Published by ECRTD-UK

# PLANNING PROBLEMS OF NURSES: CASE OF A MOROCCAN HEALTHCARE UNIT

# Touria BENAZZOUZ<sup>a</sup>, Abdelwahed ECHCHATBI<sup>a</sup>, Adil BELLABDAOUI<sup>b</sup>

<sup>a</sup>Laboratory of Mechanical, Industrial Management and Innovation, FST Settat, Settat, Morocco.

<sup>b</sup>Team of Information Technology and Management of Enterprises, ENSIAS, University Mohammed V Souissi, Rabat, Morocco.

**ABSTRACT:** Healthcare systems are facing the human resources planning's problem as a result of the budgets restrictions and the productivity improvement's need, while ensuring care services' quality provided to patients. In this paper, we focus on the nurses' schedule problem in a hospital center in Morocco. Different works in the last years indicate that this assignment to the different activities must comply with many constraints (professional rules, workload, individual preference, skills, etc.) while optimizing one or several objectives (equity in the work, the costs etc.). We present a description of the studied service as well as professional rules adopted and a mathematical formulation with a mixed integer linear program (MILP). The problem is solved using Ceplex software and the nurses' schedule is presented which achieve the expected balancing of their workloads.

**KEYWORDS:** hospital management, decision support, mathematical modeling, the nurses' assignment.

## INTRODUCTION

Managers within the hospital organizations are interested to the personnel management in the short term as well as the long term. It is a complex task which involves not only to plan and schedule the personnel but also to meet their requirements, the patient needs and manage all hardware resources. We aim in this research to provide aid to the manager in order to improve the planning for polyvalent nurses. As nurses are a key resource in healthcare systems, the service quality they provide depends on their overall satisfaction, especially with respect to the flexibility of schedules they perform.

Several literature reviews have been published on the modeling of the personal schedules' problem and particularly nurses ([1-4]). They present syntheses allowing a characterization of the problems associated with the obtained results and a classification of the used tools. Also, [5] and [6] have presented a decision support system for the nurse's allocation to patients in order to minimize the work overload. The problem has been modeled using a linear program resolved on CPLEX.

#### Published by ECRTD-UK

Thus [7] and [8] offer a problem modeling in a mixed integer linear program (MILP), whose objective is to minimize the arduousness gap between the nurses and to find the best compromise between: the cost, the service quality and the social satisfaction. In [9] has treated the same problem but in allocation children to the nurses.

In emergency home service, the nurses' assignment problem is always present. So [10] considers a set of constraints and nurses' assignment rules, in particular those related to the needs for daily jobs and holydays. Then [11] based on the development of a mathematical model using mixed integer linear programming (MILP). The model assigns the nurses to 7 posts and 4 teams according to their number available per day.

So, we can see a very large variety of constraints, objectives and methods employed in the various works depending on the viewpoint specificity of each author. Our model attempts to perform this planning for a healthcare service in a Moroccan hospital. Scheduled and not scheduled days off that can disrupt a previous planning are considered. Thus, the model integrates the workloads history made by the nurses in order to meet the workloads balance. This work is presented as follows. The second section provides the management process adopted in the medicine service of the hospital Ibn Sina as well as current practices for staff management. Section 3 proposes a mathematical formulation with a mixed integer linear program (MILP). The last section presents the numerical results using Ilog Cplex software.

## Service Description

We focus our study on one of the most important services in a hospital in Morocco. Its main activities are centered on the infectious diseases, the hematology clinic, infection with HIV-Aids, the inflammatory disease and the chronic pathology. The nurse staff management at the service is based on simple rules without worrying about the good governance of the nurse resources. Each nurse may perform all activities and be assigned to all posts, teams and days. The normal load per week is 36.5 hours and the extra times are paid. The staff work at service is organized into 4 teams: the morning, evening, night and weekend. Managers are often facing the lack of the nurses and can't provide the service with the adequate workforce. This is meeted mainly in the case of the evening team, the nights team and days off or sickness periods.

So, it is crucial to make an efficient nurses' assignment on these different posts and teams in order to balance their workloads. The following table (Table1) shows the nurses distribution in the teams and posts by associating a workload in the range [0,2] depending on the available nurses number. Thus, the notation n(p) means that each of (n) nurse.

Vol.2, No.1, pp.32-42, 2021

Published by ECRTD-UK

| Nurses'<br>number | Teams                  | Post 1        | Post 2 | Post 3 | Post 4 | Post 5 | Post 6 | Post<br>7 |  |  |  |
|-------------------|------------------------|---------------|--------|--------|--------|--------|--------|-----------|--|--|--|
|                   | Morning                | 1 (2) 1 (2)   |        |        |        |        |        |           |  |  |  |
| N=6               | Evening/weekend        |               | 1      | (2)    |        | 1 (1   | -      |           |  |  |  |
|                   | Night                  |               |        | 1      | (2)    |        |        | -         |  |  |  |
|                   | Morning                | 1 (1,         | ,6)    |        | 1 (2)  |        | 1 (2)  | 1 (1)     |  |  |  |
| N=7               | <b>Evening/weekend</b> |               | 1      | (2)    |        | 1 (1   | 1,6)   | -         |  |  |  |
|                   | Night                  |               |        | 1      | (2)    |        |        | -         |  |  |  |
|                   | Morning                | 1 (1,         | ,6)    | 1 (    | (2)    | 1(1)   | 1 (2)  | 1(1)      |  |  |  |
| N=8               | <b>Evening/weekend</b> |               | 1      | (2)    | 1 (1   | -      |        |           |  |  |  |
|                   | Night                  |               |        | 1      | (2)    |        | -      |           |  |  |  |
|                   | Morning                | 1 (1,         | ,6)    | 1 (    | (2)    | 1(1)   | 2 (1)  | 1 (1)     |  |  |  |
| N=9               | <b>Evening/weekend</b> |               | 1      | (2)    |        | 11     | ,6)    | -         |  |  |  |
|                   | Night                  |               |        | 1      | (2)    |        |        | -         |  |  |  |
|                   | Morning                | 1 (1,         | ,6)    | 1(1)   | 1(1)   | 1(1)   | 2 (1)  | 1(1)      |  |  |  |
| N=10              | <b>Evening/weekend</b> | 1 (2) 1 (1,6) |        |        |        |        |        |           |  |  |  |
|                   | Night                  |               |        | 1      | (2)    |        |        | -         |  |  |  |
|                   | Morning                | 1(1)          | 1(1)   | 1(1)   | 1(1)   | 1(1)   | 2 (1)  | 1 (1)     |  |  |  |
| N=11              | Evening/weekend        | 1 (2) 1 (1,6) |        |        |        |        |        |           |  |  |  |
|                   | Night                  |               |        |        | 1 (2)  |        |        | -         |  |  |  |

| The nurses' distribution in different teams and posts according to the available nurses' | number |
|------------------------------------------------------------------------------------------|--------|
| and their associated workloads.                                                          |        |

Table 1.

Several constraints must be observed in the studied service. This is to ensure the availability of daily capacities in terms of nurses by recognizing the associated workload. These constraints achieve the regulations of work which limits to 12 hours the daily nurse load, and 48 hours the weekly one and ensures a day off after a night shift. It is also expected to reduce the nurses' number during the holidays, one for each team, while associating a workload factor equal 2. For fairness, the planning must take into account the workloads history and the planned days off presented in the table 2 for each nurse during the planning horizon. The time arranged for teams is fixed: morning team: 7 hours, tonight team: 5 hours, night team: 12 hours, weekend team: 9 hours. Therefore, the problem's purpose is to generate the nurses' schedule that complies with all the constraints while minimizing the workload deviations. We structure our model in the sub-programs called according to the nurses' availability. The mathematical formulation presented below, takes into account a number of nurses equal 11, 10, 9, 8, 7 and 6. The example shown in this work considers a minimum of 6 nurses available to working when the total number is 12 nurses.

Published by ECRTD-UK

| Day/Nur  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| se       |   |   |   |   |   |   |   |   |   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 |
| Nurse1   | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| Nurse 2  | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| Nurse 3  | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| Nurse 4  | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
| Nurse 5  | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| Nurse 6  | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
| Nurse 7  | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| Nurse 8  | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
| Nurse 9  | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| Nurse 10 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| Nurse 11 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| Nurse 12 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |

Table 2: The planned days off for each nurse during three weeks.

# The mathematical programming model

The variables description.

The notations in our model are set out in Table 3. The model uses a mixed integer linear program with four decision variables as it is shown in tables 4 and 5.

| N :               |                 | The nurses' number.                                                               |
|-------------------|-----------------|-----------------------------------------------------------------------------------|
| D :               |                 | The planning day number.                                                          |
| V :               |                 | The teams' number.                                                                |
| P :               |                 | The posts' number.                                                                |
| i :               |                 | Index representing the nurses.                                                    |
| j :               |                 | Index representing the planning days.                                             |
| p :               |                 | Index representing the posts.                                                     |
| V :               |                 | Index representing the teams.                                                     |
| T :               |                 | The work time for the week.                                                       |
| $T_{max}$         |                 | Maximum permissible working time.                                                 |
| $N_V$ :           |                 | The hours' number worked during the team v.                                       |
| N <sub>j</sub> :  |                 | The nurses' number available for the day j.                                       |
| JO:               |                 | The working days.                                                                 |
| JF:               |                 | The holidays.                                                                     |
| JW :              |                 | The weekends.                                                                     |
| PH <sub>i</sub> : |                 | The total nurses workloads during the previous planning days.                     |
|                   | C <sub>ii</sub> | The planned days off for each nurse i during the day j (0 if the nurse on day off |
|                   | -,              | and 1 for Otherwise) (Table 2).                                                   |

Table 4: Binary Variables

|              | 1: The nurse i assigned to the post p, team v during the day j. |
|--------------|-----------------------------------------------------------------|
| $X_{ipvj} =$ | <b>0:</b> Otherwise.                                            |

Continuous Variables

| $P_{\max}$ :  | The total workloads of the busiest nurses among all nurses.               |
|---------------|---------------------------------------------------------------------------|
| $P_{\min}$ :  | The total workloads of the lightest nurses among all nurses.              |
| $Pn_{ipvj}$ : | The workload of the nurse i to the post p to the team v during the day j. |

#### The constraints description

The constraints (C1), (C3), (C4) and (C5) are considered as the mandatory constraints. The schedule must respect these constraints for a nurse number available equal 11, 10, 9, 8, 7 and 6. The constraints C1.1 to C1.25 propose that for each day j and team v, the post p must contain as many nurses as necessary. The constraints C3.1 to C3.22 present the workloads distribution assigned to various posts, teams and days. The constraints C4.1 to C4.4 ensure that the working time per day should not exceed 12 hours per nurse. The working time per week must not exceed 48 hours per week (C5).These constraints shall formalize the management rules in the table 1 which establishes the requirements for each post, team and day given in the case of 11, 10, 9, 8, 7 and 6 nurses available.

The constraint C2 ensures that any nurse assigned to the night, the next day is a day off.C6 treats the days off and the constraints C7.1 to C7.4 model the holidays. The constraint C8 ensures that the nurse workloads during the horizon D are limited by an upper and lower bound.

$$1 - M(11 - N_j)(11 - N_j) \le \sum_{i=1}^{N} X_{i,p,1,j} \le 1 + M(11 - N_j)(11 - N_j); \ \forall j \in J, p = (C1.1)$$
  
1..5

$$2 - M(11 - N_j)(11 - N_j) \le \sum_{i=1}^{N} X_{i,6,1,j} \le 2 + M(11 - N_j)(11 - N_j); \quad \forall j \in J$$

$$1 - M(11 - N_j)(11 - N_j) \le \sum_{i=1}^{N} X_{i,7,1p} \le 1 + M(11 - N_j)(11 - N_j); \quad \forall j \in J$$
(C1.2)
(C1.3)

$$1 - M(10 - N_j)(10 - N_j) \le \sum_{i=1}^{N} X_{i,p,1,j} \le 1 + M(10 - N_j)(10 - N_j); \ \forall j \in J, p = (C1.4)$$
3..5

$$2 - M(10 - N_j)(10 - N_j) \le \sum_{i=1}^{N} X_{i,6,1,j} \le 2 + M(10 - N_j)(10 - N_j); \quad \forall j \in J$$

$$1 - M(10 - N_i)(10 - N_i) \le \sum_{i=1}^{N} \sum_{p=1}^{2} X_{i,p,1,i} \le 1 + M(10 - N_i)(10 - N_i); \quad \forall j \in J$$
(C1.5)
(C1.6)

$$1 - M(10 - N_j)(10 - N_j) \le \sum_{i=1}^{N} X_{i,7,1,j} \le 1 + M(10 - N_j)(10 - N_j); \forall j \in J$$

$$(C1.7)$$

$$M(0 - N_j)(0 - N_j) \le \sum_{i=1}^{N} X_{i,7,1,j} \le 1 + M(0 - N_j)(0 - N_j); \forall j \in J$$

$$(C1.8)$$

$$1 - M(9 - N_j)(9 - N_j) \le \sum_{i=1}^{N} X_{i,p,1,j} \le 1 + M(9 - N_j)(9 - N_j); \ \forall j \in J, p = 5,7$$

$$2 - M(9 - N_j)(9 - N_j) \le \sum_{i=1}^{N} X_{i,6,1,j} \le 2 + M(9 - N_j)(9 - N_j); \ \forall j \in J$$
(C1.9)

$$1 - M(9 - N_j)(9 - N_j) \le \sum_{i=1}^{N} \sum_{p=1}^{2} X_{i,p,1,j} \le 1 + M(9 - N_j)(9 - N_j); \ \forall j \in J$$

$$1 - M(9 - N_j)(9 - N_j) \le \sum_{i=1}^{N} \sum_{p=3}^{4} X_{i,p,1,j} \le 1 + M(9 - N_j)(9 - N_j); \ \forall j \in J$$

$$(C1.10)$$

$$(C1.11)$$

$$1 - M(8 - N_j)(8 - N_j) \le \sum_{i=1}^{N} X_{i,p,1,j} \le 1 + M(8 - N_j)(8 - N_j); \ \forall j \in J, p = 5..7$$

$$1 - M(8 - N_j)(8 - N_j) \le \sum_{i=1}^{N} \sum_{p=1}^{2} X_{i,p,1,j} \le 1 + M(8 - N_j)(8 - N_j); \ \forall j \in J$$
(C1.12)
(C1.13)

Vol.2, No.1, pp.32-42, 2021

| $1 - M(8 - N_i)(8 - N_i) \le \sum_{i=1}^{N} \sum_{n=2}^{4} X_{i,n+1,i} \le 1 + M(8 - N_i)(8 - N_i); \forall i \in I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C1.14) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| $1 - M(7 - N_i)(7 - N_i) \le \sum_{i=1}^{N} X_{i,p,1,i} \le 1 + M(7 - N_i)(7 - N_i); \forall i \in J, p = 6,7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C1.15) |
| $1 - M(7 - N_i)(7 - N_i) \le \sum_{i=1}^{N} \sum_{j=1}^{2} X_{i,p,1,i} \le 1 + M(7 - N_i)(7 - N_i); \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C1.16) |
| $1 - M(7 - N_i)(7 - N_i) \le \sum_{i=1}^{N} \sum_{p=3}^{5} X_{i,p,1,i} \le 1 + M(7 - N_i)(7 - N_i); \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C1.17) |
| $1 - M(6 - N_i)(6 - N_i) \le \sum_{i=1}^{N} X_{i,7,1,i} \le 1 + M(6 - N_i)(6 - N_i); \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (C1.18) |
| $1 - M(6 - N_i)(6 - N_i) \le \sum_{i=1}^{N} \sum_{j=1}^{4} X_{i,p,1,i} \le 1 + M(6 - N_i)(6 - N_i); \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C1.19) |
| $1 - M(6 - N_i)(6 - N_i) \le \sum_{i=1}^{N} \sum_{n=5}^{G} X_{i n \mid i} \le 1 + M(6 - N_i)(6 - N_i); \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C1.20) |
| $\sum_{n=1}^{4} \sum_{i=1}^{N} X_{i n v i} = 1;  \forall j \in J, v = 2,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (C1.21) |
| $\sum_{n=5}^{6} \sum_{i=1}^{N} X_{i,p,v,i} = 1;  \forall j \in J, v = 2,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (C1.22) |
| $\sum_{i=1}^{N} X_{i,7,vi} \stackrel{=0}{=} ; \forall j \in J, v = 2,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C1.23) |
| $\sum_{n=1}^{N} \sum_{i=1}^{N} X_{i,n,3,i} = 1 ;  \forall i \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C1.24) |
| $\sum_{i=1}^{N} X_{i,7,3,i} \stackrel{=0}{=};  \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (C1.25) |
| $\sum_{n=1}^{P} X_{i,n,2,i} + \sum_{n=1}^{P} \sum_{v=1}^{V} X_{i,n,v}(i+1) \le 1;  \forall i \in I, \forall j \in \{1,, 7\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (C2)    |
| $X_{i p 1 i} - M(11 - N_i)(11 - N_i) \le pn_{i p 1 i} \le X_{i p 1 i} + M(11 - N_i)(11 - N_i); \forall i \in I, \forall j \in I, j$ | (C3.1)  |
| J,p=17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| $X_{i,p,1,j} - M(10 - N_j)(10 - N_j) \le pn_{i,p,1,j} \le X_{i,p,1,j} + M(10 - N_j)(10 - N_j); \forall i \in I, \forall j \in I, j$ | (C3.2)  |
| J,p=37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| $1.6 * X_{i,p,1,j} - M(10 - N_j)(10 - N_j \le pn_{i,p,1,j} \le 1.6 * X_{i,p,1,j} + M(10 - N_j)(10 - N_j); \forall i \in [M_i, M_i] \le 1.6 + M_i + M_i + M_i \le 1.6 + M_i + M_i \le 1.6 + M_i $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (C3.3)  |
| $I, \forall j \in J, p=12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (C34)   |
| $X_{i,p,1,j} - M(9 - N_j)(9 - N_j) \le pn_{i,p,1,j} \le X_{i,p,1,j} + M(9 - N_j)(9 - N_j); \forall i \in I, \forall j \in J, p=57$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (C3.5)  |
| $1.6 * X_{i,p,1,j} - M(9 - N_j)(9 - N_j) \le pn_{i,p,1,j} \le 1.6 * X_{i,p,1,j} + M(9 - N_j)(9 - N_j); \forall i \in I, \forall j \in J,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (00.0)  |
| p=12<br>2 * X: $\dots -M(9-N)(9-N) \le nn \dots \le 2 * X = \dots +M(9-N)(9-N)(9-N)$ if $I \forall i \in I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C3.6)  |
| I = 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| $X_{i p 1 i} - M(8 - N_i)(8 - N_i) \le pn_{i p 1 i} \le X_{i p 1 i} + M(8 - N_i)(8 - N_i); \forall i \in I, \forall j \in J, p=5,7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (C3.7)  |
| $1.6 * X_{i,p,1,i} - M(8-N_i)(8-N_i) \le pn_{i,p,1,i} \le 1.6 * X_{i,p,1,i} + M(8-N_i)(8-N_i); \forall i \in I, \forall j \in J,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (C3.8)  |
| p=12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| $2 * X_{i,p,1,j} - M(8 - N_j)(8 - N_j) \le pn_{i,p,1,j} \le 2 * X_{i,p,1,j} + M(8 - N_j)(8 - N_j); \forall i \in I, \forall j \in $ | (C3.9)  |
| J,p=34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (02.10) |
| $2 * X_{i,6,1,j} - M(8 - N_j)(8 - N_j) \le pn_{i,6,1,j} \le 2 * X_{i,6,1,j} + M(8 - N_j)(8 - N_j); \forall i \in I, \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C3.10) |
| $X_{i,7,1,j} - M(7 - N_j)(7 - N_j) \le pn_{i,7,1,j} \le X_{i,7,1,j} + M(7 - N_j)(7 - N_j); \forall i \in I, \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (C3.11) |
| $1.6 * X_{i,p,1,j} - M(7 - N_j)(7 - N_j) \le pn_{i,p,1,j} \le 1.6 * X_{i,p,1,j} + M(7 - N_j)(7 - N_j); \forall i \in I, \forall j \in I, \forall $   | (US.12) |
| $J_{p=12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (C3.13) |
| $2 * \Lambda_{i,p,1,j} = N_i (7 - N_j) (7 - N_j) \geq p_{i,p,1,j} \geq 2 * \Lambda_{i,p,1,j} + N_i (7 - N_j) (7 - N_j), \forall i \in I, \forall j \in I_i \in I_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| $2 * X_{i,c,1} = -M(7 - N_i)(7 - N_i) \le nn_{i,c,1} \le 2 * X_{i,c,1} = M(7 - N_i)(7 - N_i) \forall i \in I, \forall i \in I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C3.14) |
| $2 * X_{i,p,1,i} - M(6-N_i)(6-N_i) \le pn_{i,p,1,i} \le 2 * X_{i,p,1,i} + M(6-N_i)(6-N_i) : \forall i \in I, \forall i \in I, p = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C3.15) |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| $2 * X_{i,p,1,j} - M(6 - N_j)(6 - N_j) \le pn_{i,p,1,j} \le 2 * X_{i,p,1,j} + M(6 - N_j)(6 - N_j); \forall i \in I, \forall j \in J, p = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C3.16) |
| 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| $X_{i,7,1,j} - M(6 - N_j)(6 - N_j) \le pn_{i,7,1,j} \le X_{i,7,1,j} + M(6 - N_j)(6 - N_j); \forall i \in I, \forall j \in J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (C3.17) |
| $pn_{i,p,v,j} = 2*X_{i,p,v,j}$ ; $\forall i \in I, \forall j \in J, p=14, v=2,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (C3.18) |
| $pn_{i,p,v,j}=1.6*X_{i,p,v,j}$ ; $\forall i \in I, \forall j \in J$ , $p=5,6$ , $v=2,4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C3.19) |

Vol.2, No.1, pp.32-42, 2021

Published by ECRTD-UK

| $pn_{i,p,v,i} = 0$ ; $\forall i \in I, \forall j \in J, v=2,4$                                                         | (C3.20) |
|------------------------------------------------------------------------------------------------------------------------|---------|
| $pn_{i,p,3,i} = 2^* X_{i,p,3,i}$ ; $\forall i \in I, \forall j \in J, p=16$                                            | (C3.21) |
| $pn_{i,p,3,j} = 0$ ; $\forall i \in I, \forall j \in J$                                                                | (C3.22) |
| $X_{ip1i} + X_{ip2i} \le 1$ ; $\forall i \in I, \forall j \in J, \forall p \in P$                                      | (C4.1)  |
| $X_{ip2j} + X_{ip3j} \le 1$ ; $\forall i \in I, \forall j \in J, \forall p \in P$                                      | (C4.2)  |
| $X_{ip1j} + X_{ip3j} \le 1$ ; $\forall i \in I, \forall j \in J, \forall p \in P$                                      | (C4.3)  |
| $X_{ip3j} + X_{ip4j} \le 1$ ; $\forall i \in I, \forall j \in J$                                                       | (C4.4)  |
| $\sum_{i=1}^{7} n_v X_{ipvi} \leq T_{max}$ ; $\forall i \in I, \forall p \in P$                                        | (C5)    |
| $\sum_{v=1}^{V} X_{ipvj} \leq C_{i,j}; \forall i \in I, \forall j \in J$                                               | (C6)    |
| $\sum_{i=1}^{I} X_{ipvj} = 1$ ; $\forall j \in JF, \forall v \in V, p=16$                                              | (C7.1)  |
| $\sum_{i=1}^{I} X_{i7p3j} = 0 \qquad ; \forall j \in JF$                                                               | (C7.2)  |
| $pn_{i,p,v,j} = 2 X_{i,p,v,j}$ ; $\forall j \in JF, v = 1,2,3; p=16$                                                   | (C7.3)  |
| $pn_{i,7,v,j} = 0$ ; $\forall j \in JF, v = 1,2,3;$                                                                    | (C7.4)  |
| $P_{\min} \leq \sum_{v=1}^{V} \sum_{p=1}^{P} \sum_{j=1}^{J} C_{i,j} pn_{ipvj} + PH_i \leq P_{\max}  ; \forall i \in I$ | (C.8)   |

The objective function is to minimize the difference between the upper and lower bound (Pmax and Pmin).

Minimize  $Z = P_{max} - P_{min}$ 

## Numerical results

The study example proposed the allocation of 12 nurses on a three weeks horizon when the days off, the holidays and the workloads history are known.

This model has 14451 variables and 288588 constraints resolved with ILOG CPLEX 9.0 solver on a PC Core i5 1.70 GHz with 4 GB of RAM and the Windows 7 operating system. This data set provides a feasible solution equal 0.2, this after a run time of 10 minutes. Table 6 presents the results of the same data with the execution times ranging from 10 minutes at 8 hours. We found that:

- The optimal solution is not obtained within a reasonable time; this is justified by the importance of the variable number in our model.
- The feasible solution obtained in term of Xi,p,v,j and Pni,p,v,j is invariant relative to the execution time.

Table 7 presents the assignment results of each nurse in each post, team and day of the week as well as their workloads. The notation adopted in this table p (pn) specifies that the nurse held the post p with a load pn.

The days 6, 7, 13, 14, 20 and are the weekends and the 10th day is a public holiday.

| Execution | Iterations | C    | Durin | D      |  |  |
|-----------|------------|------|-------|--------|--|--|
| Time      | Number     | Gap  | Pmin  | riilax |  |  |
|           | 1 728 633  | (0.2 |       |        |  |  |
| 10 Min    | 1,728,035  | )    | 13.4  | 13.6   |  |  |
|           |            | (0.2 |       |        |  |  |
| 2 H       | 44,573,074 | )    | 13.4  | 13.6   |  |  |
|           |            | (0.2 |       |        |  |  |
| 4 H       | 63,437,568 | )    | 13.4  | 13.6   |  |  |
|           |            | (0.2 |       |        |  |  |
| 5 H       | 75,000,508 | )    | 13.4  | 13.6   |  |  |
|           |            | (0.2 |       |        |  |  |
| 8 H       | 93,994,523 | )    | 13.4  | 13.6   |  |  |

| Table 6. Results | s with differen | nt execution time |
|------------------|-----------------|-------------------|
|------------------|-----------------|-------------------|

 Table 7.
 The assignment of each nurse for each post, team and day as well as their workloads on a horizon of three weeks

| <u>Nur</u><br>ses | <u>teams</u>       | <u>J1</u> | <u>J2</u> | <u>J3</u> | <u>J4</u> | <u>J5</u> | <u>J6</u> | <u>J7</u> | <u>J8</u> | <u>J9</u> | <u>J1</u><br>0 | <u>J11</u> | <u>J12</u> | <u>J13</u> | <u>J14</u> | <u>J15</u> | <u>J16</u> | <u>J17</u> | <u>J18</u> | <u>J19</u> | <u>J20</u> <u>J21</u> |
|-------------------|--------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------------------|
| 565               | Morni              | 5         | 5         | 1(        | 7         | 3         |           |           | 5         | 6         | <u> </u>       |            |            |            |            |            |            |            | 6          |            |                       |
|                   | <u>ng</u>          | (1)       | (1)       | 1.6)      | (1)       | (2)       |           |           | (1)       | (1)       |                |            |            |            |            |            |            |            | (2)        |            |                       |
|                   | <u>Eveni</u>       |           |           |           |           |           |           |           |           |           |                |            |            |            |            |            |            |            |            |            |                       |
| 1                 | <u>ng</u>          |           |           |           |           |           |           |           |           |           |                |            |            | 2          |            | 1          |            |            |            | 1          |                       |
|                   | <u>Night</u>       |           |           |           |           |           |           |           |           |           |                |            |            | 2<br>(2)   |            | 1<br>(2)   |            |            |            | 1<br>(2)   |                       |
|                   | Week               |           |           |           |           |           | 4         |           |           |           |                |            |            | . ,        |            | . ,        |            |            |            | . ,        | 5(1                   |
|                   | end                |           |           |           |           |           | (2)       |           |           |           |                |            |            |            |            |            |            |            |            |            | .6)                   |
|                   | <u>Morni</u>       |           | 1(1       | 3 (2)     | 3         |           |           |           | 6         | 6         |                | 6          |            |            |            |            | 7          | 3          | 1(1        |            |                       |
|                   | <u>ng</u><br>Eveni |           | .6)       |           | (2)       |           |           |           | (1)       | (1)       |                | (1)        | 5(1        |            |            |            | (1)        | (2)        | .6)        | 6(1        |                       |
| 2                 | ng                 |           |           |           |           |           |           |           |           |           |                |            | .6)        |            |            |            |            |            |            | .6)        |                       |
| -                 | <u>Night</u>       |           |           |           |           |           |           |           |           |           |                |            | ,          |            |            |            |            |            |            | ,          |                       |
|                   | Week               |           |           |           |           |           |           |           |           |           |                |            |            |            |            |            |            |            |            |            |                       |
|                   | end                |           |           |           |           |           |           |           |           |           |                |            |            |            |            |            |            |            |            |            |                       |
|                   | <u>Morni</u>       | 3         |           | 5(1)      |           | 1(1       |           |           |           | 5         |                | 3          | 3          |            |            | 7          |            |            |            |            |                       |
|                   | <u>ng</u><br>Eveni | (2)       | 6(1       |           |           | .6)       |           |           | 5(1       | (1)       |                | (2)        | (2)        |            |            | (1)        | 6(1        |            |            |            |                       |
|                   | ng                 |           | .6)       |           |           |           |           |           | .6)       |           |                |            |            |            |            |            | .6)        |            |            |            |                       |
| 3                 | <u></u>            |           |           |           |           |           |           |           |           |           |                |            |            |            |            |            |            |            | 1          |            |                       |
|                   | <u>IN1gnt</u>      |           |           |           |           |           |           |           |           |           |                |            |            |            |            |            |            |            | (2)        |            |                       |
|                   | Week               |           |           |           |           |           |           |           |           |           |                |            |            |            | 5(1        |            |            |            |            |            |                       |
|                   | end                |           | 7         |           |           |           |           |           | 2         |           |                |            |            |            | .6)        |            |            |            |            | 171        |                       |
|                   | <u>Morni</u>       |           | (1)       | 7 (1)     |           |           |           |           | (1)       |           |                |            |            |            |            |            |            |            |            | 1(1<br>6)  |                       |
| 4                 | Eveni              | 1         | (1)       |           |           |           |           |           | (1)       |           | 1(2            |            |            |            |            |            | 3          | 1          |            | .0)        |                       |
|                   | ng                 | (2)       |           |           |           |           |           |           |           |           | )              |            |            |            |            |            | (2)        | (2)        |            |            |                       |

Vol.2, No.1, pp.32-42, 2021

|    | <u>Night</u>                                                                                                |            |          |       |            | 3<br>(2)   |                        |            |            |          | 3<br>(2)   |            | 1 (2)      | )        |            |            |            |          |          |
|----|-------------------------------------------------------------------------------------------------------------|------------|----------|-------|------------|------------|------------------------|------------|------------|----------|------------|------------|------------|----------|------------|------------|------------|----------|----------|
| 5  | <u>Week</u><br><u>end</u><br><u>Morni</u><br><u>ng</u><br><u>Eveni</u><br><u>ng</u>                         | 7<br>(1)   |          |       | 2(1<br>.6) | 6<br>(2)   |                        | 6<br>(1)   | 3<br>(1)   |          | 2(1<br>.6) | 1(1<br>.6) |            | 5(<br>.6 | 1          | 1(1<br>.6) | 5(1<br>.6) | 5<br>(1) |          |
| -  | <u>Night</u><br><u>Week</u><br>end                                                                          |            |          |       |            |            |                        |            |            |          |            |            | 5(1<br>.6) |          |            |            |            |          | 1<br>(2) |
| 6  | <u>Morni</u><br><u>ng</u><br><u>Eveni</u><br><u>ng</u><br><u>Night</u>                                      | 5(1<br>.6) |          | 1 (2) | 6(1<br>.6) | 5(1<br>.6) |                        |            | 5(1<br>.6) |          | 5(1<br>.6) | 5<br>(1)   |            |          | 2(1<br>.6) | 2          |            | 7<br>(1) |          |
| 7  | <u>Week</u><br><u>end</u><br><u>Morni</u><br><u>ng</u><br><u>Eveni</u><br><u>ng</u><br><u>Night</u><br>Week | 6<br>(1)   | 3<br>(2) | 1 (2) |            | 4<br>(2)   | 1                      | 1(1<br>.6) | 7<br>(1)   |          |            |            | 1<br>(2)   | 2<br>(2  | 1<br>) (2) | 5<br>(1)   | 3<br>(2)   |          | 1<br>(2) |
| 8  | end<br>Morni<br>ng<br>Eveni<br>ng<br>Night                                                                  | 1(1<br>.6) | 1<br>(2) |       | 6<br>(2)   |            | (2)                    | 1<br>(2)   | 1<br>(2)   |          | 1<br>(2)   | 7<br>(1)   |            | 3<br>(2  | 5<br>) (1) | 6<br>(1)   | 4<br>(2)   |          |          |
| 9  | Week<br>end<br>Morni<br>ng<br>Eveni<br>ng<br>Night                                                          |            | 1<br>(2) | 6 (2) | 4<br>(2)   | 5<br>(1)   | 6(1<br>.6)<br>3<br>(2) |            | 4<br>(1)   | 3(2      | 5<br>(1)   | 1          |            |          |            | 6<br>(1)   |            | 6<br>(1) |          |
| 10 | <u>Week</u><br><u>end</u><br><u>Morni</u><br><u>ng</u><br><u>Eveni</u><br><u>ng</u><br><u>Night</u>         |            | 6<br>(1) |       | 5<br>(1)   |            | ~~/                    | 7<br>(1)   | 1(1<br>.6) | 3(3<br>) |            | 3<br>(2)   |            |          |            | 7<br>(1)   | 5<br>(1)   | 6<br>(1) |          |



Published by ECRTD-UK



## CONCLUSION

In this work, we have presented nurses' assignment problem in a care service from the hopital Ibn Sina in Morocco; we used a mathematical model with a mixed integer linear program (MILP). The proposed model would like account of the days off, holidays and the loads history executed on a predefined horizon. The numerical results illustrate the feasibility of the problem as well as the observance of different constraints.

The improvement's ways exist to bring this work to the reality. In particular, we intend to validate the results on the other hospital and integrate the constraints with take into account the nurse's preferences and skills as well as for the taking into account of the random aspect of the care request.

#### References

- [1] B.Cheang, H. Li, A. Lim, B. Rodrigues. Nurse rostering problems—a bibliographic survey. European Journal of Operational Research 151 (3) (2003): 447–460.
- [2] A.T. Ernst, H. Jiang, M. Krishnamoorthy, D. Sier.Staff scheduling and rostering: a review of applications, methods and models. European Journal of Operational Research 153 (1) (2004): 3–27.
- [3] P. Brucker, R. Qu, E. Burke. Personnel scheduling: models and complexity. European Journal of Operational Research 210 (3) (2011): 467–473.
- [4] T.Benazzouz, A.Echchatbi, A. Bellabdaoui. A Literature Review on the Nurses' Planning Problems. International Journal of Mathematics and Computational Science 1(5) (2015): 268-274
- [5] P. Punnakitikashem, J.M. Rosenberger, D. B. Behan. Stochastic Programming for Nurse Assignment. Computational Optimization and Applications 40 (3) (2004): 321-349.

- [6] P. Punnakitikashem, J.M. Rosenberger. An Optimization-Based Prototype for Nurse Assignment. Conference Proceedings 17-20.
- [7] L. Trilling, A. Guinet. Planification de ressources mutualisées : le cas des infirmiers anesthésistes. Conférence JDMACS-JNMACS. France (2005).
- [8] L. Trilling, A. Guinet, D. L. Magny. Planification des infirmiers anesthésistes: analyse comparative des performances de différents solveurs. Logistique et Management 15 (2007): 5-16.
- [9] P. Schaus, P. V. Hentenryck, J. C. Régin. Problème d'équilibre des charges de travail dans l'affectation de patients aux infirmières. Actes des Cinquièmes Journées Francophones de Programmation par Contrainte. Actes JFPC (2009) : 165-175.
- [10] A. Bellabdaoui, M. A. El Oualidi, J. Saadi. Planification des infirmières au service d'accueil des urgences. Cas du CHU Ibn Rochd de Casablanca. Deuxièmes Journées Doctorales en Systèmes d'Information, Réseaux et Télécommunication, Rabat, JDSIRT (2013).
- [11] A. Bellabdaoui, A. Echchatbi, T. Benazzouz. Problème d'équilibre des charges de travail des infirmiers. Cas du CHU Ibn Sina de Rabat. Workshop Optimisation des Systèmes, Amélioration Continue et Transformation des Entreprises. Marrakech, Maroc (2013).