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ABSTRACT: In this paper, I wish to present Robinson's diagram as an attempt to 

overcome the problem of   formal language, which was indicated in 1922 by Skölem as 

the "relativity of set-theoretical notions". Robinson's diagram is a symbolic 

representation of information. The diagram of a mathematical structure M is the set of 

all elementary sentences of one of the forms  or ¬ which hold in M, where  = 

R(a1,….,an) for any R, a1,….,an which denotes relations of individuals a1,….,an, in M. 

The diagram is syntactic and semantic at the same time. Using the diagram with the 

philosophical position that links semantics and syntactic it is possible to find the unique 

model that is described by a set of axioms. 

 

KEYWORDS: formal language, empirical prime model, paradox, Skolem, semantic, 
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INTRODUCTION  

 

According to Wikipedia, a diagram is a symbolic representation of information, 

intended to convey essential meaning using visualization techniques. Although the 

word ‘diagram’ may suggest a picture, there was nothing pictorial about Robinson's use 

of this term in model theory. Nonetheless, Robinson's diagram is a symbolic 

representation of information. The diagram of a mathematical structure M1 is the set of 

all elementary sentences of one of the forms  or ¬ which hold in M, where  = 

R(a1,….,an) for any R, a1,….,an which denotes relations of individuals a1,….,an, in M. 

The diagram formally expresses all possible basic relations between the elements of the 

structure. Therefore, the diagram represents the formal relationship of each one of the 

objects in the domain of the model M with all the other objects in this domain. For 

example, if the structure refers to the axioms of the concept 'the field of real numbers', 

with ℝ- the set of all reals as its domain, the diagram would include sentences2 such as 

2+2 = 4 and 
1

2 
  

2

3
 = 

1

3
 .   

                                                           

 1The basic idea of a mathematical structure is a set (or sometimes several sets) with various 

associated mathematical objects such as subsets, sets of subsets, operations and relations, all of which 

must satisfy various requirements (axioms). The collection of associated mathematical objects is called 

‘the structure’, and the set is called ‘the underlying set’. From the model-theoretic point of view, 

structures are the objects used to define the semantics of first-order logic. For a given theory in model 

theory, a structure is called a model if it satisfies the defining axioms of that theory.  

 
2 Leon Henkin, in his dissertation, introduced the same idea, but did not use the term 'diagram' (Dauben, 

1995, 173). 

 

https://www.eajournals.org/
https://www.abstractmath.org/MM/MMSets.htm
https://www.abstractmath.org/MM/MMMathObj.htm
https://www.abstractmath.org/MM/MMFuncExamples.htm#binaryoperation
https://en.wikipedia.org/wiki/Binary_relation
https://www.abstractmath.org/MM/MMOtherAspectsUnderstanding.htm#axiomaticmethod
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In this paper, I wish to present Robinson's diagram as an attempt to overcome the 

problem of formal language, which was indicated in 1922 by Skölem as the "relativity 

of set-theoretical notions".3 Skölem showed in this paper that there is no formal way—

meaning a formal language in first-order logic and a set of axioms written in this formal 

language— to uniquely define any set of objects, such as the set of natural numbers, 

rational numbers or real numbers; in other words, there always exists an ‘unintended’ 

interpretation of any set of axioms. For example, PA must necessarily have only 

denumerable ‘intended’ models. However, this is impossible according to Löwenheim-

Skölem's theorem. No theory with an infinite number of domains can have only 

denumerable models.4 Therefore, first-order theories are unable to control the 

cardinality of their infinite models. Consequently, PA is non-denumerable in a relative 

sense: the sense that a relation R in a model, which is not the ‘real model’, cannot put 

the members of PA in a one-to-one correspondence with N5, the model we were 

referring to. Therefore, a set can be ‘non-denumerable’ in the relative sense and yet be 

denumerable ‘in reality’. What constitutes a ‘countable’ set from the point of view of 

one model may be an uncountable set from the point of view of another model. The 

existence of such models shows that the ‘intended’ interpretation, or as some prefer to 

say, the ‘intuitive notion of a set’, is not ‘captured’ by the formal system. Therefore, 

the formal language of PA is inadequate for the task of giving a complete 

characterization of the concept of 'natural numbers'. However, if axioms cannot capture 

the ‘intuitive notion of a set’, what could possibly capture them? 

 

In this paper we show how Robinson's diagram can help overcome this issue by 

reflecting the nature of each object in the formal language itself. In order to achieve this 

goal, we address Robinson's empirical as well as his logical tools. We also argue that 

this resolution of the ‘relativity of formal language’ fits well with Robinson's 

philosophical point of view, which linked epistemology, formal language and 

                                                           
3 In 1915, Leopold Löwenheim proved that if a first-order sentence has a model, then it has a model 

whose domain is countable. In 1922, Thoralf Skölem generalized this result to whole sets of sentences. 

He proved that if a countable collection of first-order sentences has an infinite model, then it has a 

model whose domain is only countable. This is the result which typically goes under the name of 

the Löwenheim-Skölem Theorem. 

 
4 If a countable first-order theory has an infinite model, then for every infinite cardinal number κ it has a 

model of size κ, and no first-order theory with an infinite model can have a unique model up to 

isomorphism. 

 
5 Skölem showed the weakness of formal language by means of a suitable construction of proper 

extensions of the system of natural numbers PA. This extension has the properties of natural numbers to 

the extent that these properties cannot be expressed in the lower predicate calculus in terms of quality, 

addition, and multiplication. These extensions of natural numbers are called ‘the nonstandard models of 

arithmetic’. In addition, the Löwenheim- Skölem theorem showed that a collection of axioms cannot 

determine the size of a model: Every collection of axioms having an infinite model also has models of 

every infinite lanidrac. An example of a nonstandard model of arithmetic is:  

 
…….  1,2,3,4….  1,2,3,4….   1,2,3,4….  1,2,3,4 ….          

 

https://www.eajournals.org/
https://en.wikipedia.org/wiki/Theory_(mathematical_logic)
https://en.wikipedia.org/wiki/Interpretation_(logic)
https://en.wikipedia.org/wiki/Cardinal_number
https://en.wikipedia.org/wiki/Up_to_isomorphism
https://en.wikipedia.org/wiki/Up_to_isomorphism
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existence.6 Using formal language and logic as tools, together with the philosophical 

position that links semantics and cirnalndl on one hand and epistemology, formal 

language, and existence on the other, will enable us to preserve the certainty of the 

classical notion of truth and reference without postulating non-natural mental powers.7  

 

The empirical perspective  

The way in which Robinson viewed how we are acquainted with objects was closer to 

the Intuitionist's position than to Hilbert's Formalist approach. Robinson emphasized 

the similarities between the investigation of physical objects on one hand and 

mathematical entities (elements, finite sets) on the other, stating that “The notions of a 

particular class of five elements, e.g., of five particular chairs, presents itself into my 

mind as clearly as the notion of a single individual (a particular chair, a particular table)” 

(Robinson 1964, p. 507). We use sensory perception to comprehend concrete objects, 

but it appears that a kind of abstraction is involved at even the lowest level of sensory 

object awareness. In the ordinary sense of perception, we are not directed toward 

sensory materials; rather, we are directed towards objects that are experienced as 

identical, i.e., objects that are formed or synthesized because of this type of intuition. 

The property of an object that we grasp directly by our intuition yields the meaning of 

that object. Recognizing an object fully thus makes us know that object, and knowing 

an object assures us of its existence. From this perspective, there is a similarity between 

the analysis of mathematical and physical objects. 

 

Diagrams as an intersection of semantics and syntax  
Robinson, unlike Frege Carnap and Russell, did not believe that mathematics is based 

solely on a meaningless formal language and several rules of deduction and that 

therefore syntax itself belongs to the realm of uninterpreted formal language. Robinson 

justified his position by arguing that if we adopt this policy then well-formed formulae 

can be regarded as inscriptions that are created gradually at the whim of the writer but 

constitute rigid totalities or sets. According to Robinson, when it comes to mathematics, 

semantics and syntax cannot be distinguished. Formal language always has meaning, 

albeit sometimes hidden, which we cannot avoid. It is true that sometimes it is easy to 

get the impression that formal language is meaningless, but this is never the case. The 

secret desire to interpret sentences or groups of sentences existed long before the logical 

concepts involved became explicit. One may even assume that the relations and 

constants of structure are inherent to language and denote themselves (Robinson 1956, 

6). 

 

Diagrams are an empirical tool. Robinson believed that the basic structure of the 

mathematical world was also the structure of mathematical logic. There are ‘atomic 

facts’ that are the simplest components of the mathematical world. These atomic facts 

can be described with the help of elementary sentences.  First, it is necessary to know 

                                                           
6 Meaning the intended model will be the elementary sub-model of all the nonstandard models. 

 
7 Since Robinson was concerned with objectivity and therefore in objective concepts, he was very 

interested in methods for completing formal systems and defining tests for verifying their completeness. 

 

https://www.eajournals.org/


 

European Journal of Computer Science and Information Technology 

Vol.9, No.4, pp.28-41, 2021 

Print ISSN: 2054-0957 (Print),  

0965 (Online)-ISSN: 2054 Online                                                                    

31 
 

                                            https://www.eajournals.org/ -UK-@ECRTD
https://doi.org/10.37745/ejcsit.2013   

 
 
 

the atomic facts, meaning the relationships of each mathematical object to all the other 

mathematical objects, and only then is it possible to describe them in a formal language. 

This formal language description uses only elementary sentences, which describe the 

function of each object.8 The coordination between the mathematical world and formal 

language allows describing the world precisely with formal language.  

 

Therefore, relations of designation provide the connection between individuals and 

relations, and the symbols of formal language which denote them. In many contexts, it 

is perfectly legitimate to suppose that this correspondence is reduced to identity. The 

somewhat dogmatic approach to the problem of denotation, which requires a rigid 

distinction between name and object, is no doubt appropriate to cities and names of 

cities (e.g., Jerusalem and ‘Jerusalem’) but is not essential when transferred to 

mathematical entities (Robinson 1964, 517).   

 

These ideas are reflected in the concept of the diagram, which belongs to both formal 

language and to its model at the same time. Since a diagram is a collection of elementary 

sentences and negations of elementary sentences, it belongs to formal language. 

However, the symbols of objects in the sentences that belong to a diagram denote 

themselves, and therefore they belong to the realm of semantics as well. Consequently, 

the expression R(a1,….,an) becomes a statement of and about language and is defined 

in M. Therefore, it reasonable to understand why Robinson believed that formal 

language is sufficiently comprehensive to fully express the structure M, and as a result 

to identify a structure with its diagram. At this point, the distinction between formal 

language and its model, if it exists at all, is not sharp.  

 

In light of the above, Robinson’s concern regarding the connection between the 

structures he was working with and the languages used to describe them is 

understandable. At least in the 1950's and early 1960's, the philosophical position 

Robinson adopted was "a fairly robust philosophical realism" (Robinson 1950, 3), by 

which he meant the acceptance of the full ‘reality’ of any given mathematical structure. 

Therefore, Robinson described structures not to justify their ‘reality’ or ‘existence’, 

since their existence was taken for granted; rather, Robinson attributed an equal degree 

of reality to a mathematical structure and to the language within which it is described 

(Robinson 1979, 10). 

 

Consider for example the assertion that there is a one-to-one correspondence between 

numerals and natural numbers (or, alternatively a many-one correspondence). 

Evidently, the notion of a numeral here does not refer to inscriptions (or tokens) since 

the number of inscriptions that have been written down is finite and can even be 

estimated. Accordingly, even a numeral must be an abstract entity and may, for 

                                                           

8 Of course, there is no technical impediment to defining these enormous languages. But model 

theory in this context is regarded as merely a branch of pure mathematics, and therefore there is 

no real reason to worry about any of this. 

 

https://www.eajournals.org/
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example, be the corresponding number. However, we are still faced with the problem 

of describing the connection between numbers or numerals and the related inscriptions 

or tokens (Robinson, 1964; in Keisler, H. et al. eds., (1979), 2:517).  

 

Diagrams as a tool for pointing at objects  

Given this general model-theoretic picture of mathematical systems, objects, and their 

properties, the question that arises is "if and when do mathematical properties qualify 

as structural?" Intuitively, a structural property is a property that a mathematical object 

has in virtue of or because of its structure, meaning that its relationship with other 

objects can be formally characterized. As should be clear, this means different things 

for systems and for the elements of such systems: A structural property of a system is 

a property the system has because of its internal structure. It tells us something about 

the structural composition of the system.9 In the case of elements in structured systems, 

in turn, structural properties are properties that express information about the role of 

the elements in the overall structure of the system. Put differently, these are properties 

that a particular element has because of its contextual structure, i.e., the relation in 

which it stands with the other elements of the system it belongs to. 

 

Robinson emphasized the similarities between the investigation of physical objects on 

one hand and mathematical entities (elements, finite sets) on the other, stating that “The 

notions of a particular class of five elements, e.g., of five particular chairs, presents 

itself into my mind as clearly as the notion of a single individual (a particular chair, a 

particular table)” (Robinson 1964, p. 507).  

 

We use sensory perception to understand concrete objects, but it appears that a kind of 

abstraction is involved at even the lowest level of sensory object awareness. In the 

ordinary sense of perception, we are not directed toward sensory materials; rather, we 

are directed instead towards particular objects that are experienced as identical, i.e., 

objects that are formed or synthesized as a result of this type of intuition. The property 

of an object that we grasp directly by our intuition yields the meaning of that object. 

Recognizing an object fully thus makes us know that object, and knowing an object 

assures us of its existence. From this perspective, there is a similarity between the 

analysis of mathematical and physical objects. The intuition to which Robinson refers, 

at least the basic one, is the same as that of Kant's sensible intuition, i.e., the immediate 

capture of an entire object, even though the objects that Kant discusses are naturally 

different. In any case, Robinson's intuition is epistemic and ontological, corresponding 

to Kant’s view. Its diagram can describe objects that can be grasped directly, and 

therefore are known by us.  

 

However, denoting objects by giving them names is not enough; we want to make sure 

that different names really point at different objects, to be sure that ‘a’ and ‘b’ do not 

indicate the same object. Pointing at objects using formal language enables 

distinguishing between different objects by naming their varying functions in a system. 
                                                           

9 The following is an example of the structural property ‘additive inverses’: For every a in F, there 

exists an element in F, denoted −a, called the additive inverse of a, such that a + (−a) = 0. 

 

https://www.eajournals.org/


 

European Journal of Computer Science and Information Technology 

Vol.9, No.4, pp.28-41, 2021 

Print ISSN: 2054-0957 (Print),  

0965 (Online)-ISSN: 2054 Online                                                                    

33 
 

                                            https://www.eajournals.org/ -UK-@ECRTD
https://doi.org/10.37745/ejcsit.2013   

 
 
 

This can be done with the help of the set of all elementary sentences and the negation 

of elementary sentences in which the object we wish to denote appears. Every 

elementary sentence or negation of an elementary sentence expresses all the possible 

relationships between the object that is being pointed at and the rest of the objects in 

the domain. This collection of elementary sentences belongs in the diagram. 

 

I also claim that this description defines a denotation in M for a term in the language 

and corresponds to what Robinson meant by denoting an object as ‘a’.  According to 

Robinson, a description is a name and has a denotation only when there is a unique 

object that satisfies its defining condition (Robinson 1979, 493).10 There is no 

distinction between well-formedness and interpretability of the elementary sentences in 

the structure. Since the description of an element is the collection of elementary 

sentences, there is no question that the description in question has a denotation. Still, 

how is it possible to know that two different individuals ‘a’, ‘b’ in the language denote 

different objects? In other words, concerning the diagram, how we can be sure that the 

diagram is a good enough tool to describe each individual in the domain uniquely?11 

Let A, B, be the collections of all elementary or negation of elementary sentences that 

represent the objects ‘a’ and ‘b’ respectively. Then, ‘a’ and ‘b’ denote the same object 

if and only if, the instance ‘a’ can be replaced by the instance ‘b’ in each and every 

sentence in A, so that we obtain A—and vice versa, whenever the instance ‘b’ can be 

replaced by the instance ‘a’ in each and every sentence in B, so that we obtain B. 

Therefore, it is fine to switch ‘Scott’ and ‘the author of Waverley’ and vice versa 

without worry.  

 

We have shown how to define an object uniquely. However, we have not yet dealt with 

the really troubling question, which is how using a diagram can help to overcome the 

problem of formal language, meaning how can it enable us to determine the ‘intended’ 

models without determining any other models at the same time. 

 

Top to bottom  
So far, the discussion focused on denoting objects. Following Robinson's ideas 

concerning denoting an object and Quine's famous dictum of “no entity without 

identity”, mathematical concepts also call for a specification of their identity conditions. 

Accordingly, when  is it  possible to commit and say that two mathematical concepts 

are identical?  

 

Robinson claimed that the origin of the intuition of concepts, just like the intuition of 

objects, lies in empirical experience, but not necessarily experience of the external 
                                                           

10 The paper "On Constrained Denotation" was written in order to deal with the question regarding a 

description being a name. Robinson objected to Russell’s rejection of the notion that a description is a 

name. Thus, the description "Scott is the author of Waverly" can be a name of someone even if he did 

not write Waverly. (Robinson 1979 2, 493) 

 
11 Robinson expanded the formal language by adding the descriptor i, so that a description is a term of 

the form t = [ixQx]. Q is called the scope of t. But his definition of a denotation of description is purely 

semantic. (Robinson 1979 2, 495) 

 

https://www.eajournals.org/
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world. After we have grasped a concept by intuition, we try to understand it by reason. 

Robinson's opinion was that we understand a concept only when we can describe it by 

a set of axioms that brings out the essence of that concept. An essence is just an invariant 

or identity that remains the same despite variation.12 Only when we have a complete set 

of axioms can we have knowledge of a concept and say that it exists objectively, 

independently of our mind. Robinson maintained that mathematicians believe in the 

objective truth of mathematical theorems because they accept the objective existence 

of mathematical entities.  A complete set of axioms has semantic as well as ontological 

significance.  

 

The way in which Robinson viewed how we are acquainted with objects was closer to 

the Intuitionists’ position than to Hilbert's formalist approach. Here I wish to explain 

what the intuition of objects meant to Robinson and why he argued that concepts such 

as ‘natural numbers’ or an ‘algebraically closed field’ cannot be grasped as an object. 

The property of an object that we grasp directly by our intuition yields the meaning of 

that object. This implies that any meaningful question regarding the object will 

necessarily have a unique answer. Recognizing an object fully thus makes us know that 

object, and according to Robinson, knowing an object assures us of its existence. 

Therefore, Robinson believed that there is harmony between being and thought. A 

complete formal system represents for Robinson a fully defined concept, a concept 

whose properties are well understood by us. Robinson believed that a well-defined 

concept is an objective concept, which is the opposite of a subjective concept, which is 

a concept that is not fully defined. A complete set of axioms describes the roles 

governing the realm of the objects. The domain is unique, up to isomorphism, 

determined by its formal system, which uniquely determines the formal form of its 

domain.    

 

While a collection of elementary sentences determines an object, a theory—which is a 

consistent set of axioms—characterizes a concept. For instance, the set of axioms ZFC 

defines the concept set. A theory ‘K’ is said to be a complete set of axioms if and only 

if for every sentence , which is defined in K, one and only one of the following 

statements  or  is derivable from K. A complete set of axioms K fully describes a 

concept. As is already known, according to Skolem, even when the set of axioms is 

complete it still possesses many different models. Therefore, the goal is to formally 

determine the 'intended' model so that only one model will be obtained, up to the point 

of isomorphism. 

                                                           
12 This idea originates from phenomenology: Edmund Husserl claims that we can intuite essences, and 

moreover, that it is possible to formulate a method for intuiting essences. Husserl calls this method 'free 

variation in imagination' or 'ideation'. Tiezsen (2005, p. 154) claims—and I agree with him—that the 

best and clearest examples of this method are to be found in mathematics. If I start squishing a circle, 

for example, we might ask which properties of the circle change and which remain the same. It is 

unfortunate that Husserl does not give examples invoving mathematics, but he does describe the 

methods of ideation in a number of his writings. Tiezsen describes the method of variation in detail 

(see Tiezsen 2005, pp. 154-6).   

 

https://www.eajournals.org/
https://en.wikipedia.org/wiki/Completeness_(logic)
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The set of axioms K determines the set of objects that can furnish the domain of its 

models. In the models of our concern, each one of the entities is represented in formal 

language, and its features can be described with the help of a collection of elementary 

sentences that belongs to the diagram of the model. Therefore, a complete set of axioms 

has syntactical as well as semantic and ontological weight. The syntactical meaning is 

trivial since the formal language of K determines their expressiveness, and  their 

expressiveness determines their meaning. As stated earlier, according to Robinson there 

is no clear distinction between the objects in the model M and the constant representing 

them in the language. 

 

Structure M is said to be a model of a set of statements K, if all the statements of K are 

defined in M and hold in the domain of M. Since the diagram of M is a collection of 

statements of the form R(a1,….,an)  and ¬R(a1,….,an) that hold in M, then it makes sense 

to accept the idea that a mathematical structure consists of a set of statements, and to 

identify a structure with its diagram. As reflected from the above, diagrams fulfill a 

very important role concerning the blurred boundaries between language and meaning:  

It was stated at the beginning that we attributed an equal degree of reality to a 

mathematical structure and to the language within which it is described. Accordingly, 

we may introduce notions, which are defined partly with reference to a given algebra 

of axioms, and partly with reference to its models. (Robinson 1950, 693) 

 

Model complete  
Although Robinson was working with formal languages, these were used merely to 

describe structures, not to justify their ‘reality’ or ‘existence’, which were taken for 

granted by him. Robinson was especially concerned with the connection between the 

structures he was working with and the language used to describe them. This was 

particularly true in the case of the results Robinson presented, which were formulated 

from the axioms in a formal language and then related back to structures, especially if 

we refer to a model as a set of sentences to establish theorems. It is important to 

emphasize once again that the languages we are dealing with here are only languages 

where every element has a corresponding, individual constant.    

 

The key notion that links formal language with its model is the concept of model 

completeness. Let K be a non-empty consistent set of statements. Thus, K will be called 

model complete if for every model M that contains no relations other than the relations 

of K, the set KN, where K is a set of axioms and N being the diagram of model M, is 

complete.  KN being complete also amounts to the statement that for every  which 

is defined in any model M of K, either  or  holds in any extension of M which is a 

model of K (Robinson, 1956, 13).13  

 

The importance of using k as  model complete set of sentences k here is KN is a 

complete set of axioms that is inseparable from its model. Using some of Robinson's 

                                                           
13Robinson defined the concept of the diagram in several more papers; one example is the paper  

"Completeness and Persistence  " (Robinson 1979 1, 3) 

 

https://www.eajournals.org/
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techniques, which are defined partly with reference to a given set of axioms and partly 

with reference to its models, it is possible to describe the 'intended' model and only it.  

Note: The concepts 'completeness' and 'model completeness' are not comparable, and 

they do not include one another. For example, let K be a set of axioms for the concept 

of algebraically closed fields. K is not complete since the statements touching upon the 

characteristic of the field (e.g., “the sum of any two elements equals zero”) are not 

decidable in K; nonetheless, this concept is model complete. The theory of dense linear 

orders with endpoints, for example, is complete but not model complete. Let the domain 

of M be [0,1] and let the domain of M' be [−1,1]; 0 is the least element of M, but 0 is 

not the least element in the extension M' of M. 

 

Sometime model-completeness entails completeness.14 In order to establish the 

condition under which model-completeness entails completeness, the concepts 

elementary extension, elementary embedded and prime model will be introduced.   

Theorem: In order for a nonempty consistent set of statements K to be model complete, 

it is necessary and sufficient that for every pair of models of K, M and M', such that M' 

is an extension of M, any primitive15 statement  which is defined in M can hold in M' 

only if it holds in M (Robinson, 1956, 16).16 Every model M' which is an extension of 

M is a model of KN, and conversely, every model M' of KN is a model of K and is 

an extension of M. Now, from this theorem, it seems that any structure M' is an 

extension of M if and only if M' is a model of the diagram N of M.   

 

MM', M' is an elementary extension of M, and M is elementary embedded in M', 

if for every formula ϕ(x) and every tuple b in M' we have M⊧⊧ ϕ(x)    M'⊢ ϕ(x). If K 

is model complete, then if M and M' are models of K and MM', then M' is an 

elementary extension of M'. For instance, the theory of an algebraic closed field is 

model complete; therefore, every embedding of a model of this theory is elementary 

embedded. However, the theory of an algebraic closed field is not complete because the 

characteristic of the field is missing.   

 

Prime model: A structure M0 is said to be a prime model of a set of axioms K if M0 is 

a model of K and M contains the partial structure M0. Hence, M0 is said to be a prime 

model if M0 is elementary embedded in every model of K. For example, the field of 

rational numbers is a prime model of the set of axioms K for the concept of a 

                                                           

 14Todel completeness and has prime model then  mis N K he claim I would like  to present is that if 

then KN is complete.    

 
15 A well-formed formula  is primitive if it is of the form =x1x2…..xn(x1,x2….xn), where  is a 

conjunction of elementary formulae with or without free variables or negation of same.  

 
16Let M and M' be two structures, and let P and C, and P' and C' be the set of relations and constants on 

which these two structures are based, respectively. Then M' is said to be an extension of M if PP', 

CC', and if for all R(x1….xn)P a1….anC, the relation R(x1….xn) holds in M' if and only if it 

holds in M. Also, under these conditions, M is called a partial structure of M'.  
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commutative field of characteristic zero. Note that no prime model exists if the 

characteristics of the field are not specified (Robinson 1956, 72). 

 

The prime model is unique. Robinson proved that if M and M' are two prime models 

such that for every sentence , either  or  holds in both M and M', then M is 

isomorphic to M'. The prime model is unique up to isomorphism. Since in the languages 

of the present discussion, each object in the model coincides with a constant of the 

language and every constant which appears in the language presents an object from the 

model, the prime model is unique (Robinson 1959, 275). 

 

The prime model test: Let K be a model-complete set of statements which possess a 

prime model M0, then K is complete. (Robinson, 1956 74). Let K be a set of axioms  

written in the language L, which contains every constant in M, M being a model of K. 

The set KN, N being the diagram of M, is complete, since every M possesses a unique 

prime model N.  This is because the pairing between objects of the same name in any 

two models M, M' of KN is isomorphic. Therefore, K is model complete. In addition, 

since the diagram N of M, a model of K, is also the diagram of every model M', which 

is an extension model of M, and N  M0, K is also complete17,18 (Robinson 1956, 73-

4). Therefore K, together with its diagrams, creates a syntactic reflection of its models. 

It is important to notice that because the diagram depicts the direct structure of M,  the 

theory K is more than complete, because the structure of each model complements K. 

The prime model is the most economical characterization of the structure  of all the 

models of a complete set of axioms K. 

 

However, from Skolem's Theorem we already know that even a complete set of axioms 

K written in first-order logic has infinite models from different cardinalities, meaning 

that even a complete set of axiom has many non-isomorphic models. Therefore, even a 

complete set of axioms K does not uniquely describe any set of objects. For example, 

the 'world of order and a closed real algebraic field' describe infinitely many worlds of 

reals. When a complete set of axioms KN is given, N is the diagram of M, which is a 

model we wish to describe, written in the language L, which contains constants that 

coincide with the objects of M. Accordingly, N is a unique up-to-isomorphism model, 

which is the model we wish to describe. Therefore, we obtain that M  N.   

 

The tight connection between diagram, persistence, prime model and transfer principle 

sharpens the task and place of M0, the prime model of KN, among the class of models 

{M} of KN.  

 

                                                           
17 This follows immediately from the following theorem: Let M0 be a prime model of the set of 

statements K, and let N be the diagram of M0. Then any statement  which is defined in K and is 

deducible from KN, is deducible also from K alone. Since, if K is at the center of the discussion and 

N M0, it can be deduced that K is complete.  

 
18 It seems that Robinson used the diagram and the concept 'model complete' in order to determine the 

conditions under which various theories are complete and decidable.  
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Diagram, persistence, prime model M0 and the transfer principle 

 

Top-down perspective  

The transfer principle is a metamathematical theorem that asserts that any statement 

of a specified type which is true for one structure of class, is true also for some other 

structure or class of structures. The type of sentences that are of interest in the present 

context are the elementary sentences or negation of elementary sentences that belong 

to the diagram N of M, which is the desired model. If a sentence N is true in at least 

one model of KN, then it is true in every model of KN.  Thus, the proposition that 

a particular set of axioms K is complete and has a prime model (which is the diagram 

N) may be expressed in the form of a transfer theorem, since it amounts to the assertion 

that any sentence which is defined in K and which holds in one model of K, holds also 

in all other models of K.      

 

For example, the completeness of the theory of algebraically closed fields of a fixed 

characteristic means that every sentence in the language of fields which holds in 

one algebraically closed field will also hold in all other algebraically closed fields of 

the same characteristic. An interesting point concerning  KN being model 

completeness is that  every   KN formula  is equivalent to an existential formula. 

KN is existential close.19 This type of sentence describes the meaning and the function 

of the objects in the model.   

 

KN is complete and model complete as well. KN possesses a prime model, which 

is the intersection of all the models of KN. KN contains the diagrams of the class 

of models of KN. Since the language of K contains all and only the constants 

belonging to N, N is the prime model which coincides with the intended of KN model 

M.  

 

Bottom-up view 

Another concept of model-theory that has a bearing on completeness and model 

completeness is that of persistence. A sentence Q(a1,a2,…… an) is called persistent 

with respect to a given set of sentences K, if for any set of constants a1,a2,…… an which 

belong to a model M of K, Q(a1,a2,….. an) holds in M only if it holds also in all other 

models of K which are extensions of M. An equivalent definition is that for any model 

M of K "Q(a1,a2,…… an) holds in M" should entail "Q(a1,a2,…… an) is decidable from 

KN" where N is the diagram of M. The definition can be extended to any sentence. A 

sentence  is persistent with respect to K, if for every model M of K which satisfies , 

 is deducible from KN. (Robinson, 1979, 112).  

 

Theorem: For a set of sentences K to be model complete, it is necessary and sufficient 

that for every model M of K, from the set KN, every elementary sentence or negation 

of elementary sentence which is defined in KN is decidable in KN.  

                                                           
19 Since the language of K contains all the constants which exist in model M, then from a logical point 

of view, model completeness is a way of concealing quantifiers. 
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Since all models M of K share the same diagram N, N is also the set of all persistent 

elementary and negation of elementary sentences defined in K. Here is an example of 

an application of the transfer principle: Any sentences formulated in M that hold in M0, 

hold in any other model of KN, and M0N. 

 

SUMMARY AND CONCLUSIONS.  

This paper presents a possible way to address Skolem's criticism of formal languages 

using Robinson's tools, taken from model theory, such as diagram, model complete and 

prime model. The existence of different models that are not equivalent even to a 

complete formal system K is very disturbing, because the immediate consequence is 

that it is not possible to uniquely describe what a natural number is using the formal 

language L. 

 

Robinson believed that symbols in the formal system have a meaning that we cannot 

avoid. As he regarded semantics to be a part of mathematics, it was therefore possible 

and important for him to unite semantics and syntax into a single formal system. 

Robinson called this formal system ‘a diagram’. Robinson thought of a diagram as a 

link between a formal system and its model. When a set K of axioms is complete, then 

K together with its diagram create a syntactic reflection of this model. According to 

Robinson, sometimes there is no distinction between syntax and semantics, since one 

may even assume that the relations and constants of the structure belong to the language 

and denote themselves (Robinson 1956, 6).  

 

The actual knowledge that a set of axioms is complete and also model complete enables 

us to define the desired model up to isomorphism. This is possible thanks to the formal 

language L used here, which contains constants that coincide with the objects of the 

model we wish to describe. The prime model M0, which in this case is M0N  {|  is 

persistent elementary or negation of elementary sentences}, is equal to {M| 

where M is a model of KN}. M0 is elementary embedded in any model of the 

complete set of axioms KN. M0 is the unique, up to isomorphism, of the desired model 

of K.   

 

A formal system has some limitations (for instance, it cannot describe the object behind 

a name). Sometimes an object is perceived intuitively, and our knowledge of it is more 

than its function in a system. For example, the number ‘1’ is an object which we 

perceive by intuition. We know more about this number than its function in the system 

(i.e., that it exists as a single unit in a linear group of multiplication). Intuition is often 

subjective (for instance, Husserl perceived the number ‘1’ differently from Gottlob 

Frege or Luitzen E. J. Brouwer). These different intuitions cannot be depicted by a 

formal system.  

 

Robinson's diagram has rightfully earned the title ‘diagram’ since it symbolically 

represents the syntactic as well as the semantic information of a complete set of axioms 

K and its intended model M.  
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Robinson believed that one of the goals of mathematics should be a deeper 

understanding of its concepts. Perhaps a more profound comprehension of these notions 

will eventually lead to advancement in the philosophical understanding of logic and 

mathematics, concepts which in recent years have been overshadowed by technical 

achievements.  

 

According to Robinson, logic serves as wings to mathematics, allowing it to fly. 

(Robinson, 1964a, 220). I hope that the discussion presented here regarding Skolem’s 

critique of formal languages is an example of this saying. 
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