1971) Infrared spectra of inorganic and coordination compounds, John Wiley and Sons, New York. Pp.125-130
- Ndahi, N. P., Nasiru, Y. P., Sandabe, U. K. (2012) Synthesis, characterization and antibacterial studies of some Schiff base complexes of Co(II), Ni(II) and Zn(II). *Asian Journal of Biochemical and Pharmaceutical Research*, 1(2), 2231-2560.
- Pallavi, G., Dinesh, K, and Sulekh, C. (2014) Schiff's base ligands and their transition metal complexes as antimicrobial agents. *Journal of Chemical, Biological and Physical Sciences*; 4(3): 1946-64.
- Reddy, V., Patil, N., Angadi, S. D. (2008) Synthesis, Characterization and Antimicrobial Activity of Cu(II), Co(II) and Ni(II) Complexes with O,N, and S Donor Ligands, *European Journal of Chemistry*, 5(3), 577-583
- Shakir, C., Kassum, H. and Alias, M. (2014) Synthesis, physical characterization and biological evaluation of Schiff base M(II) complexes, *Journal of the Association of Arab Universities* for Basic and Applied Sciences, 15: 28-34
- Shakir, M., Azim, Y., Chishti, H and Parveen, S. (2006) Synthesis, characterization of complexes of Co(II),Ni(II), Cu(II) and Zn(II) with 12-membered Schiff base tetraazamacrocyclic ligand and the study of their antimicrobial and reducing power. *Spectrochimica Acta Part A*, 65: 490-496
- Yousif, Emad., Ahmed, Majeed., Khulood, Al-Sammarrae., Nadia, Salih., Jumat, Salimon., Bashar, Abdullah. (2013) Metal complexes of Schiff base: Preparation, Characterization and Anti bacterial activity. *Arabian Journal of Chemistry*, http://dx.doi.org/10.1016/j.arabjc.2013.06.006
- Zahid, H. C., Asifa, M., Claudiu, T. S. (2009) Transition metal ion complexes of Schiff bases, Synthesis, characterization and antibacterial properties. *Metal Based Drugs*, 8(3), 137-143.
- Zahid, H. C., Maimoon, F. J. (2000) Synthesis, characterization and biological evaluation of Co(II), Ni(II) and Zn(II) complexes with Cephradine, *Metal Based Drugs*, 7(5), 265-269