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ABSTRACT: This study examines the existence and uniqueness of a steady hydro 

magnetic flow of a radiating viscous fluid in a porous medium. The combine effects of 

a radioactive heat transfer and transverse magnetic field on a steady flow of an 

electrically conducting optically thin fluid through a horizontal channel with porous 

medium in non-uniform temperatures at the wall were considered. The transformed 

non-linear coupled partial differential equations were solved numerically using 

shooting method via Runge-Kutta method of order four using Maple software. 

Numerical results for the effects of the parameters such as magnetic, radiation and 

porosity   on velocity and temperature distributions were discussed graphically. 

KEYWORDS: hydro magnetic flow, optically thin, porous medium, electrically 

conducting fluid, radiating viscous fluid, convective flow 

 

INTRODUCTION 

Convective flow in a  porous media has  been widely studied in the recent years due to 

its wide applications in engineering as post accidental heat removal in nuclear reactors, 

drying processes, heat exchangers, geothermal and oil recovery , building constructions 

see (Nield and Bejan 2005; Ingham and Pop 2005; Vafai 2005). 

Many industrial processes involve the transfer of heat by means of a flowing fluid in 

either the laminar or turbulent regime as well as flowing or stagnant boiling points. 

Furthermore, many processes in industrial areas  occur at high temperature and the 

knowledge of radiation heat transfer in the system can perhaps lead to a desired product 

with a desired characteristic hence many researchers focused attention on 

Magntohydrodynamics (MHD) applications where the operating temperatures are high. 

Studies on MHD was carried out by (Crammer and Pal  1973; Moreau 1990; Raptis et 

al. 1982) in which they   examined the problems  on hyromagnetic  free convection 

flow through a porous medium between two parallel plates while Kearsley (1994) 

considered the problem of steady state coquette flow with viscous heating. 

Consideration of a MHD steady flow in a channel with slip at permeable boundaries 

was done by (Makinde and Osalusi (2006).  
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Grief et.al (1976) considered the exact solution for the problem of laminar convection 

flow in a vertical heated channel within the optically thin limit of Cogley et al. (1968). 

Makinde and Mhone (2005) studied the effect of thermal radiation on MHD oscillatory 

flow in a channel filled with saturated porous medium and in non-uniform wall 

temperatures. 

Kumar et al. (2010) considered the problem of unsteady MHD periodic flow of viscous 

fluid through a planar channel in a porous medium using perturbation method.  

Equally, Narahari (2010) examined the effects of thermal radiation and free convection 

currents on the unsteady coquette flow between two vertical parallel plates with 

constant heat flux at one boundary. 

In like manner, Isreal –Cookey and Nwaigwe (2010) examined unsteady MHD flow of 

a radiating fluid over a vertical moving heated porous plate with time- dependent 

suction.  

Isreal- Cookey et. al. (2010) examined the combined effects of thermal radiation and 

transverse magnetic field on steady flow of an electrically optically thin fluid and gave 

the close form. 

The main focus of this paper is to establish the existence and uniqueness of solution to 

the model and to equally enact a theorem to support the existence and uniqueness of 

solution, then to come up with a numerical solution which is an approximate solution 

to the given model. 

 

MODEL FORMULATION 

A steady flow of an electrically conducting fluid bounded by two horizontal plates 

which was filled with saturated porous medium and   a transverse uniform magnetic 

field 𝐵0 was considered. At the lower plate, the temperature was maintained at  𝑇 = 𝑇0 

, while at the upper plate, 𝑦 = ℎ, the temperature was maintained at 𝑇 = 𝑇1.. Using the 

radiative heat flux and a Boussinesq incompressible fluid model invoke, the momentum 

and energy equations governing the flow are given by 

𝜈
𝜕2𝑈

𝜕𝑦2
+ 𝑔𝛽𝑇( 𝑇 − 𝑇0) −

𝜈

𝜅
𝑈 −

𝜎𝑐𝐵0
2

𝜌0
𝑈 = 0              (1) 

And 

 
𝐾𝑇

𝜌0𝐶𝑃
(
𝜕2𝑇

𝜕𝑦2
− 

1

𝐾𝑇

𝜕𝑞

𝜕𝑦
 ) = 0                                            (2) 

Following Cogley et al. (1968), and assuming the fluid is optically thin with relative 

low density where 

 
𝜕𝑞

𝜕𝑦
= 4(𝑇 − 𝑇0) ∫ (∝𝜆

𝜕𝛽𝜆

𝜕𝑇
) 𝑑𝜆

∞

0
                         (3) 

                                             

Where 𝛼𝜆 is the absorption coefficient,  𝛽𝜆 is the Planck’s function , 𝑞 is the component 

of radiative flux  𝑈 is the axial velocity, 𝑇 is the temperature, 𝑔 is the gravitational 
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acceleration, 𝛽𝑇 is the coefficient of thermal expansion,𝜈 is the kinematic viscosity, 𝜎𝑐 
is the electric conductivity , 𝜌0 is the fluid density, 𝑐𝑝 is the specific heat capacity at 

constant pressure,  𝜅 is the permeability of the porous medium and 𝜅𝑇 is the thermal 

conductivity . 

The corresponding boundary conditions are: 

  
𝑈 = 0, 𝑇 = 𝑇0    on   𝑦 = 0
𝑈 = 0   , 𝑇 = 𝑇1   on  𝑦 = ℎ

}                      (4)                                        

To simplify the problem the investigation is limited to the so called optically thin non-

grey gas. On non-dimensionalize the momentum and energy equations (1), (2) and  (3) 
subject to the boundary conditions in  (4) , by using the following   non-dimensional 

variables and parameters  

𝑦 = ℎ𝜂 ,     𝑈 = 𝑈0𝑢 , 𝜃 =
𝑇 − 𝑇1
𝑇1 − 𝑇0

 

      𝑘 = ℎ2𝜒2 , 𝑀2 =
𝜎
𝑐𝐵0

2ℎ2

𝜌0𝜈
,𝐺𝑟 =

𝑔𝛽1ℎ
2(𝑇0−𝑇1)

𝜈𝑈0
  ,  𝐹2 =

4𝛼2ℎ2

𝜅𝑇
 (5) 

Where 𝑈0 represents the mean velocity. 

After taken the advantages of the dimensionless quantities and parameters in (5) the 

momentum and energy equations (1) 𝑎𝑛𝑑 (2) 𝑎𝑛𝑑 𝑢𝑠𝑖𝑛𝑔 (3)  𝑖𝑛 (2)    respectively 

become: 

  𝜕2𝑢

𝜕𝜂2
+ 𝐺𝑟𝜃 − 𝜆2𝑢 = 0                                                                                             (6) 

   
𝜕2𝜃

  𝜕𝜂2
− 𝐹2𝜃 = 0                                                                                                        (7) 

Where  𝜆2 = 𝑀2 + 𝜒2 , 𝑀 is the magnetic parameter,  𝜒 is the porosity parameter,  𝐺𝑟  
is the Grashof number and  𝐹 is the radiation parameter. 

The momentum equation (6) and energy equation (7) are to be solved subject to the 

following boundary conditions  

  𝑢 = 0 , 𝜃 = 1 on  𝜂 = 0     𝑢 = 0 , 𝜃 = 1 on  𝜂 =
1                                                                                             (8) 

 

METHOD OF SOLUTION 

In the steady case of the problem the second order boundary value problem is 

transformed into a system of first order equations by using Shooting method and finally 

these system of equations is solved numerically using Runge-Kutta technique of order 

four. 

Existence and Uniqueness of Solution. 

Preliminary Remarks 

Consider the initial value system [3] 
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Which in vector form we have yields 

𝑋′ = (

𝑥1
.
𝑥𝑛
) 

𝑓(̅𝑡, 𝑥) = {
𝑓1(𝑡 , 𝑥1 , 𝑥2 , … . . , 𝑥𝑛)

.
𝑓𝑛(𝑡 , 𝑥1 , 𝑥2 , …… . . 𝑥𝑛) 

     

 𝑋0
′ = (

𝑥10
.
𝑥𝑛0

)  

The above can be written in compact form as 

𝑋′ = 𝑓(𝑡 , 𝑋) ,   𝑋 (𝑡0) = 𝑋0                                                   (10)                                     

In order to generalize the result, it is necessary to generalize the notion of the absolute 

value of a number to the absolute value or norm of a vector 𝑋 or matrix  𝐴 . If  𝑋 =
(𝑥1,   .   .   .   , 𝑥𝑛) is a two valued-vector, then the distance from (𝑥1,   .   .   , 𝑥2) to the 

origin is given by the norm 

 ∥ 𝑋 ∥ =  √𝑥12 + 𝑥22                                                                              (11) 

Therefore, it is natural to define the length or norm of an 𝑛 −vector   

  ∥ 𝑋 ∥= (𝑥1 + 𝑥2    .   .   .   + 𝑥𝑛 )
1

2               (12) 

If 𝐴 is an 𝑛 × 𝑛 matrix, there are several ways to define its norm. For our purposes, the 

simplest choice for the norm of  𝐴 is ∥ 𝐴 ∥= ∑ ∑ |𝑎𝑖𝑗|
𝑛
𝑗=1

𝑛
𝑖=`  

Now using this notation and norm ∥. ∥ , the existence and uniqueness of a local vector 

solution 𝑋(𝑡) of the initial value problem is hereby obtained. 

According to [3] , Let 𝐷 denote the region in (𝑛 (𝑛 + 1)) dimensional space, one 

dimension for 𝑡 and 𝑛 dimensions for the vector  𝑋 . 

 |t-t0| ≤ a ,     ∥ X-X0 ∥≤b          (13) 

And suppose that 𝑓 (𝑡 , 𝑋) satisfies the Lipschitz condition 

∥ 𝑓 (𝑡 , 𝑋1) − 𝑓 (𝑡 , 𝑋2) ∥≤ 𝑘 ∥ 𝑋1 − 𝑋2 ∥                                               (14) 
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Whenever the pairs  (𝑡 , 𝑋1) and  (𝑡 , 𝑋2) belong to  𝐷 , where 𝑘 is a positive constant. 

Then there is a constant 𝛿 > 0 such that there exist a unique continuous vector solution 

𝑋(𝑡) of the system (14) in the interval |𝑡 − 𝑡0| ≤ 𝛿. 

It is easy to see that  (14) is implied by the inequality  

|𝑓𝑖(𝑡 , 𝑥11, … . , 𝑥1𝑛) − 𝑓𝑖(𝑡 , 𝑥21 , … . 𝑥2𝑛)| ≤ 𝑘1∑ |𝑥1𝑗
𝑛
𝑗=1 − 𝑥2𝑗|  (15) 

For some number  𝑘1. This fact follows from the double inequality 

  
1

𝑛
 ∑ |𝑥𝑗

𝑛
𝑗=1 | ≤∥ 𝑥 ∥≤ ∑ |𝑥𝑗

𝑛
𝑗=1 | 

Which is an immediate consequence of the definition of  ∥ 𝑋 ∥. 

Another condition emanating from equation (14) is   

 |𝑓𝑖(𝑡 , 𝑥11,….,𝑥1𝑛) − 𝑓𝑖(𝑡 , 𝑥21, … . , 𝑥2𝑛) | ≤ 𝑘2  max
𝑗
|𝑥1𝑗 − 𝑥2𝑗|         (16) 

for 𝑖 = 1 ,2 , … ,𝑚 

The two inequalities  (13) and (14) are useful since it is often very difficult to verify 

inequalities (15) directly. Finally, if the partial derivatives 

   
𝜕𝑓𝑖

𝜕𝑓𝑗
  𝑖 , 𝑗 = 1,2, … . 𝑛                                                       (17) 

are continuous in 𝐷 , then they are bounded on 𝐷 the conditions  (15) and (16) both 

follows from the mean value theorem of differential calculus. 

The proof of existence and uniqueness of solution of the problem formulated is hereby 

presented. 

Now consider the problem 

𝑢(𝑦) + 𝐺𝑟𝑡𝜃(𝑦) − 𝜆2𝑢(𝑦) = 0 

𝑑2

 𝑑𝑦2
𝜃(𝑦) − 𝐹2𝜃(𝑦) = 0             (18)                                        

Subject to      

 𝑢(0) = 0 , 𝑢(1) = 0
𝜃(0) = 0 , 𝜃(1) = 1

}                    (19) 

THEOREM: 

Let  Φ = {(𝑋, 𝑦): |𝑋𝑖| ≤ 𝑏0 , 0 ≤ 𝑦, 𝑎0}, where 𝑋 = (𝑢(𝑦), 𝜃(𝑦)), 𝐹 , 𝐺𝑟 and 𝜆 are real 

positive constants and 𝐹 ≠ 𝜆 ≠ 0 , 𝑎0 , 𝑏0  < ∞.Then the system of equation (16) 
satisfying (17) has a unique solution. 

Proof: 

Let; 𝑢 = 𝑋1 ,    𝑢
′ = 𝑋2, 𝑋2

′ =  𝜆𝑋1 − 𝐺𝑟𝑡𝑋3 , 𝜃 = 𝑋3 , 𝜃
′ = 𝑋4,  𝑋4

′ = 𝐹𝑋3    , then 
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  𝑢′ = 𝑋1
′ = 𝑋2

             𝑢′′ = 𝑋2
′ = 𝜆𝑋1 − 𝐺𝑟𝑡𝑋3

  𝜃′ = 𝑋3
′ = 𝑋4   

  𝜃′′ = 𝑋4
′ = 𝐹𝑋3 }

 

 
             (20) 

The system of equation (20) can be written in vector form as thus  

𝑑

𝑑𝑡
(

𝑋1
𝑋2
𝑋3
𝑋4

) = (

𝑋1
𝑋2
𝑋3
𝑋4

)

′

=

(

 
 

𝑓1(𝑋1 ,𝑋2 ,𝑋3 ,𝑋4)
𝑓2(𝑋1 ,𝑋2 ,𝑋3 ,𝑋4)
𝑓3(𝑋1 ,𝑋2 ,𝑋3 ,𝑋4)
𝑓4(𝑋1 ,𝑋2 ,𝑋3 ,𝑋4))

 
 
= (

𝑋2
𝜆𝑋1 − 𝐺𝑟𝑡𝑋3  

𝑋4
𝐹𝑋3

) 

With the initial condition 

(

𝑋1
𝑋2
𝑋3
𝑋4

) = (0) = (

0
𝛼1
1
𝛼2

) 

Let   𝑓𝑖(𝑋1 ,𝑋2 ,𝑋3 ,𝑋4) be defined as follows       

𝑓1(𝑋1, 𝑋2, 𝑋3 , 𝑋4) = 𝑋2 

                𝑓2(𝑋1, 𝑋2, 𝑋3 , 𝑋4) = 𝜆𝑋1 − 𝐺𝑟𝑡𝑋3 

𝑓3(𝑋1, 𝑋2, 𝑋3 , 𝑋4) = 𝑋4 

 𝑓4(𝑋1, 𝑋2, 𝑋3 , 𝑋4) = 𝐹𝑋3 

Since 𝑋𝑖 is bounded, then 𝑓𝑗(𝑋 , 𝑡), 𝑗 = 1(1)4  are defined and continuous for all points 

(𝑋. 𝑡) , 𝑗 = 1(1)4  in Φ in which they take their maximum in  Φ . 

Let this maximum be defined by  

𝑀𝑖
, = sup

(𝑡,𝑋)𝜖Φ
|𝑓𝑗 (𝑋 , 𝑡)| , 𝑖, 𝑗 = 1 , … . .4 

𝑀𝑖
, = sup

(𝑡,𝑋)𝜖Φ
|𝑓𝑗 (𝑡, 𝑋)| , 𝑖, 𝑗 = 1,2,3 ,4 

Thus 𝑓𝑗(𝑋, 𝑡) are continuous over Φ . 

Then there exist at most an 𝑀′ such that   |𝑓𝑖(𝑋, 𝑡)| ≤ 𝑀′  and  𝛿 = 𝑚𝑖𝑛 (𝑎0,
𝑏0

𝑀′) which 

imply 𝑓𝑖(𝑋, 𝑡) are continuous and bounded in Φ, then the system of equations (15) 
and(16) has a solution in the interval |𝑡| < 𝛿 . 

Now                               |
𝜕𝑓1

𝜕𝑋𝑗
| = 0   , 𝑗 = 1,3,4        |

𝜕𝑓1

𝜕𝑋2
| = 1  

                           |
𝜕𝑓2

𝜕𝑋𝑗
| = 0   , 𝑗 = 2,4        |

𝜕𝑓2

𝜕𝑋1
| = 𝜆    |

𝜕𝑓2

𝜕𝑋3
| = 𝐺𝑟𝑡 

|
𝜕𝑓3
𝜕𝑋𝑗

| = 0  , 𝑗 = 1,2,3       |
𝜕𝑓3
𝜕𝑋4

| = 1 
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|
𝜕𝑓4
𝜕𝑋𝑗

| = 0  , 𝑗 = 1,2,4      |
𝜕𝑓4
𝜕𝑋3

| = 𝐹 

By the condition of the theorem  𝜆, 𝐹, and given that  𝐺𝑟𝑡 are real and continuous in  Φ 

, then | 
𝜕𝑓𝑖

𝜕𝑋𝑗
| , 𝑖 = 1(1)4     are continuous and bounded. 

Hence, the system of equations (6) and (7) subject to (8) has a unique solution. 

 

NUMERICAL SIMULATION 

The transformed non-linear equations (18) under the boundary conditions (19) are 

solved numerically by shooting method alongside with fourth order Runge- Kutta 

method algorithm. The corresponding velocity and temperature profiles are shown in 

figures  (1) to(4)  

 

Figure 1: Graph of velocity profile for 5,2,2.0  GrF with various values of M 

 

 M=1 

Ooooo M=2 

+++++ M=3 

 

             F=2 

Oooo    F=2.5 

+++++  F=3.0 
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Figure 2: Graph of velocity profile for 5,2,2.0  GrM with various values of F 

 

 

Figure 3: Graph of velocity profile for F=2, M=2, Gr=5 with various values of   

 

Figure 4: Graph of temperature profile for 5,2,2.0  GrM with various values 

of F 

 

DISCUSSION OF RESULTS  

The coupled non-linear ordinary differential equations (18) subject to the boundary 

conditions (19) were solved numerically using Maple. 

This software uses a fourth order Runge-Kutta method to solve the boundary value 

problems numerically. In the numerical analysis, some parameters like the magnetic, 

radiation and porosity were varied to simulate physically realistic situations. 

We considered in details the influence of physical parameters like magnetic parameter, 

radiation parameter, porosity parameter on the velocity and the effect of radiation 

parameter on temperature profile. 

             =0.2 

Ooooo  =0.4 

+++++  =0.6 

           F=0.5      

Oooo  F=1.0 

++++  F=5.0 
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In figures (1) to  (3) , it was observed that the velocity profile was parabolic in nature 

and the fluid velocity boundary layer thickness decreases across the channel as 

magnetic  (𝑀) , radiation (𝐹) and porosity  (𝜒) parameters increases. 

Figure  (4) , shows the temperature profile for various values of the radiation 

parameter(𝐹). It was observed that the temperature increases and is minimum at the 

lower plate and maximum at the upper plate. Generally, there is a decrease in the fluid 

temperature profile within the channel when the radiation parameter increases. 

 

CONCLUSION 

The communication deals with the existence and uniqueness of a steady hydro magnetic 

flow of a radiating viscous fluid in a porous medium where a theorem was formulated 

to support the existence and uniqueness of the model .The transformed non-linear 

equations are solved numerically by shooting method alongside with fourth order 

Runge-Kutta iteration scheme. 

The results are sketched and discussed for the fluid and flow parameters variations. 

The major results from this study can be summarized as follows: 

Existence and uniqueness of solution for the model was established. 

Temperature increases as the radiation parameter increases. 

The velocity flow rate decreases as the magnetic and radiation increases. 

(4)Also observed that increase in porosity parameter bring a slight decrease in 

temperature boundary layer. 

In conclusion therefore, the problem of a steady hydro magnetic flow of a radiating 

viscous fluid in a porous medium with an optically thin case is affected by the magnetic 

parameter, radiation parameter and porosity parameter. 

It was clearly seen that the influence of radiation (𝐹) cannot be underestimated in 

engineering applications (electronic cooling). 
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