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ABSTRACT: A modification on the extension of generalized exponential distribution due to 

Olapade (2014) is presented in this paper and some of its properties, such as; The cumulative 

distribution function, the survival function, the hazard function and it properties, the reverse 

hazard function, the moment generating function, the 𝑘𝑡ℎ moment about the origin, the median, 

the percentile point and the associated initial-value problem (IVP) for ordinary differential 

equation (O.D.E.) are established. 
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INTRODUCTION 

Exponential distributions have proven to be one of the outstanding continuous distributions 

over time, probably due to its simplicity nature and useful in modeling life time data and 

various problems related to waiting time events. If 𝑋 is a random variable denoting the waiting 

time between successive events which follows the poisson distribution with mean 𝜆, then 𝑋 

follows the exponential distributions with probability density function (𝑝𝑑𝑓)given by 

                                    𝑓𝑋(𝑥; 𝜆) = 𝜆℮
−𝜆𝑥    𝑥, 𝜆 > 0                          (1.1)                                                                           

And it associated cumulative distribution function (𝑐𝑑𝑓) is given by 

                                   𝐹𝑋 (𝑥; 𝜆) = 1 −℮
−𝜆𝑥 , 𝑥, 𝜆 > 0                      (1.2)                                                                      

respectively. 

Over the years, generalization of distribution functions has attracted a lots of attention and 

interest, after the introduction of a generalised (exponentiated) exponential (GE) distribution 

by Gupta and Kundu (1999), several researchers have focused on improving this distribution 

function in different directions with the aim of obtaining a distribution function that will be 

more robust, and applicable in modeling different types of data. Gupta and Kundu (1999) 

introduced a new distribution, named, “Generalized Exponential (GE) distribution “  with pdf, 

cdf, survival function, and hazard function given by; 

 

                               𝑓𝑋(𝑥; 𝛼, 𝜆) = 𝛼𝜆(1 −℮−𝜆𝑥)𝛼−1℮−𝜆𝑥                               (1.3)                                                

http://www.eajournals.org/


European Journal of Statistics and Probability 

Vol.4, No.4, pp.1-11, July 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

2 

ISSN 2055-0154(Print), ISSN 2055-0162(Online) 

                               𝐹𝑋 (𝑥; 𝛼, 𝜆) = (1 −℮
−𝜆𝑥)𝛼                                                  (1.4)                                                                                                      

                        𝑆𝑋 (𝑥; 𝛼, 𝜆) = 1 − (1 −℮
−𝜆𝑥)𝛼                                         (1.5) 

and 

                      ℎ𝑋 (𝑥; 𝛼, 𝜆) =
𝛼𝜆(1 − ℮−𝜆𝑥)𝛼−1℮−𝜆𝑥

1 − (1 −℮−𝜆𝑥)𝛼
 , 𝑥, 𝛼, 𝜆 > 0               (1.6) 

                                                                                   

where  𝛼, 𝜆 are the shape parameter, scale parameter respectively. 

Gupta and Kundu (2000, 2001, 2003, 2004, 2007) also continued in this direction; by studying 

the properties of Generalized Exponential (GE) distribution, also in relation to weibull and 

Gamma distribution. They observed that this distribution can be used in place of gamma and 

weibull distributions, since the two parameters of the gamma, weibull and generalized 

exponential distribution have the same properties of increasing and decreasing hazard function 

if their shape parameter is greater than one and less than one, and they have a constant hazard 

function if their shape parameter is equal to. In the likes of this, several researchers have done 

the same , the logistic distribution has enjoyed the same trend of generalization in many forms 

as could be seen in Balakrishnan and Leung (1988), Jong-Wuu, Hung Wen-Liang, and Lee 

Hsiu-Mei, (2000), George et’al (1980)  and Olapade (2004,2005,2006) worked on several types 

of generalized logistic distribution.  

Motivated by the works of Gupta and Kundu and several authors, Olapade (2014) extended the 

generalized exponential distribution by introducing an additional parameter as an improvement 

to the existing model, and called it extended generalized exponential (EGE) distribution given 

by    

𝑓𝑋 (𝑥; 𝜇, 𝛼, 𝛽, 𝜆, ) =
𝛼𝜆(𝛽 −℮−𝜆(𝑥−𝜇))𝛼−1℮−𝜆(𝑥−𝜇)

[𝛽𝛼 − (𝛽 − 1)𝛼]
;  𝑥, 𝜇, 𝜆 > 0;  𝛼, 𝛽 > 1 (1.7) 

REMARK 1.1 It is important to note that the introduction of the parameter 𝛽 into equation 

(1.3) by Olapade (2014) to obtain equation (1.7) has no effect on; 

(a) the hazard  function at the modal point, 

(b)  the properties of the hazard  function of the original model by Gupta and Kundu (1999), 

(c) the determining factor for existence of mode. 

Apart from the fact that these properties of the hazard function is very important in inferential 

statistics of life time data, Gupta and Kundu used these properties to relate the similarities of 

generalizes exponential distribution with some other (Gamma and Weibull) life time 

distributions. Hence, the Extended Generalizes Exponential (EGE) Distribution by Olapade 

(2014) failed to extend the properties of the hazard function of the original model by Gupta 

and Kundu (1999) and at the modal point. Olapade (2014), (section 6, pp. 1285) claimed that 

“the only determining factor for the mode of EGE to exist is that 𝛽 − 2𝛼 < 0 ”. This claim 

does not reduce to the condition that guaranttes the determining factor for existence of the mode 

of GE distribution by Gupta and Kundu (1999).  
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Apart from correcting these lapses in extended generalizes exponential (EGE) distribution by 

Olapade (2014), in this paper, we introduce a new distribution by modifying the extend 

generalization exponential distribution of Olapade, which we called the modified extended 

generalized exponential (MEGE) distribution, thereby, improving on the result of Olapade 

(2014), Gupta and Kundu (1999, 2000). 

2 Six-Parameter Exponential Distribution 

Definition 2.1  Suppose 𝑋 is  continuous random variable, then we say 𝑋  follows the (MEGE) 

distribution if the pdf is given by ; 

                                

𝑓𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 𝜇, 𝜎) =
𝛼𝜆(𝛽 − 𝜂℮−𝜆(

𝑥−𝜇
𝜎
))
𝛼
𝜂
−1
℮−𝜆(

𝑥−𝜇
𝜎
)

𝜎[𝛽
𝛼
𝜂 − (𝛽 − 𝜂℮𝜆

𝜇
𝜎)

𝛼
𝜂
]

; 𝑥, 𝛽, 𝛼, 𝜂, 𝜇, 𝜆, 𝜎 > 0;  

                                                                                                                                (2.1)                                        

Where 𝑋 follows a modify extended generalized exponential distribution. Observe that 𝜎 can 

be absorb by 𝜆, also, there is no loss of generality if we assume that  𝜇 = 0.   So that; 

                                   

 𝑓𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0) =
𝛼𝜆(𝛽 − 𝜂℮−𝜆𝑥)

𝛼
𝜂
−1
℮−𝜆𝑥

[𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂]

 , 𝑥, 𝛼, 𝜂, 𝛽, 𝜆 > 0   (2.2) 

                                                                       

Where 𝛼, 𝛽, 𝜆, 𝜂, 𝜇, 𝜎, are shape, extension, scale, regularization, location, dispersion 

parameters respectively and denoted by MEGE(. ; 𝛼, 𝛽, 𝜆, 𝜂)  (or MEGE for short). We obtain 

the corresponding cdf, 𝐹𝑋 of  𝑓𝑋  in equation (2.2) as follows; 

 𝐹𝑋 = ∫𝑓𝑦(𝑦; 𝛼, 𝛽, 𝜆, 𝜂, 0,1)𝑑𝑦

𝑥

0

 

= 𝐾∫(𝛽 − 𝜂℮−𝜆𝑦)
𝛼
𝜂
−1
𝑑𝑦 ;      𝑓𝑜𝑟 𝐾 = 𝛼𝜆(𝛽

𝛼
𝜂⁄ − (𝛽 − 𝜂)

𝛼
𝜂⁄ )

−1
𝑥

0

 

Let 𝑢 =  𝛽 − 𝜂℮−𝜆𝑦, then 𝑑𝑢 = 𝜆𝜂℮−𝜆𝑦𝑑𝑦 , we have ; 

 𝐹𝑋 = 𝐾
1

𝛼𝜆
|(𝛽 − 𝜂℮−𝜆𝑥)

𝛼
𝜂⁄ |0
𝑥 

 

Hence we have 
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𝐹𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0) =

{
 
 

 
 

0                                  ;            𝑥 < 0

(𝛽 − 𝜂℮−𝜆𝑥)
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

[𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂]

;   0 < 𝑥 < ∞

1                                  ;            𝑥 ≥ ∞

      (2.3) 

Observe that; Lim
𝑥⟶∞

𝐹𝑋 = 1(= ∫ 𝑓𝑥𝑑𝑥)
∞

0
, confirming that 𝑓𝑥 is actually a pdf. 

 The corresponding survival (reliability) function, hazard function and reverse hazard function 

are given below as; 

 𝑠𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0) = 1 − 𝐹𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0) =
𝛽
𝛼
𝜂⁄ − (𝛽 − 𝜂℮−𝜆𝑥)

𝛼
𝜂

[𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂]

  (2.4) 

 ℎ𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0)  =
 𝑓𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0)

 𝑆𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0)
= 𝛼𝜆

(𝛽 − 𝜂℮−𝜆𝑥)
𝛼
𝜂
−1
℮−𝜆𝑥

[𝛽
𝛼
𝜂 − (𝛽 − 𝜂℮−𝜆𝑥)

𝛼
𝜂]

   (2.5) 

 𝜑𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0)  =
 𝑓𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0)

𝐹𝑋 (𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0)
 =

𝛼𝜆(𝛽 − 𝜂℮−𝜆𝑥)
𝛼
𝜂
−1
℮−𝜆𝑥

(𝛽 − 𝜂℮−𝜆𝑥)
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

    (2.6) 

In equation(2.2) to equation(2.6), if we take 𝜂 = 1, we obtain the results for EGE distribution 

by Olapade (2014). In equation(2.2), if 𝜂 = 𝛽 = 1, we obtain the GE distribution by Gupta 

and Kundu (1999) and if 𝜂 = 𝛽 = 𝛼 = 1 we obtain the classical exponential distribution with 

parameter 𝜆 (𝑤𝑖𝑡ℎ 𝜇 = 0) in equation (1.1). 

3.  The Moment Generating Function for Modified Extended Generalized Exponential 

Distribution 

The moment generating function for the modified extended generalized exponential 

distribution is given by; 

𝑀𝑋(𝑡) = ∫ ℮𝑡𝑥𝑓𝑋(𝑥; 𝛼, 𝛽, 𝜆, 𝜂, 0)𝑑𝑥

∞

0

 

                                                                       

=
𝛼𝜆

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

 ∫ ℮𝑡𝑥(𝛽 − 𝜂℮−𝜆𝑥)
𝛼
𝜂
−1
℮−𝜆𝑥𝑑𝑥

∞

0

            

        

𝑀𝑋(𝑡) = 𝐾𝛽
𝛼
𝜂
−1
∫ [1 − (

𝜂℮−𝜆𝑥

𝛽
)]

𝛼
𝜂
−1

℮−𝑥(𝜆−𝑡)

∞

0

 𝑑𝑥         (3.1)  
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Where 𝐾 = 𝛼𝜆(𝛽
𝛼

𝜂 − (𝛽 − 𝜂)
𝛼

𝜂)−1 

                                                                                                                                                  

Let  𝑝 =
𝜂℮−𝜆𝑥

𝛽
 ;  ℮−𝜆𝑥 =

𝛽𝑝

𝜂
 ; 𝑥 = −𝜆−1 ln(

𝛽𝑝

𝜂
)  𝑎𝑛𝑑 𝑥 = ln(

𝛽𝑃

𝜂
)
1

𝜆  

⟹ 𝑑𝑥 = −(𝜆𝑝)−1𝑑𝑝. 

Using  equation (3.1)  we have ; 

𝑀𝑋(𝑡) = −𝐾𝛽
𝛼
𝜂
−1
∫(1 − 𝑝)

𝛼
𝜂
−1
(
𝛽

𝜂
)
1−
𝑡
𝜆
. (𝑝)1−

𝑡
𝜆. (𝜆𝑝)−1 𝑑𝑝 

= −𝐾𝜂1−
𝑡
𝜆⁄ 𝛽

𝛼
𝜂
−
𝑡
𝜆𝜆−1 ∫(1 − 𝑝)

𝛼
𝜂
−1
𝑝−

𝑡
𝜆⁄ 𝑑𝑝

0

𝜂
𝛽⁄

 

∴ 𝑀𝑋(𝑡) = 𝐾𝜂
1−
𝑡
𝜆𝛽

𝛼
𝜂
−
𝑡
𝜆𝜆−1∫ [1 − 𝑝]

𝛼
𝜂
−1
. (𝑝)−

𝑡
𝜆⁄ 𝑑𝑝

𝜂
𝛽⁄

0

           (3.3) 

By binomial expansion of (1 − 𝑝)
𝛼

𝜂
−1

 and substituting for 𝐾, equation(3.3) yields ;  

𝑀𝑋(𝑡) =
𝛼. 𝜂1−

𝑡
𝜆𝛽

𝛼
𝜂
−
𝑡
𝜆

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∫ ∑(−1)𝑟. 𝐶 (
𝛼

𝜂
− 1, 𝑟) . 𝑝𝑟−

𝑡
𝜆𝑑𝑝

∞

𝑟=0

𝜂
𝛽⁄

0

  

where 𝐶 (
𝛼

𝜂
− 1, 𝑟) =

(
𝛼

𝜂
−1)(

𝛼

𝜂
−2)…(

𝛼

𝜂
−𝑟)

𝑟!
=

∏ (
𝛼

𝜂
−𝑖)𝑟

𝑖=1

𝑟!
 

            

      𝑀𝑋(𝑡) =
𝛼. 𝜂1−

𝑡
𝜆. 𝛽

𝛼
𝜂
−
𝑡
𝜆

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∫ ∑∏(𝑖 −
𝛼

𝜂
)
𝑝𝑟−

𝑡
𝜆

𝑟!
𝑑𝑝

𝑟

𝑖=1

∞

𝑟=0

𝜂
𝛽⁄

0

         (3.4)   

Interchanging the integral and the summation with the knowledge that the series converges, we 

obtain; 

𝑀𝑋(𝑡) =
𝛼. 𝜂2(1−

𝑡
𝜆
). 𝛽

𝛼
𝜂
−1

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∑
𝜓(𝑟)

𝑟!
.

𝜂𝑟

𝛽𝑟(𝑟 + 1 −
𝑡
𝜆
)

∞

𝑟=0

              ( 3.5) 

𝑀𝑋(𝑡) =
𝛼. 𝜂2. 𝛽

𝛼
𝜂
−1

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∑
𝜓(𝑟)𝜂𝑟

𝛽𝑟𝑟!

∞

𝑟=0

𝜂
−2𝑡
𝜆 (𝑟 + 1 − −𝜆−1𝑡)−1             (3.6) 
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where  𝜓(𝑟; 𝛼, 𝜂) = {
∏ (𝑖 −

𝛼

𝜂
)𝑟

𝑖=1  ;    𝑟 > 0        
             

1             ;     𝑟 = 0

 

Put 

𝐶 =
𝛼. 𝜂2. 𝛽

𝛼
𝜂
−1

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∑
𝜓(𝑟)𝜂𝑟

𝛽𝑟𝑟!
 , 𝑢 =

−2

𝜆

∞

𝑟=0

 , 𝑣 =
1

𝜆
 . 

 

Then differentiating equation(3.6), 𝑘 number of times (denoted by 𝑀𝑋(𝑡)
(𝑘)) we have ; 

𝑀𝑋(𝑡)
(𝑘) = 𝐶∑(

𝑘

𝑠
)𝐷𝑠(𝜂𝑢𝑡)

𝑘

𝑠=0

𝐷𝑘−𝑠((𝑟 + 1 − 𝑣𝑡)−1)       

                  = 𝐶∑(
𝑘

𝑠
) (ln 𝜂𝑢)𝑠

𝑘

𝑠=0

𝜂𝑢𝑡(𝑘 − 𝑠)! (𝑟 + 1 − 𝑣𝑡)−(𝑘−𝑠+1)𝑣𝑘−𝑠  (3.7) 

Evaluating equation(3.7) at 𝑡 = 0, we obtain the 𝑘𝑡ℎ moment obout the origin 𝜇𝑘 of the MEGE 

         𝜇𝑘  =
𝛼𝜂2𝛽

𝛼
𝜂
−1

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∑∑
𝑘! (−2)𝑠 (ln 𝜂)𝑠

𝜆𝑘𝑠! 𝑟! (𝑟 + 1)𝑘+1−𝑠

𝑘

𝑠=0

∞

𝑟=0

  𝜓(𝑟) (
𝜂

𝛽
)
𝑟

 

=
𝛼𝜂2𝛽

𝛼
𝜂
−1

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∑(
𝑘!

𝜆𝑘𝑟! (𝑟 + 1)𝑘+1
  +∑

𝑘! (−2)𝑠 (ln 𝜂)𝑠

𝜆𝑘𝑠! 𝑟! (𝑟 + 1)𝑘+1−𝑠

𝑘

𝑠=1

)

∞

𝑟=0

  𝜓(𝑟) (
𝜂

𝛽
)
𝑟

  

 =
𝛼𝜂2𝜆−𝑘𝑘! 𝛽

𝛼
𝜂
−1

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∑(1  +∑
(−2(𝑟 + 1)ln 𝜂)𝑠

𝑠!

𝑘

𝑠=1

)

∞

𝑟=0

 
 𝜓(𝑟)(𝜂𝛽−1)𝑟

𝑟! (𝑟 + 1)𝑘+1
    (3.8) 

From equation(3.8) we can caculate the mean, variance, skewness and kutoses. Also, observe 

that if we restrict 𝑠 such that 𝑠 = 0, we obtain  

 𝜇𝑘  =
𝛼𝜂2𝜆−𝑘𝑘! 𝛽

(
𝛼
𝜂
−1)

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

∑
 𝜓(𝑟)(𝜂𝛽−1)𝑟

𝑟! (𝑟 + 1)𝑘+1

∞

𝑟=0

     (3.9) 

Furthermore, if we put 𝜂 = 1 and 𝜆 = 1, then we have   

 𝜇𝑘  =
𝛼𝑘! 𝛽(𝛼−1)

𝛽𝛼 − (𝛽 − 1)𝛼
∑(−1)𝑟 (

𝛼 − 1

𝑟
)

 𝛽−𝑟

(𝑟 + 1)𝑘+1

∞

𝑟=0

     (3.10) 

 

as a special case, which is the result due to Olapade (2014).  
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4. Median of Modified Extended Generalized Exponential Distribution 

Here, we seek for 𝑥𝑚 𝜖 ℝ such that; 

∫ 𝑓(𝑥)𝑑𝑥 =
1

2

𝑥𝑚

−∞

 ;  ⟹ 𝐹(𝑥𝑚) =
1

2
                    

By equation (2.3), it implies that ; 

(𝛽 − 𝜂℮−𝑥𝑚𝜆)
𝛼
𝜂⁄ − (𝛽 − 𝜂)

𝛼
𝜂⁄

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

=
1

2
                 

Simplifying and making  𝑥𝑚 the subject we have; 

𝑥𝑚 =
−1

𝜆
ln
1

𝜂
[𝛽 − (

𝛽
𝛼
𝜂⁄ + (𝛽 + 𝜂)

𝛼
𝜂⁄

2
)

𝜂
𝛼⁄

]      (4.1) 

5. The 100p-Percentage Point of Modified Extended Generalized Exponential 

Distribution. 

Here, we seek for 𝑥𝑝 such that; 

∫ 𝑓(𝑥)𝑑𝑥 = 100% 𝑝 ;   ⟹ 𝐹(𝑥𝑝) = 𝑝

𝑥𝑝

−∞

. 

And by equation (2.3), it follows that ; 

(𝛽 − 𝜂℮−𝜆𝑥𝑝)
𝛼
𝜂⁄ − (𝛽 − 𝜂)

𝛼
𝜂⁄

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

= 𝑝  

Simplifying  and making 𝑥𝑝 the subject , we have ; 

𝑥𝑚 =
−1

𝜆
ln
1

𝜂
[𝛽 − (𝑝𝛽

𝛼
𝜂⁄ − (𝑝 − 1)(𝛽 − 𝜂)

𝛼
𝜂⁄ )

𝜂
𝛼⁄

]   (5.1)    

 6. The Mode of the Modified Extended Generalized Exponential Distribution 

Here, we seek for  𝑥∗ ∈ ℝ ∋ 𝑓(𝑥∗) ≥ 𝑓(𝑥) ∀ 𝑥 > 0 

By equation (2.2) ; 

𝑓𝑋(𝑥; . ) = 𝐾(𝛽 − 𝜂℮
−𝜆𝑥)

𝛼
𝜂
−1
℮−𝜆𝑥 ;      𝐾 =

𝛼𝜆

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

 

Thus the first derivative of 𝑓 denoted by  𝑓𝑋
′
 is given by 
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  𝑓𝑋
′ = 𝐾𝜆 [(𝛽 − 𝜂℮−𝜆𝑥)

𝛼
𝜂
−2
℮−𝜆𝑥(𝛼℮−𝜆𝑥 − 𝛽)] 

By optimality condition, we have that   𝑓′ = 0. Hence solving for 𝑥; 

                     ⟹ 𝑥1 = ∞ or 𝑥2 =
−1

𝜆
ln (

𝛽

𝜂
) or 𝑥3 =

−1

𝜆
ln(

𝛽

𝛼
) 

Are the required solution, where 𝑥2  and 𝑥3 are admissible. We use the second derivative of 𝑓𝑋 

denoted by 𝑓𝑋
′′

 given by  

 𝑓𝑋
′′ = 𝐾𝜆2℮−𝜆𝑥(𝛽 − 𝜂℮−𝜆𝑥)

𝛼
𝜂
−2
[(𝛼 − 2𝜂)(𝛽 − 𝜂℮−𝜆𝑥)

𝛼
𝜂
−2
℮−𝜆𝑥(𝛼℮−𝜆𝑥 − 𝛽)

− (2𝛼℮−𝜆𝑥 − 𝛽)] 

To determine the natures of 𝑥2 and 𝑥3. Observe that  𝑓𝑋
′′(𝑥2) = 0, hence 𝑥2 is not a maxima 

(modal) point of 𝑓𝑋 and 

 𝑓𝑋
′′(𝑥3) = −𝐶(𝛼 − 𝜂)

𝛼
𝜂
+2
 ; 𝐶 = 𝐾𝜆2𝛽

𝛼
𝜂𝛼

𝛼
𝜂
+1
             (6.1) 

Thus, 𝑥3 is the mode (maxima point) of 𝑓𝑋 provided 𝛼 >  𝜂,  since 𝐶 is positive constant. This 

implies in particular, that  𝑓𝑋 is unimodal.  Now, observe that at 𝑥3,  𝑓𝑋 , 𝑠𝑋 , ℎ𝑋 and  𝜑𝑋 are given 

by; 

(𝑖).  𝑓𝑋(𝑥3) =
𝛼𝜆(𝛼 − 𝜂)

𝛼
𝜂
−1

𝛼
𝛼
𝜂 − (𝛼 −

𝛼𝜂
𝛽
)

𝛼
𝜂

;  (𝑖𝑖).   𝑠𝑋(𝑥3) =
(𝛼)

𝛼
𝜂⁄ − (𝛼 − 𝜂)

𝛼
𝜂⁄

𝛼
𝛼
𝜂 − (𝛼 −

𝛼𝜂
𝛽
)

𝛼
𝜂

 

(𝑖𝑖𝑖).  ℎ𝑋(𝑥3) =
𝛼𝜆(𝛼 − 𝜂)

𝛼
𝜂
−1

(𝛼)
𝛼
𝜂⁄ − (𝛼 − 𝜂)

𝛼
𝜂⁄
;  (𝑖𝑣).  𝜑𝑋 (𝑥3) =

𝛼𝜆(𝛼 − 𝜂)
𝛼
𝜂
−1

(𝛼 − 𝜂)
𝛼
𝜂 − (𝛼 −

𝛼𝜂
𝛽
)

𝛼
𝜂

 

Observe in equation(6.1), the condition that guarantees existence of modal point is that 𝛼 > 𝜂 

which is independent of 𝛽 and if we put 𝜂 = 1, we obtain the condition that guarantees the 

existence of modal point of GE distribution by Gupta and Kundu (1999). We study the 

behaviour of the hazard function of the MEGE distribution using the following lemma due to 

Glaser(1980). 

Lemma 6.1 Let 𝑓 be a twice differentiable probability function of a continuous random 

variable 𝑋. Define 𝛿(𝑥) =
𝑓′(𝑥)

𝑓(𝑥)
, where 𝑓′(𝑥) is the first derivative of 𝑓(𝑥) with respect to 𝑥. 

Furthermore, suppose the first derivative of 𝛿(𝑥) exist. 

1. If 𝛿′(𝑥) < 0 for all 𝑥 > 0, then the hazard function is monotonically increasing. 

2. If 𝛿′(𝑥) > 0 for all 𝑥 > 0, then the hazard function is monotonically decreasing. 
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3. If there exist 𝑥0 such that 𝛿′(𝑥) < 0 for all 0 < 𝑥 < 𝑥0, 𝛿′(𝑥0) = 0 and 𝛿′(𝑥) > 0 for 

all 𝑥 > 𝑥0. In addition, lim
𝑥→∞

𝑓(𝑥) = 0, then the hazard function is upside down bathtub 

shape. 

4. If there exist 𝑥0 such that 𝛿′(𝑥) > 0 for all 0 < 𝑥 < 𝑥0, 𝛿′(𝑥0) = 0 and 𝛿′(𝑥) < 0 for 

all 𝑥 > 𝑥0. In addition, lim
𝑥→∞

𝑓(𝑥) = ∞, then the hazard function is bathtub shape. 

To investigate the behaviour of the hazard function of MEGE distribution, it suffices to define 

  

𝛿(𝑥) =
𝑑(log𝑒 𝑓(𝑥))

𝑑𝑥
=
𝑑 (log𝑒 𝐾 + (

𝛼
𝜂 − 1) log𝑒(𝛽 − 𝜂℮

−𝜆𝑥) − 𝜆𝑥)

𝑑𝑥
 

=
(
𝛼
𝜂 − 1) 𝜆𝜂℮

−𝜆𝑥

𝛽 − 𝜂℮−𝜆𝑥
− 𝜆 

Thus  

𝛿′(𝑥) =
−𝛽𝜆2(𝛼 − 𝜂)℮−𝜆𝑥

(𝛽 − 𝜂℮−𝜆𝑥)2
                       (6.2) 

Hence, As a consequence of equation(6.1), equation(6.2) and lemma(6.1) we state the 

following theorem: 

Theorem 6.2 Let 𝑋 be a continuous random variable that is distributed as MEGE, then the 

following holds:  

(i) 𝛿′(𝑥) < 0 for all 𝑥 > 0 if 𝛼 > 𝜂, then the hazard function of MEGE is 

monotonically increasing if 𝛼 > 𝜂,   

(ii) 𝛿′(𝑥) > 0 for all 𝑥 > 0 if 𝛼 < 𝜂, then the hazard function of MEGE is 

monotonically decreasing if 𝛼 < 𝜂,  

(iii) 𝛿′(𝑥) = 0 for all 𝑥 > 0 if 𝛼 = 𝜂, then the hazard function of MEGE is constant if 

𝛼 = 𝜂. 

(iv) the density of  MEGE(. ; 𝛼, 𝛽, 𝜆, 𝜂) is log-concave if 𝛼 >  𝜂 and log-convex if 𝛼 <
 𝜂  

Proof.  The proof follows from using equation(6.1), equation(6.2) and lemma(6.1). 

Observe that if we put 𝜂 = 1, we obtain the result due to Gupta and Kundu (1999, 2000, 

2001).  

7. The ODE of the Modified Extended Generalized Exponential Distribution  

Since 𝑓𝑋 is a continous monotone real-valued function, we supposed that it is a unique solution 

to certain initial value problem of an ordinary differential equation (ODE). In fact, the 

uniqueness of the solution characterizes (single out) the pdf. 
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Theorem 7.1 Let  𝑔 be a continuous real-valued function, then  𝑔 is a solution to the initial 

value problem (7.1) and (7.2) if and only if 𝑔 = 𝑓𝑋. 

  

(𝛽 − 𝜂℮−𝜆𝑥)𝑔′(𝑥) + 𝜆(𝛽 − 𝛼℮−𝜆𝑥)𝑔(𝑥) = 0          (7.1) 

𝑔(0) =
𝛼𝜆(𝛽 − 𝜂)

𝛼
𝜂
−1

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

               (7.2) 

 Proof. 

Given that 

                     (𝛽 − 𝜂℮−𝜆𝑥)𝑔′(𝑥) + 𝜆(𝛽 − 𝛼℮−𝜆𝑥)𝑔(𝑥) = 0 

⟺∫
𝑔′(𝑥)𝑑𝑥

𝑔(𝑥)
 = ∫

𝜆(𝛼℮−𝜆𝑥 − 𝛽)𝑑𝑥

(𝛽 − 𝜂℮−𝜆𝑥)
 ;  

⟺ ∫
𝑔′(𝑥)𝑑𝑥

𝑔(𝑥)
= 𝜆 (𝛼∫

℮−𝜆𝑥𝑑𝑥

(𝛽 −℮−𝜆𝑥)
− 𝛽∫

𝑑𝑥

(𝛽 − 𝜂℮−𝜆𝑥)
) 

If we take 𝑢 =  𝛽 − 𝜂℮−𝜆𝑥 ;  ⟹ 𝑑𝑢 = 𝜂𝜆℮−𝜆𝑥𝑑𝑥, so that 

⟺ ln𝑔(𝑥) = (
𝛼

𝜂
∫
𝑑𝑢

𝑢
− ∫(

1

𝑢
+

1

𝛽 − 𝑢
)𝑑𝑢) 

⟺ ln𝑔(𝑥) =   ln (𝑢
𝛼
𝜂
−1
(𝛽 − 𝑢)𝐶) ;  ⟹  𝑔(𝑥) =   𝑢

𝛼
𝜂
−1
(𝛽 − 𝑢)𝐶 ;  

                                ⟺  𝑔(𝑥) =   𝜂℮−𝜆𝑥(𝛽 − 𝜂℮−𝜆𝑥)
𝛼

𝜂
−1
𝐶         (7.3)    

Using the initial condition, we have that 

𝐶 =
𝛼𝜆

𝜂 [𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂]

  

Substituting for 𝐶 into (6.1), we obtain 

 𝑔(𝑥) =   
𝛼𝜆(𝛽 − 𝜂℮−𝜆𝑥)

𝛼
𝜂
−1
 ℮−𝜆𝑥

𝛽
𝛼
𝜂 − (𝛽 − 𝜂)

𝛼
𝜂

        (7.4) 

            ∎ 

CONCLUSION 

A six-parameter modified extended Generalized Exponential Distribution have been 

introduced and proven to be a pdf. Some statistics characteristics such as ; the cumulative 

distribution function, the survival function, hazard function and its properties, the reverse 

hazard function, the moment generating function, the 𝑟𝑡ℎ moment about the origin ,the median, 
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the 100p-Percentage Point, the mode are also established and Finally, an initial-valued ordinary 

differential equation associated with the new distribution was stated and proved. 
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