OPTIMAL EDC BILL-MIX THROUGH PARAMETERS TUNING IN AN OPTIMIZATION MODEL

Charles O. Todo ${ }^{\mathbf{1}}$, Harrietta I. Ojarikre ${ }^{\mathbf{2}}$, and, John N Igabari ${ }^{2}$
Dept. of Statistics, Delta State Polytechnic, Otefe-Oghara, Delta State, Nigeria ${ }^{1}$
Dept. of Mathematics, Delta State University, Abraka, Delta State, Nigeria ${ }^{2}$

Citation: Charles O. Todo, Harrietta I. Ojarikre, and, John N Igabari (2022) Optimal EDC bill-mix through parameters tuning in an optimization model, International Journal of Mathematics and Statistics Studies, Vol.10, No.1, pp.20-29

Abstract

There has been the problem of inappropriate billing of customers by Electricity Distribution Companies (EDCs) in Nigeria. We considered an explicit minimization constrained optimization model where the objective and constraint functions are all linear, for a scenario involving bills (EDCs) generate for their customers. Our model optimizes the bills for different household types. To get a bill-mix that is optimal in the view of customers, model parameters are tuned to fit in with field data collected by the companies. The model was implemented using the computer software, Solver, and the results are presented.

KEYWORDS: optimization, solver, parameter tuning, customers, bill, model, EDC

INTRODUCTION

Viewing optimization as a collection of mathematical principles and methods used for solving quantitative problems that proffer solutions in diverse disciplines, including physics, biology, engineering, economics, and business as quantitative problems in these different disciplines have important mathematical elements in common and because of this commonality, many problems can be formulated and solved by using the unified set of ideas and methods that make up the field of optimization (Wright, 2021). The current trend in optimization is that any solution approach that seeks to maximize or minimize a given entity is an optimization process irrespective of the domain. For instance, Floudas et al. (2013) applied optimization to the problem of climate change; Gunantara (2018) applied multi-objective optimization (MOO) in the field of politics; Marchuk (1976) investigated the environment and problems of optimizing the distribution of industrial enterprises; Ojarikre (2018) compared block-structured linear programming (LP) models against other practical optimization methods for solving downstream refinery problems using a solution method different from the existing ones; Soroush et al. (2009) studied a static single machine scheduling problem in which processing times, due-dates, and penalties for not completing jobs on time are distinct arbitrary random variables and where the
objective was to identify an optimal sequence, which minimizes the expected weighted sum of a quadratic function of job lateness.

The Problem

There has been the issue of inappropriate billings of EDCs customers in Nigeria by these companies. According to Emeka (2010), the current customer classification is too large for ease of understanding by officials of the EDCs. This statement by an official of Nigerian Electricity Regulatory Commission (NERC) shows that no scientific approach is being used by electricity providers and distributors in Nigeria with respect to billing. This necessitated the paper.

The Solution

We developed a model that optimizes the bills for different household types. To achieve optimal bill-mix for different household types, appropriate parameters of the model are tuned. In our model, the parameters include bills generated by the EDCs for electricity consumption per month for each household type, and the quantity of electricity consumed by each electrical appliance.

Model Formulation

Compactly and implicitly, we are looking at the model of the form:

Minimizing $f_{o}(x)$

Subject to $f_{i}(x) \geq b_{i} ; i=1, \ldots, m$
where $f_{o}(x)$ is the objection function and the $f_{i}(x)$ are the constraints.
In the less compact form, we have:
Minimize $\quad c_{1} x_{1}+\ldots+c_{n} x_{n}$
Subject to $\quad a_{11} x_{1}+\ldots+a_{1 n} x_{n} \geq b_{1}$
$\mathrm{a}_{\mathrm{m} 1} \mathrm{X}_{1}+\ldots+\mathrm{a}_{\mathrm{mn}} \mathrm{X}_{\mathrm{n}} \geq \mathrm{b}_{\mathrm{m}}$
$\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \geq 0$
Where:
The c_{j} 's are the bill generated by an EDC for each household type per month, $j=1, \ldots, 6$.
The x_{j} 's are the number of each household type, $\mathrm{j}=1, \ldots, 6$.
The a_{ij} 's are the kWh consumed by each electrical appliance for each household; type, $\mathrm{i}=1, \ldots$, $19, \mathrm{j}=1, \ldots, 6$.

Model Decision Variables

We considered six household types as follows:
the number of one-room apartments $=x_{1}$
the number of bed-sitter apartments $=x_{2}$
the number of room-and-parlour apartment $=x_{3}$
the number of self-contained apartments $=x_{4}$
the number of two-bed-room apartments $=\mathrm{x}_{5}$
the number of three-bed-room apartments $=\mathrm{x}_{6}$

Model Constraints

We considered nineteen household electrical appliances and the restrictions imposed on them are the constraints.

Table 1: The number of each appliance owned by one unit of each apartment type.

	1-Room	Bed-Sitter	 Parlour	Self-Contained	2-Bed- Room	3-Bed- Room
Fan $\left(\mathrm{x}_{1}\right)$	1	1	2	3	4	5
LED Light Bulb $\left(\mathrm{x}_{2}\right)$	3	4	10	10	14	17
AC $\left(\mathrm{x}_{3}\right)$	0	1	0	1	3	4
Refrigerator $\left(\mathrm{x}_{4}\right)$	1	1	1	1	2	2
Electric Heater $\left(\mathrm{x}_{5}\right)$	1	1	1	1	1	1
Water Heater $\left(\mathrm{x}_{6}\right)$	1	1	1	1	1	1
Hair Dryer $\left(\mathrm{x}_{7}\right)$	0	0	0	1	1	1
Clothes Dryer $\left(\mathrm{x}_{8}\right)$	0	0	0	1	1	1
Clothes Iron $\left(\mathrm{x}_{9}\right)$	1	1	1	1	1	1
Dishwasher $\left(\mathrm{x}_{10}\right)$	0	0	0	0	1	1
Electric Kettle $\left(\mathrm{x}_{11}\right)$	1	1	1	1	1	1
Toaster Oven $\left(\mathrm{x}_{12}\right)$	0	0	0	1	1	1
Microwave Oven $\left(\mathrm{x}_{13}\right)$	0	0	0	1	1	1
Desktop Computer $\left(\mathrm{x}_{14}\right)$	1	1	1	2	2	2
Laptop Computer $\left(\mathrm{x}_{15}\right)$	1	1	1	1	1	1
TV (x 16$)$	1	1	1	1	1	1
Stereo Receiver $\left(\mathrm{x}_{17}\right)$	1	1	1	0	1	1
Vacuum Cleaner $\left(\mathrm{x}_{18}\right)$	0	0	0	0	1	
Washing Machine $\left(\mathrm{x}_{19}\right)$	0	0	0	1	1	

The monthly EDC bill (generated) for each household type in Nigeria is N700, N1,000; N1,500; $\mathrm{N} 2,000$, $\mathrm{N} 3,000$; and $\mathrm{N} 4,500$ for household type $1,2,3,4,5$, and 6 respectively. Given that household electricity consumption works out at between 8 and 10 hours per day (thus averaging 9 hours per day in Nigeria) and according Massiha (2002), to calculate the kWh for a specific appliance, multiply the power rating (watts) of the appliance by the amount of time (hrs) you use the appliance and divide by 1000; Table 2 presents the watts rate for each appliance, along with

Vol.10, No.1, pp.20-29, 2022
Print ISSN: 2053-2229 (Print),
Online ISSN: 2053-2210 (Online)
kilo watts hour (kWh) consumed by each apartment type on each appliance, and the total minimum kWh available for each appliances per month.

Table 2: $\mathrm{kWh}=($ watts rate X hr of usage) $/ 1000$

	1- Room (N700)	BedSitter (N1,000)	Room \& Parlour (N1,500)	Self- Contained (N2,000)	2-Bed- Room (N3,000)	3-BedRoom ($\mathrm{N} 4,500$)	$\begin{aligned} & \text { (9 hours/day X } 30 \\ & \text { days) } \end{aligned}$
Fan (x_{1}) 80 watts	. $08 \mathrm{x}_{1}$	$0.08 \mathrm{x}_{2}$	$0.16 x_{3}$. $24 \mathrm{x}_{4}$	$0.32 \mathrm{x}_{5}$	$0.4 \mathrm{x}_{6}$	345 kWh
LED Light Bulb (x_{2}) 25 watts	. $075 \mathrm{x}_{1}$	$0.10 \mathrm{x}_{2}$	$0.25 \mathrm{x}_{3}$	$0.25 \mathrm{x}_{4}$. $35 \mathrm{x}_{5}$. $425 \mathrm{x}_{6}$	391 kWh
AC (x_{3}) 900 watts	0	0	0	$0.9 \mathrm{x}_{4}$	$2.7 \mathrm{x}_{5}$	$3.6 \mathrm{x}_{6}$	1944 kWh
$\begin{aligned} & \text { Refrigerator }\left(\mathrm{x}_{4}\right) \\ & 250 \end{aligned}$	$0.25 \mathrm{x}_{1}$	$0.25 \mathrm{x}_{2}$	$0.25 \mathrm{x}_{3}$	$0.25 \mathrm{x}_{4}$	$0.5 \mathrm{x}_{5}$	$0.5 \mathrm{x}_{6}$	540 kWh
Electric Heater (x_{5}) 2000 watts	$2 \mathrm{x}_{1}$	$2 \mathrm{x}_{2}$	$2 \mathrm{x}_{3}$	$2 \mathrm{x}_{4}$	$2 \mathrm{x}_{5}$	$2 \mathrm{x}_{6}$	$\begin{aligned} & \text { (1 hour/day) X } 30 \\ & \text { days: } 360 \end{aligned}$
Water Heater (x_{6}) 4000 watts	0	0	0	4 x 4	8×5	12 x 6	(4.5 hours/day) X 30 days: 3240 kWh
Hair Dryer (x_{7}) 1500	0	0	0	$1.5 \mathrm{x}_{4}$	$1.5 \mathrm{x}_{5}$	$1.5 \mathrm{x}_{6}$	1215 kWh
Clothes Dryer (x_{8}) 3000 watts	0	0	0	3 x 4	3 x 5	$3 \mathrm{x}_{6}$	(1 hour/day) X 30 days: 270 kWh
Clothes Iron (x 9) 1400 watts	$1.4 \mathrm{x}_{1}$	$1.4 \mathrm{x}_{2}$	$1.4 \mathrm{x}_{3}$	$1.4 \mathrm{x}_{4}$	$1.4 \mathrm{x}_{5}$	$1.4 \mathrm{x}_{6}$	$\begin{aligned} & \text { (1 hour/day) X } 30 \\ & \text { days: } 252 \mathrm{kWh} \\ & \hline \end{aligned}$
Dishwasher (x_{10}) 1300 watts	0	0	0	0	$1.3 \mathrm{x}_{5}$	$1.3 \mathrm{x}_{6}$	$\begin{aligned} & \text { (1 hour/day) X } 30 \\ & \text { days: } 108 \mathrm{kWh} \\ & \hline \end{aligned}$
Electric Kettle (x_{11}) 1700 watts	$1.7 \mathrm{x}_{1}$	$1.7 \mathrm{x}_{2}$	$1.7 \mathrm{x}_{3}$	1.7 x4	1.7 x5	$1.7 \mathrm{x}_{6}$	(1 hour/day) X 30 days: 306 kWh
Toaster Oven (x_{12}) 1100 watts	0	0	0	$1.1 \mathrm{X}_{4}$	$1.1 \mathrm{x}_{5}$	$1.1 \mathrm{x}_{6}$	$\begin{aligned} & \text { (1 hour/day) X } 30 \\ & \text { days: } 99 \mathrm{kWh} \end{aligned}$
Microwave Oven (x_{13}) 1000 watts	0	0	0	$1 \mathrm{X}_{4}$	$1 \mathrm{x}_{5}$	$1 \mathrm{x}_{6}$	$\begin{aligned} & \text { (1 hour/day) X } 30 \\ & \text { days: } 90 \mathrm{kWh} \end{aligned}$
Desktop Computer (x_{14}) 150 watts	$0.15 \mathrm{x}_{1}$	$0.15 \mathrm{x}_{2}$	$0.15 \mathrm{x}_{3}$	0.15 x4	$0.15 \mathrm{x}_{5}$	$0.15 \mathrm{x}_{6}$	$\begin{aligned} & \text { (4.5 hour/day) X } 30 \\ & \text { days: } 121 \mathrm{kWh} \\ & \hline \end{aligned}$
Laptop Computer (x_{15}) 100 watts	$0.1 \mathrm{x}_{1}$	$0.1 \mathrm{x}_{2}$	$0.1 \mathrm{x}_{3}$	$0.2 \mathrm{x}_{4}$	$0.2 \mathrm{x}_{5}$	$0.2 \mathrm{x}_{6}$	$\begin{aligned} & \text { (4.5 hour/day) X } 30 \\ & \text { days: } 121 \mathrm{kWh} \\ & \hline \end{aligned}$
TV (x_{16}) 120	$0.12 \mathrm{x}_{1}$	$0.12 \mathrm{x}_{2}$	$0.12 \mathrm{x}_{3}$	$0.12 \mathrm{x}_{4}$	0.24×5	$0.24 \mathrm{x}_{6}$	259 kWh
Stereo Receiver (x_{17}) 300 watts	0.3	0.3	$0.3 \mathrm{x}_{3}$	$0.3 \mathrm{x}_{4}$	$0.3 \mathrm{x}_{5}$	$0.3 \mathrm{x}_{6}$	486 kWh
Vacuum Cleaner $\left(\mathrm{x}_{18}\right) 1200 \text { watts }$	0	0	0	0	$1.2 \mathrm{x}_{5}$	$1.2 \mathrm{x}_{6}$	$\begin{aligned} & \text { (1 hour/day) X } 30 \\ & \text { days: } 72 \mathrm{kWh} \\ & \hline \end{aligned}$
Washing Machine (x_{19}) 1500 watts	0	0	0	0	1.5×5	$1.5 \mathrm{x}_{6}$	$\begin{aligned} & \text { (1 hour/day) X } 30 \\ & \text { days: } 90 \mathrm{kWh} \end{aligned}$

The Proposed Model

Given the information contained in Table 1 and Table 2, implicit form of the model:
Minimize $\quad c_{1} x_{1}+\ldots+c_{n} x_{n}$

Subject to $\quad a_{11} x_{1}+\ldots+a_{1 n} x_{n} \geq b_{1}$

$$
a_{m 1} x_{1}+\ldots+a_{m n} x_{n} \geq b_{m}
$$

$\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \geq 0 ; \mathrm{n}=6, \mathrm{~m}=19$
becomes explicit as:

$$
\begin{aligned}
& \text { Optimize Cost }=700 \mathrm{x}_{1}+1000 \mathrm{x}_{2}+1500 \mathrm{x}_{3}+2000 \mathrm{x}_{4}+3000 \mathrm{x}_{5}+4500 \mathrm{x}_{6} \\
& \text { Subject to } \quad 0.080 x_{1}+0.080 x_{2}+0.160 x_{3}+0.240 x_{4}+0.320 x_{5}+0.400 x_{6} \geq 345 \\
& 0.075 x_{1} 0.100 x_{2}+0.250 x_{3}+0.240 x_{4}+0.350 x_{5}+0.425 x_{6} \geq 391 \\
& 0.900 \mathrm{x}_{4}+2.700 \mathrm{x}_{5}+3.600 \mathrm{x}_{6} \geq 1944 \\
& 0.250 \mathrm{x}_{1}+0.250 \mathrm{x}_{2}+0.250 \mathrm{x}_{3}+0.250 \mathrm{x}_{4}+0.500 \mathrm{x}_{5}+0.500 \mathrm{x}_{6} \geq 540 \\
& 2.000 x_{1}+2.000 x_{2}+2.000 x_{3}+2.000 x_{4}+2.000 x_{5}+2.000 x_{6} \geq 360 \\
& 4.000 \mathrm{x}_{4}+8.000 \mathrm{x}_{5}+12.00 \mathrm{x}_{6} \geq 3240 \\
& 1.500 \mathrm{x}_{4}+1.500 \mathrm{x}_{5}+1.500 \mathrm{x}_{6} \geq 1215 \\
& 3.000 x_{4}+3.000 x_{5}+3.000 x_{6} \geq 270 \\
& 1.400 \mathrm{x}_{1}+1.400 \mathrm{x}_{2}+1.400 \mathrm{x}_{3}+1.400 \mathrm{x}_{4}+1.400 \mathrm{x}_{5}+1.400 \mathrm{x}_{6} \geq 252 \\
& 1.300 \mathrm{x}_{5}+1.300 \mathrm{x}_{6} \geq 108 \\
& 1.700 x_{1}+1.700 x_{2}+1.700 x_{3}+1.700 x_{4}+1.700 x_{5}+1.700 x_{6} \geq 306 \\
& 1.100 \mathrm{x}_{4}+1.100 \mathrm{x}_{5}+1.100 \mathrm{x}_{6} \geq 99 \\
& 1.000 \mathrm{x}_{4}+1.000 \mathrm{x}_{5}+1.000 \mathrm{x}_{6} \geq 90 \\
& 0.150 \mathrm{x}_{1}+0.150 \mathrm{x}_{2}+0.150 \mathrm{x}_{3}+0.150 \mathrm{x}_{4}+0.150 \mathrm{x}_{5}+0.150 \mathrm{x}_{6} \geq 121 \\
& 0.100 \mathrm{x}_{1}+0.100 \mathrm{x}_{2}+0.100 \mathrm{x}_{3}+0.200 \mathrm{x}_{4}+0.200 \mathrm{x}_{5}+0.200 \mathrm{x}_{6} \geq 121 \\
& 0.120 \mathrm{x}_{1}+0.120 \mathrm{x}_{2}+0.120 \mathrm{x}_{3}+0.120 \mathrm{x}_{4}+0.240 \mathrm{x}_{5}+0.240 \mathrm{x}_{6} \geq 259 \\
& 0.300 x_{1}+0.300 x_{2}+0.300 x_{3}+0.300 x_{4}+0.300 x_{5}+0.300 x_{6} \geq 486 \\
& 0.120 \mathrm{x}_{5}+0.120 \mathrm{x}_{6} \geq 72 \\
& 0.150 \mathrm{x}_{5}+0 \mathrm{~b} .150 \mathrm{x}_{6} \geq 90
\end{aligned}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}, \mathrm{x}_{6} \geq 0$

Implementation of Model

The above model was implemented using the computer software (Microsoft Excel LPP Solver).

RESULTS

The extracted results are presented below:

Answer Report

Worksheet: [Optimize
Cost.xlsx]Sheet2
Report Created: 04-Aug-21 2:54:17
PM

Cell	Name	Original Value	Final Value
\$B\$5	Cost	0	3159114.754
Adjustable Cells			
Cell	Name	Original Value	Final Value
\$B\$9	Number of One-Room Apartments (x1)	0	438.6065574
\$B\$10	Number of Bed-Sitter Apartments (x2)	0	0
\$B\$11	Number of Room and Parlour Apartments (x3)	0	319.1803279
\$B\$12	Number of Self-Contained Apartments (x4)	0	213.3196721
\$B\$13	Number of Two-Bed-Room Apartments (x5)	0	648.8934426
\$B\$14	Number of Three-Bed-Room Apartments (x6)	0	2.08898E-14

Constraint
s

Print ISSN: 2053-2229 (Print),
Online ISSN: 2053-2210 (Online)

\$B\$26	clothes iron constraint	2268	$\begin{aligned} & \$ B \$ 26>=\$ C \$ 2 \\ & 6 \end{aligned}$	Not Binding	2016
\$B\$27	dishwashers constraint	843.5614754	\$B\$27>=\$C\$2	Not	735.561475
			7	Binding	4
\$B\$28	electric kettles constraint	2754	\$B\$28>=\$C\$2	Not	
			8	Binding	2448
\$B\$29	toaster ovens constraint	948.4344262	\$B\$29>=\$C\$2	Not	849.434426
			9	Binding	2
\$B\$30	microwave oven constraint	862.2131148	\$B\$30>=\$C\$3	Not	772.213114
			0	Binding	8
\$B\$31	desktop computers constraint	243	\$B\$31>=\$C\$3	Not	
			1	Binding	122
\$B\$32	laptop computers constraint	248.2213115	\$B\$32>=\$C\$3	Not	127.221311
			2	Binding	5
\$B\$33	TV - television sets constraint	272.2672131	\$B\$33>=\$C\$3	Not	13.2672131
			3	Binding	1
\$B\$34	stereo receivers constraint	486	\$B\$34>=\$C\$3		
			4	Binding	0
\$B\$35	vacuum cleaners constraint	77.86721311	\$B\$35>=\$C\$3	Not	5.86721311
			5	Binding	5
\$B\$36	washing machines constraint	97.33401639	\$B\$36>=\$C\$3	Not	7.33401639
			6	Binding	3
\$B\$37	x1 non-negativity constraint	438.6065574	\$B\$37>=\$C\$3	Not	438.606557
			7	Binding	4
\$B\$38	x2 non-negativity constraint	\$B\$38>=\$C\$38			
				Binding	0
\$B\$39	x3 non-negativity constraint	319.1803279	\$B\$39>=\$C\$3	Not	319.180327
			9	Binding	9
\$B\$40	x4 non-negativity constraint	213.3196721	\$B\$40>=\$C\$4	Not	213.319672
			0	Binding	1
\$B\$41	x5 non-negativity constraint	648.8934426	\$B\$41>=\$C\$4	Not	648.893442
			1	Binding	6
			\$B\$42>=\$C\$4		
\$B\$42	x6 non-negativity constraint	2.08898E-14	2	Binding	0

Sensitivity Report

Worksheet: [Optimize Cost.xlsx]Sheet2
Report Created: 04-Aug-21 2:54:17 PM

Cell	Name	Final Value	Reduced Cost		Objective Coefficient	Allowable Increase	Allowable Decrease
\$B\$9	Number of One-Room Apartments (x1)	438.6065574		0	700	255.3571429	97.05882353
\$B\$10	Number of Bed-Sitter Apartments (x2)	0		0	1000	$1 \mathrm{E}+30$	234.4262295
\$B\$11	Number of Room and Parlour Apartments (x3)	319.1803279		0	1500	472.7272727	266.6666667
\$B\$12	Number of Self-Contained Apartments (x4)	213.3196721		0	2000	165	198.0952381
\$B\$13	Number of Two-Bed-Room Apartments (x5)	648.8934426		0	3000	594.2857143	305.4054054
\$B\$14	Number of Three-Bed-Room Apartments (x6)	$2.08898 \mathrm{E}-14$		0	4500	$1 \mathrm{E}+30$	777.0491803

Vol.10, No.1, pp.20-29, 2022
Print ISSN: 2053-2229 (Print),
Online ISSN: 2053-2210 (Online)

$\$ B \$ 35$	vacuum cleaners constraint	77.86721311	0	72	5.867213115	$1 \mathrm{E}+30$
$\$ \mathrm{~B} \$ 36$	washing machines constraint	97.33401639	0	90	7.334016393	$1 \mathrm{E}+30$
$\$ B \$ 37$	$x 1$ non-negativity constraint	438.6065574	0	234.4262295	0	438.6065574
$\$ B \$ 38$	$x 2$ non-negativity constraint	0	0	477.7678571	$1 \mathrm{E}+30$	
$\$ B \$ 39$	$x 3$ non-negativity constraint	319.1803279	0	0	319.1803279	318.5
$\$ B \$ 40$	$x 4$ non-negativity constraint	213.3196721	0	0	213.3196721	$1 \mathrm{E}+30$
$\$ B \$ 41$	$x 5$ non-negativity constraint	648.8934426	0	0	648.8934426	$1 \mathrm{E}+30$
$\$ B \$ 42$	$x 6$ non-negativity constraint	$2.08898 \mathrm{E}-14$	777.0491803	0	117.962963	1573.823529

Interpretation of Results and Discussion

Extracting the results show that given the bills generated for the different household types, there should be in the locality:

438 One-Room apartments
319 Room \& Parlour apartments
213 Self-Contained apartments
648 Two-Bed Room apartments
2 Three-Bed Room apartments and
no Bed-Sitter apartments.

Parameters Tuning

If the above distribution aligns with field data collected by an EDC, there would be no complaints by the customers, but if not, the cj's are tuned until the result got from the model converges to field data (which are the actual numbers of these household types in the locality) and the c_{j} 's got from that tuning is the optimal bill-mix.

The constraints for fans, LED light bulbs, AC air conditioners, and stereo receivers are binding, while those for all other appliances are not binding. For this results, the total cost is N3,159,114.754 for the locality.

CONCLUSION

This work, if implemented will be able to solve the age-long problem of inappropriate billing of customers by Electricity Distribution Companies (EDCs) in Nigeria through parameters tuning of the model parameters such that results got from the model converge to field data. The EDCs would need to demarcate all the areas they serve into defined units of clusters of appropriate distributions of the different house-hold types.

References

Emeka, O. (2010). Customer Classification in Nigerian Electricity Supply Industry. Nigerian Electricity Regulatory Commission. Pubs.naruc.org/pub./cfm
Floudas, C. A., \& Pardalos, P. M. (Eds.). (2013). State of the art in global optimization: computational methods and applications (Vol. 7). Springer Science \& Business Media.
Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1502242.
Marchuk, G. I. (1976). The environment and problems of optimizing the distribution of industrial enterprises. Doklady Akademii nauk SSSR, 227(5), 1056-1059.
Massiha, G. H., \& Smith, A. (2002). Determining watts and kiowatt-hours. Tech Directions, 61(8), 18.
Ojarikre, H. I. (2018). Production Scheduling and Distribution in Downstream Sector Using Block-Structured Linear Programming Solution Technique: A Comparative Analysis. Journal of Mathematics and System Science 8 (2018) 65-73 doi: 10.17265/21595291/2018.03.001
Soroush, H. M., \& Alqallaf, F. A. (2009). Minimising a weighted quadratic function of job lateness in the stochastic single machine scheduling problem. International Journal of Operational Research, 6(4), 538-572.
Wright, S. J. (2021). Optimization Theory. Britannica www.britannica/science/optimization/Theory

