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ABSTRACT: In this paper, we consider some stochastic dynamical systems.The 

stochastic processes related to these models are some different kinds of tumor cancer 

cells. The growth and diffusion of brain tumor cancer is also studied by using a non-

linear stochastic diffusion model. The considered models are generalization of some 

deterministic models. In the frame of these stochastic models we are able to study the 

growth models for tumor cells under the influence of random perturbations. In general 

mathematical models help to predict the tumour size and optimize the treatment 

procedure in deteministic form, there are several models including exponential, 

dynamical systems, logistic, nonlinear diffusion equations that have been used to 

describe the behaviour of cancer cell growth amd proliferation. By using the stochastic 

analysis and the Adomian method we can study more general models. 
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.                           

INTRODUCTION 

 

Different types of dynamical systems of cancer progression and treatment have already 

been constructed. For example there are many problems written on the subject of 

mathematical models in cancer chemotherapy such as Hannelore Liset and David Julitz 

[1], K.R. Fister and Pannetta [2], J.M. Murrary,[3] and many others. We mension also 

the papers [4-7]. In this paper, we shall study a stochastic dynamical system and a 

stochastic diffusion process. In section 2, we shall solve the considered stochastic 

dynamical sestem. Some properties are also studied. In section 3, we shall solve a 

nonlinear stochastic partial differential equation. In section 4 a nonlinear stochastic 

diffusion model related to brain cancer is studied. We shall use Adomian decomposition 

method to find the stochastic solution. 

 

A stochastic dynamical system  

Let: ( ,  ₣, (₳t)t≥0 , P) be a filtered probability space. Consider the following stochastic 

dynamical system. 

dX = b(X) dt + B(X)dW(t),      (1)         

t[0,𝑎2
−1] , where; X = [

𝑇
𝑁
𝐿

], 
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b(X) = [
𝑎1T (1 -𝑎2 𝑇) - D(𝑡) T 

𝑎3 - 𝑎4 N -  𝑎5NT      

-𝑎6L -  𝑎7L T +  𝑎8 NT

], 

B(X) = [
𝜎1𝑇 0 0

0 𝜎2𝑁 0
0 0 𝜎3𝐿

], 

W(t) = [

𝑊1(𝑡)
𝑊2(𝑡)
𝑊3(𝑡)

],   i  (- , ),  i = 1, 2, 3,  

 

W1 , W2 and W3 are standared independent Weiner processes adapted to the filteration 

(₳t)t≥0 , See [8]. 

 

The stochastic process {T(t) : t  0} is the tumor cell population at time t, {N(t): t  0} 

is the total level of natural killer cells effectiveness at time t and {L(t): t  0} is the total 

level of tumor specific CD 8+ T cell effectveness at time t, see [9 – 12]. 

The parameters 𝑎1,…, 𝑎8 are positive and D(t) is given by  

𝐷(𝑡)  = 𝑎7  
(L/T)𝑐

s + (L/T)𝑐 ,  c, s  0. 

 

It is supposed that the expectations E [T2(0)], E [N2(0)] and E [L2(0)] exist. It is 

supposed also that the vector ( T(0), N(0), L(0) ) is independent of (W1(t), W2(t), W3(t)).  

We shall find now a representation for T(t). 

 

Set T* = T-1 and using the stochastic chain rule of Ito, we get: 

dT* = [𝑎1𝑎2 + (𝜎1
2 - 𝑎1+ D(t)) T* ] dt - 1 T

* dW1(t). 

Thus; 

T*(t) = T-1(0) exp [1W1(t) - 
1

2
 𝜎1

2 t + ∫ 𝑓(𝜃) d𝜃
𝑡

0
] + 

𝑎1𝑎2 ∫ 𝑒𝑥𝑝  [𝜎1 {𝑊1(𝑡) - 𝑊1(𝜃)}
𝑡

0
 
1

2
 𝜎1

2 (t - 𝜃)  + ∫ 𝑓(𝑟) dr
𝑡

𝜃
]  𝑑𝜃, 

Where;  f(r) = 𝜎1
2 -𝑎1 + D(r) 

Notice that T*(t) is almost surely, a.s., positive,  

Thus   T(t) = T*-1(t) 

 

The total level of the natural killer cells N(t), is given by: 

N(t) = N(0) exp [2 W2(t) –𝑎4t - 
1

2

2

2
 
t –𝑎5 ∫ 𝑇(𝜃) ] dt

𝑡

0
  

      + 𝑎3 ∫ 𝑒𝑥𝑝  [𝜎2 {𝑊2(𝑡) - 𝑊2(𝜃)} - 𝑎4(t-𝜃) - 
1

2
 𝜎2

2 (t - 𝜃) - 𝑎5  ∫ 𝑇(𝑟)  dr]
𝑡

𝜃

𝑡

0
dt 

The total level L(t) of tumor specific CD 8+ is given by: 

 L(t) = L(0) exp [3 W3(t) –𝑎7 ∫ 𝑇(𝜃)  dt
𝑡

0
 - 𝑎6t - 

1

2
 2t]  

+ ∫ 𝑎8 N(𝜃) T(𝜃) [exp 𝜎3 (𝑊3(𝑡) - 𝑊3(𝜃)) -  𝑎7 ∫ 𝑇(𝑟)  dr - 𝑎6(t - 𝜃) - 
𝑡

𝜃

𝑡

0
1

2
 𝜎2 (t-𝜃)] d𝜃 . 

Let us study the case when; 

s = 0 , Notice that the processes 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.2, pp.40-50, June 2020 

       Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

2210 (Online)-Online ISSN: 2053                                                                                                 

42 
 

W1(t), W1(t) - W1(s), T(0) are independent and  

 E [𝑒𝜎𝑖𝑊1(𝑡)]  =  exp [
𝜎𝑖

2

2
 t], 

E [𝑒𝜎𝑖(𝑊1(𝑡) - 𝑊𝑖(𝑠)]  =  exp [
(𝑡−𝑠) 𝜎𝑖

2

2
] ,  i = 1, 2, 3 

Thus; 

𝐸[𝑇-1 (𝑡)]  =  e(𝑎7 - 𝑎1 + 𝜎1
2)𝑡 𝐸 [𝑇−1 (0)]+

𝑎1 𝑎2

𝑎7 - 𝑎1 + 𝜎1
2 [𝑒(𝑎7 -𝑎1  + 𝜎1

2)𝑡 - 1] . 

It is clear that 

T(t)  T(0) exp [𝜎1 𝑊1(𝑡)  +  
1

2
 𝜎1

2𝑡 - ∫ 𝑓(𝜃)
𝑡

0
 d𝜃]. 

Thus; 

E [T(t)]  E (T(0)) 𝑒(𝑎1 - 𝑎7) t. 

If  𝑎2 = 0, we get 

T(t) = T(0) exp [𝜎1 𝑊1(𝑡)  +  
1

2
 𝜎1

2𝑡 - ∫ 𝑓(𝜃)
𝑡

0
 d𝜃]. 

If  𝑎2 = s = 0, we get 

E (T2(t)) = E (T2(0)) exp [𝜎1
2 t +  2 (𝑎1 -𝑎7 )𝑡]. 

Notice that T(t) and W2(t) are independent, thus 

E[N(t)] = 𝑒-𝑡𝑎4 E (𝑁(0)) E [exp {- 𝑎5 ∫ T (𝜃) d𝜃
𝑡

0
}] 

+ 𝑎3 ∫ 𝑒−𝑎4 (𝑡 − 𝜃)𝑡

0
 E [exp {- 𝑎5 ∫ 𝑇(𝑟) dr

𝑡

𝜃
}]   d𝜃. 

It is easy to see that 

E [N(t)]  𝑒-𝑡𝑎7 E[𝑁(0)]  +  
𝑎3

𝑎3
 [1 -𝑒-𝑡𝑎4]. 

The product N(t)T(t) and W3(t) and also T(t) are indepent, thus 

E [L(t)] = E [L(0)] 𝑒−𝑎6𝑡 E [- 𝑎7 ∫ 𝑇(𝜃)
𝑡

𝜃
 d𝜃]  

+  𝑎8 ∫ E [𝑁(𝜃) T(𝜃) exp {- 𝑎7 ∫ 𝑇(𝑟) dr

𝑡

𝜃

}]
𝑡

𝜃

 e𝑎6(𝑡−𝜃) d𝜃. 

 

A nonlinear stochastic diffusion model 

 In this section, we shall study the following nonlinear stochastic diffusion model; 

 

𝑢(x, t)  =  f(𝑥)  + ∫ 𝑎(𝑥) u(x, s) 
𝜕

𝜕𝑥
 [

1

𝑢(x, s)
 
𝜕u (x, s)

𝜕𝑥
]

𝑡

0

 ds 

          + ∫ [𝜆 ln 
𝜇

𝑢(𝑥,𝑠)
 – g (𝜈(𝑠))]  𝑢 (x, s)

𝑡

0
 ds +  

+𝜎 ∫ u (x, s) d 𝑊(𝑠)
𝑡

0

 

Where W(t) is a standard Wiener process adapted to the filteration (₳t)t≥0 ,   (-, ), 

 and  are positive parameters, f(𝑥) and 𝑎(𝑥) are given continuous bounded functions 

defined on (- , ). It is supposed that 𝑎(𝑥) is positive for all x  (- , ). 

It is supposed also that g and ν are maps from (0, )    to (0 , ), that are measurable 

and adapted to the filtration (₳t)t≥0 and are a.s., locally bounded. 
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The stochastic process {u(x, t): - < x < , t > 0} may be thought as the concentration 

of brain cancer tumor cells at a location x and time t, u(x,0) = f(x) represents the initial 

deterministic state. 

 Consider the following two Brownian motions: 

 

X1(t) = exp [- W(t)], X2(t) = exp [ W(t)]. 

  It is easy to see that: 

d X1(t) = 
𝜎2

2
 X1(𝑡) dt - 𝜎 X1(𝑡) d𝑊(𝑡), 

d X2(t) = 
𝜎2

2
 X2(𝑡) dt +  𝜎 X2(𝑡) d𝑊(𝑡), 

X1 (0) = X2 (0) = 1. 

Set u*(x, t) = X1(t) u(x,t) and applying Ito's product rule formula, we get  

du*(x, t) = X1 du(x,t) + u(x,t) dX1 - 
2 X1 u(x,t) dt. 

Thus ; 
1

𝑢∗(𝑥,𝑡)
 
𝜕𝑢∗(𝑥,𝑡)

𝜕𝑡
 =  𝑎(𝑥) 

𝜕

𝜕𝑥
 [

1

𝑢∗(𝑥,𝑡)
 
𝜕𝑢∗(𝑥,𝑡)

𝜕𝑥
] + F(t) -  ln(u*(x,t)), 

u* (x, 0) = f(x), 

Where; 

F(t) = 
−𝜎2

2
 +  𝜆 ln 𝜇 - g(𝜈(𝑡)) - 𝜆 𝜎 𝑊 (𝑡). 

Set (x,t) = et u* (x,t), one gets: 

𝜕𝜐(𝑥, 𝑡)

𝜕𝑡
 =  𝑎(𝑥) 

𝜕2𝜐(𝑥, 𝑡)

𝜕𝑥2
 +  e𝜆𝑡 F(𝑡), 

(x, 0) = ln f(x) 

Thus; (x, t) is given by 

  (x,t) = ∫ 𝐺(x, y, t) ln f(𝑦) dy
∞

−∞
 +  

+∫ ∫ 𝐺(x, y, t-s) e𝜆𝑠 F(𝑠) dy
∞

−∞
 𝑑𝑠

𝑡

0
.

. 

Where G is the fundamental solution of the equation 
𝜕𝑢

𝜕𝑡
 = 𝑎(𝑥)  

𝜕2𝑢

𝜕𝑥2. 

Since ∫ 𝐺(𝑥, 𝑦, 𝑡) dy =  1
∞

−∞
, it follows that 

 (x,t) = ∫ 𝐺(𝑥, 𝑦, 𝑡) ln f(𝑦) dy +  ∫ 𝑒𝜆𝑠 F(𝑠) ds
𝑡

0

∞

−∞
, 

So; 

u (x, t) = exp [ W(t) + e-t  (x, t)], (2) 

For a.s., ω  , and all t  0, - < x < . Thus we can find a subset *  , with P 

(*) = 1, such that formula (2) is valid for all   *, t  0, - < x < . 

It is clear that  

W(t) = ∫ 𝑒𝜆(s-t) d𝑊(𝑠)
𝑡

0
 +  𝜆 ∫ 𝑒𝜆(𝑠−𝑡) 𝑊(𝑠) ds

𝑡

0
, (3) 

for all W  *. 

From (2) and (3) one gets 

u(x, t) = exp [𝑉(𝑡) - ∫ 𝑒𝜆(s-t) g (𝜈,s) ds +  H(x, t)
𝑡

0
], 

Where 
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V(t) = 𝜎 ∫ 𝑒𝜆(s-t) d𝑊(𝑠)
𝑡

0
, 

H(x, t) = 𝑒−𝜆𝑡  ∫ G (x, y, t) ln f(𝑦) dy
∞

−∞
 + [ 

𝜎2

2
 (1 - e−𝜆𝑡)] ln 𝜇. 

Notice that V(t) is a Gausian process with mean zero. The variance of V(t) is given by  

E [𝑉2(𝑡)] =  E [𝜎2  ∫ 𝑒𝜆(s-t) d𝑊(𝑠)
𝑡

0
]

2

= 𝜎2  ∫ 𝑒2𝜆(s-t)𝑡

0
 ds = 

 = 
𝜎2

2𝜆
 (1 - e-2𝜆𝑡). 

Thus; 

E [𝑒𝑉(𝑡)]  =  
1

√2𝜋𝛾(𝑡)
 ∫ 𝑒𝑥∞

−∞
 e

-x2

2𝛾(𝑡) dx = exp [
𝛾(𝑡)

2
], 

where; 

𝛾(𝑡)  =  
𝜎2

2𝜆
 [1 - e-2𝜆𝑡]. 

If g and  are independent of W, then the expected number of tumor cells is given by 

E [u(x,t)] = E [exp {
1

2
 𝛾(𝑡)  +  H (x, t)}]  E [exp {- ∫ 𝑒𝜆(s-t) g (𝛾(𝑠)) ds

𝑡

0
}]. 

It can be also compute all the moments of the stochastic process {u(x,t)}: 

𝑒-nH(x,t) E [𝑢𝑛(x,t)] = 

= E [exp {
1

2
 n2 𝛾(𝑡)}]  E [exp {∫ 𝑛 e𝜆(s-t)𝑡

0
 g ds}]. 

 

A brain cancer model 

 

 Let V(R,T) be the concentration of brain tumor cells at a location R and time T. 

Consider now the Burgers equation;  
𝜕𝑉(𝑅,𝑇)

𝜕𝑇
=

𝐷

𝑅2

𝜕

𝜕𝑅
[𝑅2 𝜕𝑉(𝑅,𝑇)

𝜕𝑅
] − (𝑝 − 𝑘)𝐹(𝑇)𝑉(𝑅, 𝑇).                      (4) 

Where D is the diffusion coefficients, (estimated at 0.0013 Cm2 per day for 

glioblastoma multiform). 

The constants p and k represent proliferations rate and killing rate respectively, (R 

measures the distance from the origin of glioblastoma). The function F(T) describes to 

the temporal profile of the treatment. 

Equation (5) can be written in the form 

),,()(
),(),(

2

2

txutc
x

txu
a

t

txu










                         ( 5 (    

erwhw      t = ( p – k) T,  p > k,                                                            

 𝑥 = √
𝑎(𝑝−𝑘)

𝐷
𝑅,       𝑐(𝑡) = 𝐹(𝑇), 

u(x,t) = x V(R,T). 

If the influence of drugs is considered, see [ 4, 5, 6], then a more general mathematical 

model is given in the form;  

𝜕𝑢(𝑥,𝑡)

𝜕𝑡
= 𝑎

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
+ [𝜆 𝑙𝑛 (

𝜇

𝑢(𝑥,𝑡)
) − g (𝜈(𝑠))] 𝑢(𝑥, 𝑡).             

We perturb the last equation by a multiplicative noise term and consider the following 

stochastic integral equation; 
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𝑢(𝑥, 𝑡) = 𝑓(𝑥) + 𝑎 ∫
𝑡

𝑜

𝜕2𝑢(𝑥, 𝑠)

𝜕𝑥2
𝑑𝑠 

+ ∫
𝑡

𝑜
[𝜆 𝑙𝑛 (

𝜇

𝑢(𝑥,𝑠
) − g (𝜈(𝑠))] 𝑢(𝑥, 𝑠)𝑑𝑠 + 𝜎 ∫

𝑡

𝑜
𝑢(𝑥, 𝑠)𝑑𝑊(𝑠).    (6)           

Set   h (x, t) = X1 (t) u (x, t) and applying Ito's formula, we get 

𝑑ℎ(𝑥, 𝑡) = 𝑎
𝜕2ℎ(𝑥,𝑡)

𝜕𝑥2 𝑑𝑡+ 

 

+ [𝜆 𝑙𝑛 (
𝜇

ℎ(𝑥,𝑡)
) − g (𝜈(𝑠)) + 𝜆𝜎𝑊(𝑡) −

𝜎2

2
] ℎ(𝑥, 𝑡)𝑑𝑡 +    

+ ∫
𝑡

𝑜
𝑓(𝑠)𝑑𝑠 − 𝜆 ∫

𝑡

𝑜
𝑣(𝑥, 𝑠)𝑑𝑠,                                          (7) 

For almost every w in Ω , 

where 

𝑓(𝑡) = 𝜆 𝑙𝑛 𝜇 −
𝜎2

2
− 𝜆𝜎𝑊(𝑡) − g (𝜈(𝑠)). 

Set 𝜈(𝑥, 𝑡) = 𝑙𝑛 [ℎ(𝑥, 𝑡)].   We get 

𝜈(𝑥, 𝑡) = 𝑙𝑛 𝜙(𝑥) + 

+𝑎 ∫
𝑡

𝑜
[

𝜕2𝑣(𝑥,𝑠)

𝜕𝑥2 + (
𝜕𝑣(𝑥,𝑠)

𝜕𝑥
)

2

] 𝑑𝑠      

+ ∫
𝑡

𝑜
𝑓(𝑠)𝑑𝑠 − 𝜆 ∫

𝑡

𝑜
𝑣(𝑥, 𝑠)𝑑𝑠,                                          (8) 

For almost every w in Ω , 

By a solution of (8), we mean a function ν such that ν, 
𝜕𝜈

𝜕𝑥
𝑎𝑛𝑑

𝜕2𝜈

𝜕𝑥2 are continuous on (- 

∞, ∞) X [0, T] and satisfies equation (8) on (- ∞, ∞) X [0, T], for almost every ω ε Ω, 

(see [7,8]  ). 

Theorem (1) . If there exists a solution ν(x,t) of equation (8) such that |
𝜕𝜈(𝑥,𝑡)

𝜕𝑥
| ≤ 𝑀 on 

(- ∞, ∞) x [O, T] for almost every ω ε Ω, where M is a positive constant, then that 

solution is unique for almost every ω ε Ω. 

Proof. Set 

𝜈𝑖(𝑥, 𝑡) = 𝑟−𝜆𝑡𝑉𝑖(𝑥, 𝑡), 
𝑉3(𝑥, 𝑡) = 𝑉1(𝑥, 𝑡) − 𝑉2(𝑥, 𝑡), 

where ν1(x,t) and  v2(x, t) are solutions of (8), for almost every ω ε Ω. 

It is easy to see that; 

𝑉3(𝑥, 𝑡) = ∫
𝑡

𝑜

∫
∞

−∞

𝐺(𝑥 − 𝑦, 𝑡, 𝑠)
𝜕𝑉3(𝑡, 𝑠)

𝜕𝑦
[
𝜕𝑉1(𝑦, 𝑠)

𝜕𝑦
+

𝜕𝑉2(𝑦, 𝑠)

𝜕𝑦
] 𝑑𝑦𝑑𝑠, 

Where 

         𝐺(𝑥 − 𝑦, 𝑡, 𝑠) = 𝑒−𝜆𝑠 𝑒
−(𝑦−𝑥)2

4𝑎(𝑡−𝑠)

√4𝜋𝑎(𝑡−𝑠)
 

Noticing that 
𝜕𝑉1(𝑥,𝑡)

𝜕𝑥
 and 

𝜕𝑉2(𝑥,𝑡)

𝜕𝑥
 are bounded on (- ∞, ∞) X [0, T], thus after simple 

calculations we get 

𝑀𝑎𝑥 |
𝜕𝑉3(𝑥, 𝑡)

𝜕𝑥
| ≤

𝑀3
𝑛

𝑛!
, 𝑛 = 1,2,3, . . . .. 

ehere  M3 > 0  is a constant. 

Letting   n → ∞, we get 
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|
𝜕𝑉3(𝑥, 𝑡)

𝜕𝑥
| = 0   𝑜𝑛   (−∞, ∞)𝑋[0, 𝑡]. 

But V3 (x,0) = 0.  Thus  

ν1 (x, t) = ν 2 (x, t) on (- ∞, ∞) X [0, T) and for almost every ω ε Ω . 

This means that there exists a unique positive solution u(x,t) of equation (6) for almost 

every ω ε Ω, (see [8,…,12] ). 

To solve equation (8), we use the Adomian decomposition method. Assume that the 

unknown function v can be represented by an infinite series of the form;  

𝜈(𝑥, 𝑡) = ∑∞
𝑖=𝑜 𝜈𝑖(𝑥, 𝑡),                       (9) 

and the nonlinear term can be decomposed by an infinite series of polynomials given 

by 

(
𝜕𝜈(𝑥, 𝑡)

𝜕𝑥
)

2

= ∑

∞

𝑖=0

𝐴𝑖(𝑥, 𝑡). 

 The function νi (x, t), I = 0, 1,2, …. will be determined recurrently, and Ai(x,t) 

are the so-called Adomian polynomials of  νo, ν1, ν2, …… determined by  

Determined by 

𝐴𝑘(𝑥, 𝑡) =
1

𝑘!

𝑑𝑘

𝑑𝜂𝑘
[

𝜕

𝜕𝑥
∑

∞

𝑖=0

𝜂𝑖𝜈𝑖(𝑥, 𝑡)]

𝜂=0

2

 

k = 0, 1, 2, …. 

Equation (8) can be written in the form 

𝜈(𝑥, 𝑡) = 𝑒
−𝜆𝑡

𝑙𝑛 𝜙 (𝑥, 𝑡) + ∫ 𝑒𝜆(s-t)
𝑡

𝑜

𝑓(𝑠)𝑑𝑠 

+𝑎 ∫ 𝑒𝜆(s-t)𝑡

𝑜
[

𝜕2𝜈(𝑥,𝑡)

𝜕𝑥2 + (
𝜕𝜈(𝑥,𝑡)

𝜕𝑥
)

2

] 𝑑𝑠.                    (10) 

Substituting (9) and (10) into (11) and identifying the zero component νo (x, t) by  

𝜈𝑜(𝑥, 𝑡) = 𝑒
−𝜆𝑡

𝑙𝑛 𝜙 (𝑥) + ∫
𝑡

𝑜
𝑒𝜆(s-t)𝑓(𝑠)𝑑𝑠, 

then the remaining components can be determined by using the recurrence relation 

𝜈𝑛(𝑥, 𝑡) = 𝑎 ∫ 𝑒𝜆(s-t)
𝑡

𝑜

[
𝜕2𝜈𝑛(𝑥, 𝑠)

𝜕𝑥2
+ 𝐴𝑛(𝑥, 𝑠)] 𝑑𝑠. 

 The Adomian polynomials Ai, i = 0, 1, 2, …… are given by 

𝐴𝑜(𝑥, 𝑡) = (
𝜕𝜈𝑜(𝑥, 𝑡)

𝜕𝑥
)

2

, 

 

𝐴1(𝑥, 𝑡) = 2
𝜕𝜈𝑜(𝑥, 𝑡)

𝜕𝑥

𝜕𝜈1(𝑥, 𝑡)

𝜕𝑥
, 

𝐴2(𝑥, 𝑡) = (
𝜕𝜈1(𝑥, 𝑡)

𝜕𝑥
)

2

+ 2
𝜕𝜈𝑜(𝑥, 𝑡)

𝜕𝑥

𝜕𝜈2(𝑥, 𝑡)

𝜕𝑥
, 

𝐴3(𝑥, 𝑡) = 2
𝜕𝜈𝑜(𝑥, 𝑡)

𝜕𝑥

𝜕𝜈3(𝑥, 𝑡)

𝜕𝑥
+ 2

𝜕𝜈1(𝑥, 𝑡)

𝜕𝑥

𝜕𝜈2(𝑥, 𝑡)

𝜕𝑥
. 

Notice that; 
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∑

∞

𝑖=𝑜

𝐴𝑖(𝑥, 𝑡) = ∑

∞

𝑖=𝑜

[
𝜕𝜈𝑖(𝑥, 𝑡)

𝜕𝑥
]

2

+ 2 ∑

𝑖≠𝑗

𝜕𝜈𝑖(𝑥, 𝑡)

𝜕𝑥

𝜕𝜈𝑖(𝑥, 𝑡)

𝜕𝑥
 

Now the solution of (10) can be represented by; 

𝜈(𝑥, 𝑡) = 𝑒
−𝜆𝑡

𝑙𝑛 𝜙(𝑥) + ∫
𝑡

𝑜
𝑒𝜆(𝑠−𝑡)𝑓(𝑠)𝑑𝑠 + 𝐹(𝑥, 𝑡),   

where F is a deterministic function, which is given by  

,),(
),(

1
),(

2

2

)( dssx
i

A
x

tx
i

i

t

o
atxF tse























 




 
From the uniqueness of the solution of equation (4) it follows that 

 )(),(exp),( tWtxtx  
 

= 𝑒𝑥𝑝 [ 𝑒
−𝜆𝑡

𝑙𝑛 𝜙 (𝑥) + 𝐹(𝑥, 𝑡) + 𝜎𝑊(𝑡) + ∫ 𝑒𝜆(s-t)
𝑡

𝑜

𝑓(𝑠)𝑑𝑠]. 

Let us compute the expected number E [ u (x, t)] of tumor cells           

u(x, t) at time t > 0 and location x. 

It is clear that the stochastic process 

)()( sdWe
t

o

ts



 is a zero – mean Gaussian 

process with variance: 

𝐸 [𝜎2 {∫
𝑡

𝑜

𝑒𝜆(𝑠−𝑡)𝑑𝑊(𝑠)}

2

] = 𝜎2𝐸 [∫
𝑡

𝑜

𝑒2𝜆(𝑠−𝑡)𝑑𝑠] =
𝜎2

2𝜆
(1 − 𝑒−2𝜆𝑡) 

Consequently 

𝐸 [𝑒𝑥𝑝 {𝜎 ∫
𝑡

𝑜

𝑒𝜆(𝑠−𝑡)𝑑𝑊(𝑠)}] =
𝜎2

4𝜆
(1 − 𝑒2𝜆𝑡) 

Supposing that g and ν are independent of the process W(t), we get 

𝐸[𝑢(𝑥, 𝑡)] = 

= 𝜙∗(𝑥, 𝑡)𝐸 [𝑒𝑥𝑝 {− ∫ 𝑒𝜆(s-t)
𝑡

𝑜

g (𝜈(𝑠))𝑑𝑠] 

Where 

 

𝜙∗(𝑥, 𝑡) = [𝜙(𝑥)] 𝑒
−𝜆𝑡

[𝜇]1− 𝑒
−𝜆𝑡

𝑒𝑥𝑝 [
𝜎2

4𝜆
(1 − 𝑒

−2𝜆𝑡
) − 𝐹∗(𝑥, 𝑡)] , 

𝐹∗(𝑥, 𝑡) =
𝜎2

2𝜆
(1 − 𝑒

−𝜆𝑡
) − 𝐹(𝑥, 𝑡). 

Theorem 2. If  𝜙(𝑥) = 𝑒
𝛼𝑥+𝛽

, where α and β are constants, then the solution of equation 

(4) is given by; 

𝑢(𝑥, 𝑡) = 𝛹(𝑥, 𝑡) 𝑒𝑥𝑝 [𝜎 ∫
𝑡

𝑜

𝑒𝜆(s-t)𝑑𝑊(𝑠) − ∫ 𝑒𝜆(s-t)
𝑡

𝑜

𝐺(𝑟(𝑠)𝑑𝑠], 

Where 

𝜓(𝑥, 𝑡) = [𝜇]1−𝑒−𝜆𝑡
𝑒𝑥𝑝 [(𝛼𝑥 + 𝛽) 𝑒

−𝜆𝑡 1

2𝜆
(2𝑎𝛼 𝑒

−𝜆𝑡
− 𝜎2) (1 − 𝑒

−𝜆𝑡
)]. 

Proof.  We have  
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𝜈1(𝑥, 𝑡) = 𝑎 ∫ 𝑒𝜆(s-t)
𝑡

𝑜

[
𝜕2𝜈𝑜(𝑥, 𝑠)

𝜕𝑥2
+ 𝐴𝑜(𝑥, 𝑠)] 𝑑𝑠 

=
𝑎𝛼2

𝜆
𝑒

−𝜆𝑡
[1 − 𝑒

−𝜆𝑡
], 

       

𝜈2(𝑥, 𝑡) = 𝑎 ∫ 𝑒𝜆(s-t)
𝑡

𝑜

[
𝜕2𝜈1(𝑥, 𝑠)

𝜕𝑥2
+ 2

𝜕𝜈𝑜(𝑥, 𝑠)

𝜕𝑥

𝜕𝜈1(𝑥, 𝑠)

𝜕𝑥
] 𝑑𝑠 

= 0, 
So   νn( x, t) = 0,   for n > 2.   

Hence the required result.  

 Suppose that g and ν are independent of the process W(t). Thus the expected 

number E [u (x, t)] at time t > 0 and location x is given by : 

E(x) = 𝜓(𝑥, 𝑡) = 𝑒𝑥𝑝 [
𝜎2

4𝜆
(1 − 𝑒

−𝜆𝑡
) − ∫

𝑡

𝑜
𝑒

−𝜆𝑡
g (𝜈(𝑠))𝑑𝑠]. 

The Variance V [ u (x, t)] of the tumor cells u(x, t) at time t > 0 and location x is given 

by; 

V [u (x, t)] = 

= 𝜓2(𝑥, 𝑡) 𝑒𝑥𝑝 [−2 ∫ 𝑒𝜆(s-t)𝑡

𝑜
g (𝜈(𝑠))𝑑𝑠] 𝑒𝑥𝑝[𝑧(𝑡)(𝑧(𝑡) − 1)], 

Where: 

𝑧(𝑡) =
𝜎2

2𝜆
(1 − 𝑒

−2𝜆𝑡
),  

(Comp. [13 – 23]). 

 

CONCLUSION 

 

The suitable mathematical models of stochastic dynamical systems and nonlinear 

stochastic partial differential equations explore important problems in biology. This 

tool is an ever increasing towards. The considrered models incomporate tumor immune 

interaction terms of forms that are qualitively different form these commonly used. 
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