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ABSTRACT: Precise and reliable rainfall data is crucial for regional water resource 

management. However, rainfall data in Ethiopia mainly characterized by sparse distribution and 

temporal inconsistency. Therefore, the spatial and temporal patterns of rainfall are poorly 

understood in the major basins. Recently, satellite rainfall products (SRPs) have been applied as 

an alternative source to obtain long-term rainfall data. This study evaluated the performance of 

three different SRPs, namely CHIRPS, PERSIANN_CDR, and TMPA3B42, with respect to 

observed data in the Upper Tekeze-Atbara River Basin using different statistical indices. The result 

showed that PERSIANN_CDR had very low PBIAS than other products. The PERSIANN_CDR 

had a slight overestimation tendency, while the CHIRPS and TMPA3B42 considerably 

overestimated observation rainfall. The PERSIANN_CDR performed well for kiremt, belg, and 

bega season, with the lowest RMSE value of 2.9, 1.4, and 0.8 mm/day, respectively. On the 

contrary, TMPA3B42 poorly performed for kiremt, belg, and bega seasons with the largest RMSE 

value of 3.1, 1.9, and 1.1 mm/day, respectively. The PERSIANN_CDR had the best skill to detect 

observation rainfall, while the CHIRPS had the worst detecting skill during all seasons. In kiremt 

seasons, the PERSIANN_CDR product showed a good estimation of the observed rainfall almost 

in all parts of the basin except for a slight overestimation in northwestern and underestimation in 

southwestern regions. Overall, the findings of this study demonstrated the PERSIANN_CDR 

product potentials and use for analyzing rainfall distribution and variability in Ethiopia's Upper 

Tekeze-Atbara River Basin. 
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INTRODUCTION 
 

Accurate and quality rainfall data is very crucial for regional and global operational and research 

in water resource management, hydrological applications, and agricultural water use (Yong et al., 

2010; Sunil Kumar et al., 2015; Guo and Liu, 2016). Rainfall variability in terms of intensity, 

volume, and pattern significantly affected the hydrological cycle (Stillman et al., 2014). As a result, 

precision rainfall measurement is essential for studying the spatial and temporal patterns of rainfall 
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at various scales and expanding our understanding of the impact of rainfall on agriculture and 

hydrology (Awulachew et al., 2007; Ayalew et al., 2012). Rain gauges have traditionally been the 

primary source of rainfall data, as they have proven to be the most precise and reliable method of 

measuring rainfall (Ayehu et al., 2018).  

 

However, in developing countries, weather stations are rare, unevenly distributed, and temporally 

inconsistent (Katsanos et al., 2016; Fenta et al., 2018). These issues are common especially in 

complex topography (Rivera et al., 2018), like Ethiopia's highlands, where rainfall varies greatly 

over short distances (Haile et al., 2009; Rientjes et al., 2012). The assessment of rainfall spatial 

distribution in remote locations in Ethiopia remains challenging due to lack of gauging stations 

(Hirpa et al., 2010; Ayehu et al., 2018; Igbal et al., 2018; Belay et al., 2019). Furthermore, the 

spatial and temporal analysis mainly based on a single or a few point-based rain gauge 

measurements, which may not represent the entire area (Belay et al., 2019). To avert these 

challenges, satellite-based rainfall estimation can be used to analyze the spatial and temporal 

variability of rainfall (Ayehu et al., 2018; Fenta et al., 2018; Alemu and Bawoke, 2019).  

 

Recently, satellite rainfall products (SRPs) provide synoptic data at finer temporal and spatial 

resolutions (Park et al., 2017). The long-term rainfall data generated from satellite products can be 

used for hydrological simulation (Talchabhadel et al., 2021). However, satellite rainfall 

estimations are subjected to a certain bias attributed with gaps in revisit times, weak correlation 

between remotely sensed signals and rainfall rate, atmospheric effects that modify the radiation 

field and retrieval algorithms, and satellite instrument sensors (Fenta et al., 2018; Alemu and 

Bawoke, 2019). Therefore, investigating the performance of SRPs in specific region will provide 

information to the scientific communities and algorithm developers (Belay et al., 2019). 

Furthermore, validation of SRPs is very crucial before applying it for hydrological simulations and 

rainfall variability analyses (Dinku et al., 2007; Jiang et al., 2012; Ayehu et al., 2018). 

 

Many studies have been conducted to evaluate different SRPs performances for hydrological 

applications (Katsanos et al., 2016; Hobouchian et al., 2017; Lakew et al., 2017; Zambrano-

Bigiarini et al., 2017; Iqbal and Athar, 2018; Lekula et al., 2018; Rivera et al., 2018; Alemu and 

Bawoke, 2019). Thiemig et al. (2012) compared six SRPs with data from rain gauges in four river 

basins located in Africa. They found that all SRPs had high performance over the tropical wet and 

dry zone compared to semiarid mountainous regions, but low accuracy in detecting heavy rainfall 

events over semiarid areas and the number of rainy days in the tropics. Hessel (2015) compared 

ten SRPs over the Nile basin and recommended CHIRPS products for rainfall estimations. Belay 

et al. (2019) investigation showed that the CHIRPS product highly performed compared to others. 

Besides, the performance of SRPs has been evaluated in different climatic zones including Nzoia 

Basin along with Lake Victoria (Li et al., 2009), Ethiopian highlands (Hirpa et al., 2010; 

Gebrechorkos et al., 2017), Northern Tanzania (Mashingia et al., 2014), and western Uganda 

(Diem et al., 2014). 
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However, few studies have been undertaken in the Upper Tekeze-Atbara River Basin (UTARB) 

(Seleshi and Zanke, 2004; Gebremichael et al., 2017). The previous studies overlook 

comprehensive validation of spatio-temporal rainfall variability for the entire basin. For example, 

Seleshi and Zanke (2004) analyzed the rainfall pattern over the upper portion of the UTARB using 

single rain gauge station. Their result demonstrated that the amount of rainfall remained constant 

for the past 40 years (1962–2002). Gebremichael et al. (2017) evaluated the performance of eight 

SRPs (TRMM, CHIRPS, RFEv2, ARC2, PERSIANN, GPCP, CMAP and CMORPH) in UTARB. 

They examined SRPs with different spatial resolutions (0.05° to 2.5°) under wet season. This is 

the major drawback of their study. Because, the performance of SRPs highly correlated with spatial 

resolution. Therefore, this study was designed to investigate the performance of different SRPs 

which have the same spatial resolution. The measurement accuracy of SRPs are continuously 

improving because of advancements in sensor technologies and estimation techniques (Zhang et 

al., 2016). Several high resolutions SRPs are now available at a quasi-global scale (Behrangi et al., 

2011; Jiang et al., 2012). The three widely used precipitation datasets namely; Climate Hazards 

Group Infrared Rainfall with Stations (CHIRPS), Precipitation Estimation from Remotely Sensed 

Information Using Artificial Neural Networks-Climate Data Record (PERSIANN_CDR), and The 

Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), 

were evaluated in this study. 

 

The purpose of this study is to assess the performance of the three SRPs using statistical indicators 

over the UTARB. The accuracy of these products was evaluated by using 45 observed rainfalls at 

daily, monthly, and seasonal scales from 2007 to 2017. In addition, this study is the first to 

undertake spatio-temporal validation and evaluation of each SRP's rain-detection ability over the 

UTARB.  

 

MATERIALS AND METHODS  
 

Study Area Description 

Ethiopia's northwestern highlands are home to this research region. It is located on the Tekeze-

Atbara River Basin, one of the Nile River's principal tributaries, and has a total catchment area of 

66,543 km2 at the Wad El-Hilew outflow, which includes Ethiopia, Eritrea, and Sudan.  It is 

situated at 36.1° E – 39.5° E longitude and 11.4° N– 14.5° N latitude (Figure 1). The basin is 

characterized by rugged topography with a significant variation of elevation. Based on topographic 

information from the Shuttle Radar Topographic Mission (SRTM) Digital Elevation Model 

(DEM) the elevation ranges from 471 m above sea level (m.a.s.l) at North-western part to 4540 

m.a.s.l at Ras Dejen Mountain.  

 

The climate is the semi-arid climate within the east and north part of the basin, and partly semi-

humid within the south with a high seasonal rainfall regime with strong interannual variation 

(Conway, 2000; Tamene et al., 2006; Belete, 2007). The 85 percent of the entire annual rainfall 

falls within the wet (Kiremt) season (June to September) which varies from 400 mm/yr within the 

Northeast at Humera to quite 1200 mm/yr within the Southwest near Ras Dejen Mountain (Figure 
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2). The variations are mainly related to the seasonal migration of the inter-tropical convergence 

zone (ITCZ). The annual start and finish of the ITCZ over Ethiopia's highlands fluctuate, causing 

inter-annual rainfall variability (Seleshi and Zanke, 2004; Nyssen et al., 2005).  Rainfall is both a 

monomodal type (west of the basin) and a bimodal type within the east (quasi double maximum) 

rainfall pattern, with a little peak in May and a maximum peak in August (Figure 2). 

 
Figure 1. (a) Location of Blue Nile Basin, and (b) Upper Tekeze-Atbara River Basin with drainage 

pattern, observed rainfall, and topography map. 

 

In Ethiopia, there are three distinct seasons (Bega, Belg, and Kiremt), each with differing rainfall 

amounts. The Bega is the dry season and is approximately defined by October through the end of 

February. Belg, approximately defined by March to the end of May, is considered the minor rainy 

season. The major rainy season, roughly defined as June to the end of September, is known as 

Kiremt. The major mechanism for rainfall during the Kiremt is the seasonal oscillation of the ITCZ 

(Seleshi and Zanke, 2004; Segele et al., 2008). 

 

Although a great variation in elevation (471 to 4540 m.a.s.l) exists, much of the highland plateau 

is comprised between 1500 and 3000 m.a.s.l. The topography is mainly hilly, with notable, deeply 

incised valleys and volcanic rocky summits interspersed (Sutcliffe and Parks, 1999). The 

topographic roughness of the Upper Tekeze-Atbara River Basin is slightly higher, possibly due to 
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the fragmentation of the plateau surface by numerous ephemeral rivers and erosion gullies 

(Tamene et al., 2006).  

 
Figure 2. Rain gauge networks and monthly mean rainfall for selected stations over Upper Tekeze-

Atbara River Basin for the period 2007-2017. 

 

Data Collection  

Observed Rainfall Data 

Daily observed rainfall data within and around Upper Tekeze-Atbara River Basin were obtained 

from the National Meteorology Agency of Ethiopia (http://www.ethiomet.gov.et). The 

performance of satellite rainfall products was evaluated using 45 meteorological stations from 

2007 to 2017 (Table 1). 

 

Table 1. List of observed rainfall stations used for this study over the study area. 

Id Name Lat. Long. Elev. Id Name Lat. Long. Elev. 

1 Abi_Adi 13.61 39.00 1829 24 Gashena 11.68 38.92 2969 

2 AddisZemen 12.12 37.77 1940 25 Gassay 11.80 38.13 2789 

3 Adiawala 14.52 37.99 1570 26 Gondar AP 12.52 37.43 1973 

4 Adigoshu 14.17 37.31 1114 27 HagereSelam 13.65 39.17 2618 

5 Adigrat 14.28 39.45 2497 28 Lalibela 12.04 39.04 2487 

6 Adwa 14.18 38.88 1911 29 Maichew 12.78 39.53 2432 

7 Ager_genet 11.80 38.30 3010 30 Maksegnit 12.39 37.55 1912 

https://www.eajournals.org/
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8 Alamata 12.42 39.71 1589 31 MayTsebri 13.59 38.14 1349 

9 Ambagiorgis 12.77 37.60 2900 32 MekeleAP 13.47 39.53 2257 

10 Arb_Gebeya 11.60 38.54 2567 33 MekeleOB 13.52 39.47 2000 

11 Atsebi 13.88 39.74 2711 34 Nebelet 14.10 39.28 1988 

12 Axum_AP 14.14 38.78 2113 35 Nefasmewucha 11.73 38.47 3098 

13 Aynbugna 12.15 38.83 2000 36 Sanja 12.99 37.29 1003 

14 Chercher 12.54 39.77 1781 37 Sekota 12.63 39.03 2258 

15 Debark 13.14 37.90 2836 38 Semema 14.19 38.34 1948 

16 DebreZebit 11.81 38.58 3220 39 Senkata 14.06 39.57 2437 

17 DebreTabor 11.87 37.99 2612 40 Shire 14.10 38.29 1897 

18 EdagaSelus 13.84 38.63 2057 41 Sirinka 11.75 39.61 1861 

19 Edagarbu 14.09 39.69 2920 42 Wedisemro 12.76 39.34 2456 

20 Mayyohannes 14.12 37.87 1116 43 Wegel_Tena 11.59 39.22 2951 

21 Feresmay 14.17 39.10 1948 44 Woreta 11.92 37.70 1819 

22 Finarawa 13.10 39.02 1500 45 Yechila 13.28 38.98 1591 

23 Dimma 13.68 38.32 1626           

 

Satellite Rainfall Products (SRPs) 

In this study, the performance of three high-resolution SRPs, namely the Tropical Rainfall 

Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 

algorithm (hereafter TMPA 3B42), the Climate Hazards Group Infrared Precipitation Stations 

(CHIRPS), and the Precipitation Estimation from Remotely-Sensed Information using Artificial 

Neural Networks - Climate Data Record (PERSIANN_CDR), were evaluated.  

 

TMPA 3B42 Rainfall Data 

The TMPA3B42 version 7 is a gauge-adjusted product and launched by the National Aeronautics 

and Space Administration NASA and the Japanese Aerospace Exploration Agency (JAXA) to 

monitor precipitation in the tropical and subtropical areas of 50° S – 50° N (Huffman and Bolvin, 

2010). This product has 0.25° × 0.25° spatial resolution and is available from 1998 to 2015 in the 

3-hours interval. Daily TRMM 3B42 v7 (TMPA 3B42) data is obtained by summing the 3-hourly 

precipitation. The daily rainfall data for the period 2007–2017 were obtained from the TRMM 

webpage (https://disc.gsfc.nasa.gov). More information about the TRMM products is given by 

Huffman and Bolvin (2010).  

 

CHIRPS Rainfall Data 

The CHIRPS version 2 is a quasi-global (50o S - 50o N), and daily gridded product with a spatial 

resolution of 0.05o and 0.25o (Funk et al., 2015). It is designed for monitoring agricultural drought 

and global environmental change over land, and it also can be used to force hydrologic models and 

simulate near-real-time initial hydrologic conditions (Funk et al., 2015). CHIRPS is a third-

generation rainfall technique that uses a variety of interpolation schemes to generate spatially 

continuous grids from raw point data (Husak et al., 2007). The "satellite-gauge" category includes 

the CHIRPS rainfall product (Table 2).  Daily CHIRPS products at the spatial resolution of 0.25° 

https://www.eajournals.org/
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are available from 1981 to the present. In this study, the data for the period 2007-2017 were 

downloaded (ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CHIRPS-2.0). Funk et al. 

(2015) provide more extensive information about CHIRPS.  

 

Table 2. Summary of the satellite rainfall products used in this study.  
SN Rainfall Products Data Input Spatial 

resolution 

Temporal 

resolution 

Data 

Source 

1 TMPA 3B42V7* PMW + IR + satellite radar + gauge  0.25° Daily O, & S 

2 PERSIANN_CDR 

V1R1* 

PMW (GPCP v2.2) + IR + gauge + 

ANN 

0.25° Daily O, & S 

3 CHIRPSV2.0** IR + TMPA3B42+gauge + 

CHPclim 

0.25° Daily O, S, 

& R 

Note: * Multi-satellite, **Infrared Estimate; O = Observed; S = Satellite; and R = Reanalysis. 
 

PERSIANN_CDR Rainfall Data 

The PERSIANN algorithm uses an artificial neural network (ANN) model to estimate precipitation 

using IR. Adaptive network parameter change utilizing rainfall estimations from a passive 

microwave sensor improves the accuracy of PERSIANN. A new product dubbed the PERSIANN 

CDR (for Climate Data Record) was generated by applying the PERSIANN algorithm to Gridded 

Satellite Infrared Data (GridSat-B1) and then bias correcting estimates using monthly precipitation 

data (Ashouri et al., 2015). The daily PERSIANN_CDR product has been available for near-global 

coverage (60° S–60° N) with a spatial resolution of 0.25° since 1983. The data for the period 2007-

2017 were retrieved from the Center for Hydrometeorology and Remote Sensing (CHRS), 

University of California Irvine (http://chrsdata.eng.uci.edu). A detailed description of the 

PERSIANN_CDR algorithm is found in Ashouri et al. (2015). 

 

Performance Evaluation   

The performance of SRPs was evaluated through different statistical measures including 

categorical, continuous, and spatial comparison methods. 

 

Categorical Validation Statistics 

The rainfall detection capabilities of the SRPs were evaluated using a contingency table (Table 3). 

Four different combinations of estimated and observed data were used to test the frequency of 

correct and wrong estimated values. These combinations are: a Hit (H) when rainfall is recorded 

by both satellite and rain gauge; a Miss (M) when rain is only observed by the rain gauge; a False 

Alarm (F) when rain is only documented by satellite; and a Null when no rain is recorded by both 

satellite and rain gauge. 
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Table 3. Contingency table between observed rainfall and SRPs estimation. 

 Observed rainfall 

Rain No-rain Total 

Satellite Rainfall 

Products (SRPs) 

Rain Hit (H) False Alarm (F) H + F 

No-rain Miss (M) Null (n) M + n 

Total H + M F + n Total rainfall events  

 

To evaluate the rain-detection capabilities of SRPs, categorical statistical indicators such as the 

probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and 

volumetric indices were utilized. POD is a measure of rain events that were successfully detected 

by the satellite (Equation 1), FAR is a measure of rain events that were mistakenly detected 

(Equation 2), and CSI is a measure of relative accuracy (Equation 3). The best POD and CSI values 

are 1, while the best FAR value is 0 (Khan et al., 2011; Moazami et al., 2013). 

𝑃𝑂𝐷 =
𝐻

𝐻 +  𝑀
 

 (1) 

𝐹𝐴𝑅 =
𝐹

𝐻 +  𝐹
 

 (2) 

𝐶𝑆𝐼 =
𝐻

𝐻 +  𝑀 +  𝐹
 

 (3) 

Moreover, the volumetric indices that include Volumetric Miss Ratio (MRV) and Volumetric False 

Ratio (FRV) were used to evaluate the volumetric performance of the selected SRPs. The ratios 

value of MRV (Equation 4) to FRV (Equation 5) close to one indicate a balanced missed and false 

detection rain volumes. To define whether there is a rain or no rain event, a threshold value >1.0 

mm/day was adopted (Gao and Liu, 2013; Moazami et al., 2013).  

𝑀𝑅𝑉 =
∑(𝑂|𝑂 = 0 & 𝑆 > 0)

∑(𝑂)
 

 (4) 

𝐹𝑅𝑉 =
∑(𝑆|𝑂 = 0 & 𝑆 > 0)

∑(𝑂)
 

 (5) 

Where H is the hit; M is the miss, F is a false alarm, O is the observed rainfall, and S is satellite 

rainfall estimation.  

 

Continuous Validation Statistics  

The common continuous statistics including coefficient correlation (CC), root mean square error 

(RMSE), percent of bias (PBIAS), and coefficient of determination (R2) were used to evaluate 

SRPs performance in estimating the amount of rainfall. CC measures the degree of association 

between the observation and satellite estimations (Equation 6). Positive correlation implies that 

when one quantity increases, the other one increases and vice-versa. If it’s negative, it implies that 

when one quantity increases, the other decreases and vice-versa. The RMSE is a measure of the 

error in terms of the difference between satellite estimation and observation (Equation 7). The 

lower RMSE values indicate the smaller the errors in satellite estimation. The PBIAS is used to 

measure the average difference between observation and satellite estimation (Equation 8). The 

https://www.eajournals.org/


International Journal of Environment and Pollution Research 

Vol.10, No.2 pp.50-76, 2022 

                                                                    Print ISSN: 2056-7537(print),  

                                                                                    Online ISSN: 2056-7545(online) 

58 

@ECRTD-UK: https://www.eajournals.org/                                                        
Publication of the European Centre for Research Training and Development -UK 

PBIAS ranges from -∞ to +∞, where the value of zero represents the best satellite estimation 

performance. A positive value of PBIAS indicates SRP overestimation bias, and a negative value 

of PBIAS indicates SRP underestimation bias. R2 describes the fraction of the variance in 

observation data by the satellite estimation (Equation 9). It is the magnitude linear relationship 

between the observed and the satellite values. R2 ranges from 0 which indicates poor model 

performance to 1 which indicates best model performance, and typical values greater than 0.6 are 

considered acceptable model performance (Santhi et al., 2001).  

𝐶𝐶 =
∑(𝑆 − 𝑆𝑎𝑣) (𝑂 − 𝑂𝑎𝑣)

√∑(𝑆 − 𝑆𝑎𝑣)2  √∑(𝑂 − 𝑂𝑎𝑣)2
 

 (6) 

𝑅𝑀𝑆𝐸 = √
∑(𝑂 − 𝑆)2

𝑁
 

 (7) 

𝑃𝐵𝐼𝐴𝑆 =
∑(𝑆 − 𝑂)

∑ ( 𝑂 ) 
 

∗ 100 
 (8) 

𝑅2 = (
∑(𝑆 − 𝑆𝑎𝑣) (𝑂 − 𝑂𝑎𝑣)

√∑(𝑆 − 𝑆𝑎𝑣)2  √∑(𝑂 − 𝑂𝑎𝑣)2
)

2

 
 (9) 

Where: O = the observed rainfall, Oav= the observed mean rainfall, S = the satellite rainfall product 

estimation, Sav = the mean satellite rainfall product, and N = the number of rainfall events. 

Besides, the cumulative distribution function (CDF) for the proportion of rainfall events, scatter 

plot, Taylor diagram, and graphs at daily, monthly, and seasonal time scales were used to evaluate 

rainfall estimation performance of the three SRPs. 
 

 Spatial Comparisons 

The spatial simulation performance of SRPs was assessed through a comparison of the observed 

and estimated rainfall map. The spatial rainfall maps were developed using the Kriging method. 

The advantage of Kriging is an estimation of an average value that takes account of the spatial 

correlation pattern of rainfall and quantification of an error (Boston et al., 2012). Only grid boxes 

with at least one gauge were used in the validation computation to avoid difficulties caused by the 

gauge network's sparseness (Diro et al., 2009).  

 

RESULTS 
 

Temporal Rainfall Estimation 

Daily Rainfall 

The daily comparison between SRPs and observed rainfall is shown in Table 4. All the SRPs 

overestimated the observed rainfall. The three SRPs had a very good correlation with observed 

rainfall, with CC values between 0.80 and 0.82. The lowest and highest association were found in 

PERSIANN_CDR and TMPA 3B42 products, respectively. The lowest RMSE value (1.94 

mm/day) was found from the PERSIANN_CDR product, while the highest RMSE (2.72 mm/day) 

was recorded in the CHIRPS product. The PERSIANN_CDR product slightly overestimated the 
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observed rainfall, with a PBIAS value of 5.3% (Table 4). However, the CHIRPS and TMPA 3B42 

product considerably overestimated the observed rainfall by 23.0% and 18.8%, respectively. 

Overall, the PERSIANN_CDR product captured very well the observed daily rainfall compared to 

TMPA 3B42 and CHIRPS.  

 

Table 4. Summary of statistical comparison between daily observation rainfall and SRPs 

estimation over the UTARB for the period 2007-2017. Note: the observed daily mean rainfall is 

1.93 mm/day. 

Satellite rainfall products  Mean (mm/day) CC RMSE (mm/day) PBIAS 

PERSIANN_CDR 2.03 0.82 1.94 5.3 

CHIRPS 2.37 0.81 2.72 23.0 

TMPA 3B42 2.29 0.80 2.15 18.8 

 

The scatter plot of the daily observed rainfall versus SRPs for the period 2007-2017 is shown in 

Figure 3. The PRSIANN_CDR product captured well the observed rainfall, whereas the 

performance of the TMPA 3B42 product was more limited. All three SRPs tended to overestimate 

the observed rainfall. The overestimation from the TMPA 3B42 product was more pronounced 

where the observed rainfall was maximal. Most of PRSIANN_CDR estimations were relatively 

low deviation from best fit values (R2 = 0.68), while the TMPA 3B42 estimations were high 

deviation (R2 = 0.64).  
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Figure 3. Scatter plot of daily rainfall: observations (x-axis) versus SRPs estimations (y-axis).   

The Cumulative Distribution Function (CDF) of daily rainfall between the SRPs and observation 

is presented in Figure 4. Regarding daily rainfall values from 2007 to 2017, the observed highest 

rainfall was 18.47 mm/day (Figure 4a). However, the three SRPs estimated significantly higher 

than the observed maximum rainfall value. The highest daily rainfall from PERSIANN_CDR, 

TMPA 3B42, and CHIRPS products were 34.81, 38.51, and 38.07 mm/day, respectively. The 

estimated rainfall from PERSIAN_CDR and TMPA 3B42 product was slightly higher than the 

observed rainfall within the 10% frequency level. However, the CHIRPS rainfall estimations were 

extremely higher than the observation rainfall with this frequency. For example, the observed 

rainfall at a 5% frequency level was 7.7 mm (Figure 4a). At the same frequency level, 

PERSIAN_CDR and TMPA 3B42 estimations were 8.9 mm and 9.6 mm, respectively, while 

CHIRPS estimation was 11.3 mm. Moreover, the rainfall estimation from the PERSIANN_CDR 

product was very close to the observed rainfall in most frequency levels. As shown in Figure 4b, 

the number of rainfalls below 5 mm/day accounted for 12.75% and 13.3% of the observed and 

PERSIANN_CDR data, respectively. However, the number of rainfalls for this class was 16.3 % 

and 17.5% of CHIRPS and TMPA 3B42 data, respectively. This indicates that the 

PERSIANN_CDR estimation was close to the observed values in the daily time series.  
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Figure 4. (a) Cumulative distribution function (CDF) of daily rainfall for rain gauge and the three 

SRPs over the UTARB for a period 2007-2017, b) rainfall at 5, 10, & 15% of frequency, and c) 

different frequencies at 5 mm of rainfall. 

 

All the three SRP estimations had a strong agreement with the observed rainfall. The 

PERSIANN_CDR and TMPA 3B42 generally agreed well with the observed daily mean rainfall, 

with slightly lower RMSE and higher correlation (Figure 5a). The spatial variability in all SRPs 

estimation was higher than that of the observed rainfall (2.6 mm/day). The spatial variation in the 

CHIRPS product was considerably higher than the observed rainfall. In general, the 

PERSIANN_CDR product performed very well in estimating the observed rainfall, with the lowest 

RMSE (1.94 mm/day) and spatial variability (3.5 mm/day) and the highest correlation (0.83). On 

the contrary, the CHIRPS product performed poorly, with the highest RMSE (2.7 mm/day) and 

spatial variation (4.3 mm/day), and the lowest pattern correlation (0.8). 
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(a)  (b) 

 
Figure 5. Taylor diagram showing a statistical comparison between SRPs and observed rainfall at; 

a) Daily, and b) Monthly areal average 

 
Monthly Rainfall 
The monthly rainfall analysis was carried out by summing daily rainfall for the period 2007–2017.  

All the three SRPs had a very strong association with the monthly observed rainfall (0.94-0.96) 

(Table 5), which shows significant improvement compared to daily time scales (0.80-0.82) (Table 

4). The PERSIANN_CDR had the lowest RMSE (22.7 mm/month) and PBIAS (5.3%), while the 

CHIRPS had the highest RMSE (36.5 mm/month) and PBIAS (23%) (Table 5). General, the 

monthly estimation from the PERSIANN_CDR product reproduced the observed rainfall. 
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Table 5. Summary of statistical comparison between monthly observation rainfall and SRPs 

estimation over the UTARB for the period 2007-2017. Note: the observed mean monthly rainfall 

is 56.65 mm/month. 

Satellite rainfall products  Mean (mm/month) CC RMSE (mm/month) PBIAS 

PERSIANN_CDR 61.8 0.96 22.7 5.3 

CHIRPS 72.1 0.95 36.5 23 

TMPA 3B42 69.7 0.94 28.6 18.8 

 

Observed and SRPs estimated mean monthly rainfall for the period from 2007 to 2017 is shown 

in Figure 6. The CHIRPS estimated the largest and the smallest average monthly rainfall in August 

(264.6 mm/month) and December (4.2 mm/month), respectively. All the SRPs overestimated the 

observed rainfall in the wet months (July and August) and the dry months (October and 

November), while they underestimated the observed rainfall in February and March. The highest 

overestimation (68 mm/month) occurred in July in the CHIRPS product. Overall, the rainfall 

estimation from the PERSIANN_CDR product captured very well the observed rainfall in all 

months except May, June, and August (Figure 6).  

 

 
Figure 6. Long-term monthly areal mean rainfall (2007-2017) from observed and SRPs. 

 

Seasonal Rainfall 

Table 6 presents the comparison between observed and SRPs rainfall estimation on a seasonal 

basis. The correlation between observed and estimated rainfall in the PERSIANN_CDR and 

CHIRPS products was strong during the Belg season (Semi-dry season = February to May) (Table 

6), the PERSIANN_CDR had the lowest RMSE (1.39 mm/day) and the TMPA 3B42 had the 

highest (1.86 mm/day). The PERSIANN_CDR and CHIRPS products slightly overestimated belg 

season rainfall. However, TMPA 3B42 significantly overestimated the observed belg season 
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rainfall (24.7%). In kiremt season (Wet season = June to September), the three SRPs had a very 

good correlation with the observed rainfall, with the highest CC in PERSIANN_CDR (0.76). 

Besides, PERSIANN_CDR estimated the lowest RMSE value (2.94 mm/day) compared to other 

products. All three SRPs overestimated the observed rainfall during the kiremt season. The lowest 

overestimation was recorded from PERSIANN_CDR (4.2%), while the highest overestimation 

was found in CHIRPS (28.6%). In the bega season, the correlation between observed and estimated 

rainfall from the three products was poor (Table 6). The PERSIANN_CDR had the lowest error 

variance (0.8 mm/day), while TMPA 3B42 had the highest RMSE value (1.06 mm/day) in the 

bega season. The CHIRPS had the lowest PBIAS (17.9%) in the bega season, which indicates a 

slight overestimation of the observed rainfall. However, TMPA 3B42 significantly overestimated 

the observed rainfall, with a PBIAS value of 80.8%. Overall, the PERSIANN_CDR product 

represented well the observed rainfall in all three seasons.  

 

Table 6. Summary of statistical comparison between seasonal observation rainfall and SRPs 

estimation over the UTARB for the period 2007-2017.  

Season  
Statistical 

measures   

Observed 

rainfall 

Satellite Rainfall Products (SRPs) 

PERSIANN-CDR CHIRPS TMPA 3B42 

Belg  

Mean 1.10 1.14 1.12 1.38 

CC - 0.69 0.68 0.60 

RMSE - 1.39 1.70 1.86 

PBIAS - 3.1 2.0 24.7 

Kiremt 

Mean 4.34 4.52 5.58 4.88 

CC - 0.76 0.73 0.74 

RMSE - 2.94 4.30 3.05 

PBIAS - 4.2 28.6 12.5 

Bega 

Mean 0.34 0.43 0.40 0.61 

CC - 0.63 0.59 0.59 

RMSE - 0.80 0.90 1.06 

PBIAS - 27.4 17.9 80.8 

 

Spatial Rainfall Estimation 

PERSIANN_CDR and CHIRPS demonstrated a good estimating tendency for observed rainfall in 

the northern half of the basin during the belg season (Figure 7). Both products, however, 

understated the amount of rain that fell on the northernmost reaches of the study area. The observed 

rainfall was well recreated by TMPA 3B42 in the northern and southern parts of the basin, while 

it was overestimated in the middle region.  
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Figure 7. Comparison of the spatial pattern of mean season rainfall for the Belg season (February 

to May), a) Observed, b) PERSIANN_CDR, c) CHIRPS, and d) TMPA 3B42 over the UTARB 

for the period 2007-2017. 

 

In kiremt seasons, the PERSIANN_CDR product showed a good estimating of the observed 

rainfall almost in all parts of the basin except for a slight overestimation in northwestern and 

underestimation in southwestern regions (Figure 8). CHIRPS product considerably overestimated 

rainfall in the northern part of the basin. TMPA 3B42 product estimated well the observed rainfall 

in the central and northeastern, while it showed overestimation and underestimation tendency in 

the northwestern and southwestern part, respectively. 
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Figure 8. Comparison of the spatial pattern of mean seasonal rainfall for the kiremt season (June 

to September); a) Observed, b) PERSIANN_CDR, c) CHIRPS and d) TMPA 3B42 over the 

UTARB for the period 2007-2017. 

 

In the bega season, CHIRPS reproduced well the spatial pattern of the observed rainfall in all parts 

of the basin (Figure 9). PERSIANN_CDR showed a good pattern in the northern and southern 

parts of the basin, whereas it was overestimated in the central parts of the basin. TMPA 3B42 

performed poorly in most parts, which was caused by a significant overestimation of the observed 

rainfall. 
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Figure 9. Comparison of the spatial pattern of mean season rainfall for the Bega season (October 

to January), a) Observed, b) PERSIANN_CDR, c) CHIRPS and d) TMPA 3B42 over the UTARB 

for the period 2007-2017. 

 

Rainfall Detection 

Rainfall Event Detection 

All the three SRPs detected well the observed rainfall events, with the POD values > 0.7 (Figure 

10). The TMPA 3B42 had the highest POD (0.81), while CHIRPS had the lowest POD (0.70). The 

highest potential of rainfall detection in TMPA 3B42 may associate with the retrieval algorithm of 

the product. Besides, all the SRPs had very high CSI values ranging from 0.64 to 0.73, indicating 

more than 64% of the observed rainfall events were correctly detected by the SRPs. However, the 

SRPs estimation missed some observed rainfall events. PERSIANN_CDR had the lowest FAR 

value (0.10), while TMPA 3B42 had the highest FAR value (0.15) which indicates that about 15% 

of estimated rainfall, but there was no observed rainfall event.  
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Figure 10. Summary of daily contingency indices (rainfall detection) comparison of satellite 

rainfall products with observed rainfall over the UTARB for the period 2007-2017.  

 

As shown in Figure 11, the three products had the best detecting skill in the kiremt season with the 

highest POD value (> 90%) and CSI value (> 88%), and the lowest FAR value (< 3%). However, 

all the SRPs had the worst performance in detecting the rainfall in the bega season with the lowest 

POD (< 58%) and CSI (< 36%), and the highest FAR values (> 41%). In the kiremt season, more 

than 90% of the observed rainfall events were correctly detected by SRPs, with the highest value 

of 94% in PERSIANN_CDR and TMPA 3B42 products. Both products correctly detected 94% of 

the observed rainfall events. In the bega season, less than 58% of the observed rainfall events were 

correctly detected by SRPs. The CHIRPS correctly detected only 45% of the observed bega season 

rainfall. All rainfall products had nearly equivalent skills in detecting the kiremt season with FAR 

values less than <3%. However, the SRPs falsely detected the observed rainfall events by more 

than 41% in the bega season, with the highest value of 51% in the TMPA 3B42 product. The result 

from CSI showed that during the kiremt season, the PRSIANN_CDR and TMPA 3B42 products 

exhibited an equivalent CSI value (92%) of the rainfall events were correctly detected followed by 

CHIRPS (88%). In the bega season, the PRSIANN_CDR exhibited the highest CSI value (39%) 

followed by TMPA 3B42 (36%) and CHIRPS (33%). 
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Figure 11. Comparisons of categorical indices (POD, FAR, & CSI) for kiremt, belg, and bega 

seasons over UTARB from a period 2007-2017. 

 

The comparison between observed and SRPs frequencies detection for different rainfall classes is 

shown in Figure 12. All the three SRPs slightly underestimated the number of observed rainfall 

events less than 5 mm. However, the TMPA 3B42 product slightly overestimated the observed 

rainfall events between 5 mm and 10 mm, while PERSIANN_CDR and CHIRPS products slightly 

underestimated the observed rainfall events in the same range. All the SRPs overestimated the 

number of observed rainfall events between 10 mm and 50 mm (Figure 12), with the highest 

overestimation in the CHIRPS product. Both PERSIANN_CDR and TMPA 3B42 scored equal 

frequencies in rainfall events from 15-25 mm (heavy rain) and 25-50 mm (very heavy rainfall). In 

general, the PERSIANN_CDR had relatively a closer number of frequencies with observed rainfall 

in most classes. 
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Figure 12. Comparisons of rainfall events at different classes between observed and SRPs.  

Rainfall Volume Detection 

Table 7 presents the missed and false rainfall volume detection potential of the three SRPs for the 

daily and seasonal time scale. The estimated missed rainfall volume (MRV) in the three SRPs were 

varied insignificantly for the daily and seasonal time scale, while the estimated false rainfall 

volume (FRV) was varied significantly in all time scale except kiremt season. CHIRPS had slightly 

lower MRV (1.1%) in daily rainfall (Table 7). On the contrary, the FRV value in the daily rainfall 

was low in PRSIANN_CDR and TMPA 3B42 products (3.3%).  

 

Table 7. Comparisons of rainfall volume detection from daily and seasonal time scales.  

Satellite Rainfall  MRV (%)  FRV (%) 

Products Annual  Kiremt Belg Bega  Annual  Kiremt Belg Bega 

PERSIANN_CDR 1.2 0.38 3.6 4.2  3.3 0.52* 6.4 28.4 

CHIRPS 1.1 0.38 3.8 5.3  7.8 0.57 5.9 29.3 

TMPA3B42 1.3 0.34 3.6 4.4  3.3 0.67 10.8 50.2 

Note: MRV= miss rainfall volume, FRV= false rainfall volume. 

All SRPs had a lower MRV (0.34 to 0.38%) in the kiremt season. During belg season, 

PRSIANN_CDR and TMPA3B42 had equivalent MRV values (3.6%), while CHIRPS (3.8%) had 

slightly higher missed rainfall volume. During the bega season, the PRSIANN_CDR product had 

the lowest MRV value (4.2%) while CHIRPS had the highest MRV (5.3%). TMPA 3B42 had a 

higher false rainfall volume (FRV=50.2%) than CHIRPS (29.3%) and PRSIANN_CDR (28.4%) 

during the bega season. In the belg season, TMPA 3B42 had a higher FRV value (10.8%) than 

PRSIANN_CDR (6.4%) and CHIRPS (5.9%). Also, TMPA 3B42 had slightly a higher FRV value 

(0.67%) than CHIRPS (0.57%) and PRSIANN_CDR (0.52%) during the kiremt season. 
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DISCUSSIONS  

The PERSIANN_CDR had a lower PBIAS (5.3%), indicating a slight overestimation of the 

observed rainfall. However, the CHIRPS and TMPA 3B42 products significantly overestimated 

the observed rainfall by 23% and 18.8%, respectively. Fine temporal resolution, significant rainfall 

variability in topographically complicated locations, and the scale disparity between SRPs and 

observed rainfalls all contributed to these satellite-derived products' poor performance on a daily 

time scale (Rahmawati and Lubczynski, 2017). The PERSIANN_CDR had a strong association 

with the observed monthly rainfalls. And the association significantly improved in monthly bases 

compared to the daily timescale. The same result in Conti et al. (2014) found that the overall 

performance of SRPs improves from one to five days and then stabilizes as temporal aggregation 

grows. Increasing the temporal scale (daily to monthly) resulted in better agreements between the 

interpolated rain gauge data and other precipitation products (Zambrano-Bigiarini et al., 2017). 

Results from PBIAS showed that the PERSIANN_CDR and CHIRPS performed a lower 

overestimation of the observed rainfall during the belg season, with a value of 3.1% and 2.0% 

respectively. The two products estimated a higher overestimation during the bega season, while 

PERSIANN_CDR estimated a lower overestimation during kiremt season which indicates that the 

contribution of injecting gauge observation into the model to improve the SRPs. The inability of 

the TIR sensor to distinguish cirrus clouds from rain clouds accounts for the overestimation of 

CHIRPS during the kiremt season (Thiemig et al., 2012; Young et al., 2014; Dinku et al., 2014; 

Toté et al., 2015; Mewcha et al., 2021).  Furthermore, during the kiremt season, the CHIRPS 

exaggerated in-situ observation (28.6 percent). This backs up the views of Zambrano-Bigiarini et 

al. (2017) and Fenta et al. (2018), who stated that satellite-derived products may perform 

differently in different regions due to regional and/or local characteristics, requiring validation and 

bias adjustment before being used in hydrological studies. 

 

The CHIRPS product had a lower PBIAS (17.9%) than PERSIANN_CDR (27.4%) and TMPA 

3B42 (80.8%) in the bega season. This result is similar to Zolina et al., 2004; Sun et al., 2006; 

Lopez, 2007; Funk et al., 2015; Skok et al., 2015). The use of TMPA 3B42 for establishing the 

regression equations linking infrared-based cold-cloud duration values to mean rainfall resulted in 

too few dry days in CHIRPS, which was attributed to the use of TMPA 3B42 for establishing the 

regression equations linking infrared-based cold-cloud duration values to mean rainfall (Funk et 

al., 2015; Beck et al., 2017). The presence of spurious drizzle produced by flaws in the modeling 

and/or parameterization of the physical mechanisms regulating rainfall formation caused the 

reanalyses to regularly underestimate the number of dry days around the world (Zolina et al., 2004; 

Sun et al., 2006; Lopez, 2007; Skok et al., 2015). The higher PBIAS during the bega season in 

PERSIANN_CDR can be related to higher evaporation of the rainfall before it reaches the land 

surface. Hence, evaporation from surface rain gauges during the dry season could lead to the 

overestimation of rainfall from rain gauges by satellite rainfall products.  

 

In general, the three SRPs represented well the observed rainfall in all seasons. The 

PERSIANN_CDR rainfall estimate had a good correlation with observed rainfall in all seasons. 

However, TMPA 3B42 rainfall estimates had a higher percent of detection (POD) on the observed 
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rainfall values than the two products in all seasons. The technique of translating infrared CCD 

measurements into precipitation estimates using the 0.25° grid cell TMPA datasets, which could 

result in the formation of too much light rain, could be linked to CHIRPS' overestimation of wet 

days (Funk et al., 2015).  These findings show that the quality of accessible rainfall products for 

daily to monthly time intervals varies greatly. The current study's spatial-temporal analysis of the 

products identified some of the sources of errors, such as the effect of various sensors, topography, 

and the retrieval algorithm (Beighley et al., 2011; Qin et al., 2014).  

 

CONCLUSIONS 
 

This study comprehensively evaluated the applicability and reliability of SRPs 

(PERSIANN_CDR, CHIRPS, and TMPA 3B42) over the Upper Tekeze-Atbara River Basin for 

the period from 2007 to 2017. The CHIRPS had higher PBIAS in daily timescale followed by 

TMPA 3B42, while PERSIANN_CDR had very low positive PBIAS.  

 

The comparative analysis showed that the PERSIANN_CDR outperform in continuous statistical 

error metrics (CC, RMSE, and PBIAS) for daily, monthly and seasonal time scales followed by 

CHIRPS and TMPA 3B42. Moreover, the PERSIANN_CDR showed very good skill in detecting 

rainfall events (POD, FAR, and CSI) and volume (MRV & FRV) from daily and seasonal scales. 
Overall, the results of this validation study suggest that the PERSIANN_CDR product has the 

potential to be used for a variety of operational applications, such as studying Spatio-temporal 

rainfall patterns and variability over the complicated topography of Ethiopia's Upper Tekeze-

Atbara River Basin. 
 

This study will be a useful reference for future applications of satellite rainfall estimates as inputs 

to hydrological models for the basin, especially in rain gauge sparse and ungauged basins with 

rugged terrains. We recommended that to get a full insight on the accuracy of satellite rainfall 

estimates, further studies on hydrological evaluation through streamflow simulation from different 

models (e.g., SWAT, HBV-light, HEC-HMS). And evaluating the effects of different bias 

correction methods on model simulations should be applied over the basin. 
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