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ABSTRACT: The shape parameter of the three-parameter Weibull distribution (𝛽) was 

considered in this study. Known estimation methods like the maximum likelihood, method of 

moment and maximum product of spacing do not have closed-form estimators for the shape 

parameter of the three-parameter Weibull distribution rather they involve iterative procedures 

which may be time-consuming and are less tractable. Dubey (1967), Goda et al (2010) and 

Teimouri and Gupta (2013) have proposed closed-form estimators for 𝛽. In this study, a closed-

form estimator for 𝛽 is proposed and the proposed estimator is compared with the existing closed-

form estimators proposed by the authors mentioned above. To compare the accuracy of the 

estimators, Monte Carlo simulation is performed. Simulated data from the Weibull distribution 

are used to check the accuracy of the estimators and the root mean square error (RMSE) is used 

as a metric for accuracy. The results show that in general, the proposed estimator performs better 

than the other three closed-form estimators that were compared. 
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INTRODUCTION 

The Weibull distribution is of great interest to theory-oriented statisticians because of its great 

number of special features. It is also of great interest to practitioners because of its ability to fit 

data from various fields, ranging from life data to weather data or observations made in economics 

and business administration and this is because the Weibull distribution can behave like some other 

distributions depending on the value of its shape parameter.  

The pdf of the three-parameter Weibull distribution is given by; 

𝑓(𝑥) =
𝛽

𝜃
(

𝑥− 𝛾

𝜃
)

𝛽−1

  𝑒−(
𝑥−𝛾

𝜃
)

𝛽

            𝑥 > 𝛾, β > 0, 𝜃 > 0                   [1] 

The mean of the distribution can be expressed as  

Mean = 𝛾 + 𝜃Γ (1 +
1

𝛽
)               [2] 

The variance of the distribution can be expressed as    

Variance = 𝜃2 [Γ (1 +
2

𝛽
) − Γ2 (1 +

1

β
)]              [3] 

The quantile function can be expressed as        

           𝑥(𝐹) =  𝜃[− ln(1 − 𝐹(𝑥))]
1

𝛽⁄
+ 𝛾              [4] 

where 𝛽, 𝜃 𝑎𝑛𝑑  𝛾 are the shape parameter, scale parameter and location parameters respectively. 

The shape parameter is also known as the slope parameter. As the name implies, it determines the 
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shape of the distribution (that is different values of 𝛽 give different shapes of the distribution). It 

also shows the skewness of the distribution. Some values of the shape parameter will cause the 

probability density function of the Weibull distribution to reduce to that of other distributions. For 

example, when 𝛽=1, the probability density function (PDF) of a three-parameter Weibull 

distribution reduces to that of a two-parameter exponential distribution, (Rinne, 2008). 

 

However, to model data using a probability distribution requires estimation of the parameters of 

the distribution. Maximum Likelihood Method works efficiently if each contribution to the 

likelihood function is bounded above. Though the MLE having such nice properties and better 

applicability, it also has some weaknesses. Its greatest weakness is that it cannot work for ‘heavy-

tailed’ continuous distribution with unknown location and scale parameters. The Maximum 

Likelihood Method does not always provide precise estimates for certain distributions such as the 

gamma, Weibull, and log-normal distributions. This is because in these cases the critical difficulty 

is that there are paths in parameter space with the location parameter tending to the smallest 

observation along which the likelihood becomes infinite, Pitman (1979). According to Teimouri 

and Gupta (2013), the three-parameter Weibull distribution does not satisfy the regularity 

condition requirement of the MLE, and also its estimator of the shape parameter of the three-

parameter Weibull distribution is not available in closed form.  

 

Other methods have been proposed, like The Modified Maximum likelihood estimators (MLE) 

proposed by Cohen and Whitten (1982), the method of moments and modified method of moments 

estimators presented by Cohen and Whitten (1982), the maximum product of spacing method 

presented in Cousineau (2008) the method proposed by Goda et al (2010) based on L-skewness 

and the modifications to the procedure for MLE proposed by Yang et al (2019). However, in these 

methods, the shape parameter of the three-parameter Weibull distribution is estimated by iterative 

procedures making them less tractable, more complicated and time-consuming to compute.  

 

Existing closed-form estimators of the shape parameter  

To solve the problem of tractability when estimating the shape parameter of the three-parameter 

Weibull distribution, several authors like Dubey (1967), Goda et al (2010) and Teimouri and Gupta 

(2013) have proposed closed-form estimators for the shape parameter.  

Dubey (1967) proposed the percentile method which is an estimator based on the 17th and 97th 

percentiles for the shape parameter of the three-parameter Weibull distribution. Taking 𝑃1 =

0.167 and 𝑃2 = 0.9737 and defining 𝐾1 = 𝑙𝑜𝑔(−𝑙𝑜𝑔(1 − 𝑃1)) − 𝑙𝑜𝑔(−𝑙𝑜𝑔(1 − 𝑃2)). Also 

making 𝑌1 𝑎𝑛𝑑 𝑌2 represent the 100(𝑃𝑖th) percentile from a sample given sample, then, 

𝛽̂ =
−𝐾1

log(𝑌1)−log (𝑌2)
                [5] 

Goda et al (2010) an estimator gotten by fitting a polynomial to the L-skewness of the three-

parameter Weibull distribution to estimate the shape parameter. 
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L-skewness =

(𝟏−
𝟑

𝟐
𝟏

𝜷⁄
+

𝟐

𝟑
𝟏

𝜷⁄
)

(𝟏−
𝟏

𝟐
𝟏

𝜷⁄
)

               [6] 

𝛽̂ = 285.3𝜋3
6 − 658.6𝜋3

5 + 622.8𝜋3
4 − 317.2𝜋3

3 + 98.52𝜋3
2 − 21.256𝜋3 + 3.516        [7]  

Teimouri and Gupta (2013) used a theorem to construct a simple, consistent and closed-form 

estimator for 𝛽. The theory states that: suppose 𝑥1, 𝑥2, … , 𝑥𝑛 is a random sample from a Weibull 

distribution. Let 𝜌 denote the sample correlation coefficient between 𝑥𝑖 and their ranks. Then, 

      𝜌 = 𝐶𝑂𝑉(𝑥𝑖, 𝑅𝑖) = [(∫ 𝑥𝐹(𝑥)
∞

−∞
𝑑𝐹(𝑥) −

𝜇𝑥

2
) √

12(𝑛−1)

𝜎𝑥
2(𝑛+1)

]                                                        [8] 

Where 𝜇𝑥= mean of the distribution and 𝑥𝐹(𝑥) is the quantile function of the distribution. 

Teimouri and Gupta (2013) stated that for the three-parameter Weibull distribution, equation [8] 

becomes; 

 𝜌 = (
𝜇𝑥−𝛾

𝜎𝑥
) (

1

2
−

1

2
1+

1
𝛽

) √
12(𝑛−1)

𝑛+1
                                                                                                  [9]  

where 𝜇𝑥 = 𝐸(𝑥), 𝜎𝑥 = standard deviation  and 𝛽 is the shape parameter of the distributuon 

Solving for 𝛽 in equation [9] gives; 

𝛽 =
− ln 2

ln(1 −  
𝜌

√3
( 

𝜇𝑥
𝜎𝑥

−
𝛾

𝜎𝑥
)

−1
√

(𝑛+1)

(𝑛−1)
)

                                                                                                        [10]                             

Teimouri and Gupta (2013) stated that a good estimator for 𝛾 is 𝑥(1) −
1

𝑛
, where 𝑥(1) =

𝑚𝑖𝑛{𝑥1, 𝑥2, … , 𝑥𝑛 }. 

Substituting  𝑥(1) −
1

𝑛
  for 𝛾 in equation [10] gives as an estimator for 𝛽 that is independent of the 

other two parameters. 

𝛽̂ =
− ln 2

ln[1−
𝜌

√3
(

1

𝐶
−

𝑥(1)−
1
𝑛

𝑆
)

−1

√
𝑛+1

𝑛−1
]

                                                                                      [11] 

where C is the coefficient of variation (𝐶 =
𝜎𝑥

𝜇𝑥
)  

 

A closed-form estimator of the shape parameter based on the first two L-moments 

The L-moments of distributions are an analogy to the conventional moments, but they are based 

on linear combinations of the rank statistics, i.e. the L-statistics. Using the L-moments is 

theoretically more appropriate than the conventional moments because the L-moments 

characterize a wider range of the distribution. When estimating from a sample, L-moments are 

more robust to the existence of the outliers in the data. The experience shows that in comparison 

with the conventional moments the L-moments are more difficult to distort and in finite samples, 

they converge faster to the asymptotical normal distribution, (Bilkova 2012). 

 

We derive a closed-form estimator for the shape parameter of the three-parameter Weibull 

distribution based on L-moments. According to Hosking (1990), Let 𝑥1:𝑛 ≤  𝑥2:𝑛 ≤  … ≤ 𝑥𝑛:𝑛 be 
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the order statistics of a random sample of size n drawn from the distribution of X. The 𝑟𝑡ℎ 

population L−moments of X are defined as the quantile; 

𝛼𝑟 = 𝑟−1 ∑ (−1)𝑘𝑟−1
𝑘=0 (

𝑟 − 1
𝑘

) 𝐸(𝑥𝑟−𝑘:𝑟)         𝑤ℎ𝑒𝑟𝑒 (𝑟 = 1, 2 … )          [12] 

Substituting r =1 and r = 2 in equation [12], the first two L-moments can be expressed in the 

following forms; 

  𝛼1 = 𝐸(𝑥)                                                                                                                                        [13] 

𝛼2 =  
1

2
[𝐸(𝑥1:2) − 𝐸(𝑥2:2)]                                                                                                           [14] 

According to Goda et al (2010), the “L” in L−moments emphasizes the fact that 𝛼𝑟 is a linear 

function of the expected order statistics 𝛼̂𝑟 based on a sample of data is a linear combination of 

the ordered data values. Therefore, the expectation of an order statistic is 

∴ 𝐸(𝑥𝑘:𝑟) =
𝑛!

(𝑘−1)!(𝑛−𝑘)!
∫ 𝑥 [𝐹(𝑥)𝑘−1(1 − 𝐹(𝑥))

𝑛−𝑘
]  𝑑𝐹(𝑥)                                  [15] 

According to David (1981), expanding the binomials in F(x) and summing the coefficients of each 

power of F(x) gives; 

𝛼𝑟 = ∫ 𝑥(𝐹)
1

0
𝑃𝑟−1

° (𝐹)𝑑𝐹      (  𝑟 = 1,2, … )        [16] 

where x(F) is the quantile function,   

   𝑃𝑟−1
° (𝐹) = ∑ 𝑃𝑟−1,𝑘𝐹𝑘𝑟−1

𝑘=0    𝑎𝑛𝑑 𝑃𝑟−1,𝑘 = (−1)𝑟−1−𝑘 (
𝑟 − 1

𝑘
) (

𝑟 − 1 + 𝑘
𝑘

)    

Substituting r =1 and r = 2 in equation [17] gives; 

𝛼1 = 𝐸(𝑥) = ∫ 𝑥(𝐹)
1

0

𝑃1−1
° (𝐹)𝑑𝐹 = ∫ 𝑥(𝐹)

1

0

𝑃0
°(𝐹)𝑑𝐹 = ∫ 𝑥(𝐹) ∑(−1)0−𝑘 (

1
𝑘

) (
𝑘
𝑘

) 𝐹𝑘

0

𝑘=0

1

0

𝑑𝐹 

𝛼1 = ∫ 𝑥(𝐹)(−1)0 (
1
0

) (
0
0

) 𝐹0 𝑑𝐹
1

0

 

𝛼1 = ∫ 𝑥(𝐹)𝑑𝐹
1

0
= 𝐸(𝑥)         [17]  

𝛼2 = ∫ 𝑥(𝐹)
1

0
𝑃1

°(𝐹)𝑑𝐹 = ∫ 𝑥(𝐹) [(−1)1 (
1
0

) (
1
0

) 𝐹0 + (−1)0 (
1
1

) (
2
1

) 𝐹1] 𝑑𝐹 
1

0
   

   

𝛼2 = ∫ 𝑥(𝐹)[2𝐹 − 1]
1

0
𝑑𝐹         [18] 

Recall from equation [4] that the quantile function of the three-parameter Weibull distribution is 

given by; 

 𝑥(𝐹) =  𝜃[− ln(1 − 𝐹(𝑥))]
1

𝛽⁄
+ 𝛾 

Substituting 𝜃[− ln(1 − 𝐹(𝑥))]
1

𝛽⁄
+ 𝛾 for 𝑥(𝐹) in equation [17] gives; 

𝛼1 = ∫ 𝑥(𝐹)𝑑𝐹
1

0
 = ∫ {𝜃[− ln(1 − 𝐹(𝑥))]

1
𝛽⁄

+ 𝛾}  𝑑𝐹
1

0
       

= ∫ 𝛾 𝑑𝐹
1

0
+ ∫ 𝜃[− ln(1 − 𝐹(𝑥))]

1
𝛽⁄

 𝑑𝐹
1

0
         

𝑏𝑢𝑡 ∫ 𝛾 𝑑𝐹
1

0
= 𝛾𝐹|0

1 = 𝛾 − 0 = 𝛾       
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∴ 𝛼1 = 𝛾 + ∫ 𝜃[− ln(1 − 𝐹(𝑥))]
1

𝛽⁄
 𝑑𝐹

1

0
 

Now let 1 − 𝐹 = 𝑒−𝑦,    which means that 𝐹 = 1 − 𝑒−𝑦 

∴  
𝑑𝐹

𝑑𝑦
= 𝑒−𝑦   and  𝑑𝐹 = 𝑒−𝑦𝑑𝑦 

Using this transformation, we have; 

𝛼1 = 𝛾 + ∫ 𝜃[− ln(𝑒−𝑦)]
1

𝛽⁄
𝑒−𝑦 

∞

0
𝑑𝑦 = 𝛾 + 𝜃 ∫ [𝑦]

1
𝛽⁄

𝑒−𝑦 
∞

0
𝑑𝑦 

∴ 𝛼1 =  𝛾 + 𝜃Γ (
1

𝛽
+ 1) = 𝐸(𝑥)        [19]                                                                                

Substituting the quantile function in equation [19] gives; 

𝛼2 = ∫ 𝑥(𝐹)[2𝐹 − 1]
1

0

𝑑𝐹 = ∫ {𝜃[− ln(1 − 𝐹(𝑥))]
1

𝛽⁄
+ 𝛾} [2𝐹 − 1] 𝑑𝐹

1

0

 

𝑏𝑢𝑡 ∫ 𝛾[2𝐹 − 1] 𝑑𝐹
1

0

= (
2𝛾𝐹2

2
− 𝛾𝐹)|

0

1

= 𝛾 − 𝛾 = 0 

∴ 𝛼2 = ∫ 𝜃[− ln(1 − 𝐹(𝑥))]
1

𝛽⁄
[2𝐹 − 1] 𝑑𝐹

1

0
  

= ∫ 𝜃[− ln(1 − 𝐹(𝑥))]
1

𝛽⁄
2𝐹 𝑑𝐹 − ∫ 𝜃[− ln(1 − 𝐹(𝑥))]

1
𝛽⁄1

0
 𝑑𝐹

1

0
  

= − 𝜃Γ (
1

𝛽
+ 1) + ∫ 𝜃[− ln(1 − 𝐹(𝑥))]

1
𝛽⁄

2𝐹 𝑑𝐹 
1

0
  

Using the same transformation as in 𝛼1 gives; 

𝛼2 = − 𝜃Γ (
1

𝛽
+ 1) + ∫ 𝜃[− ln(𝑒−𝑦)]

1
𝛽⁄

2(1 − 𝑒−𝑦) 𝑒−𝑦 𝑑𝑦 
∞

0
  

= − 𝜃Γ (
1

𝛽
+ 1) + ∫ 𝜃[𝑦]

1

𝛽(2 − 2𝑒−𝑦) 𝑒−𝑦 𝑑𝑦 
∞

0
  

= − 𝜃Γ (
1

𝛽
+ 1) + ∫ 2𝜃[𝑦]

1

𝛽 𝑒−𝑦 𝑑𝑦 
∞

0
− ∫ 2𝜃[𝑦]

1

𝛽 𝑒−2𝑦 𝑑𝑦 
∞

0
  

= − 𝜃Γ (
1

𝛽
+ 1) + 2𝜃Γ (

1

𝛽
+ 1)  − 

2𝜃Γ(
1

𝛽
+1)

2
1
β

+1
      

= 𝜃Γ (
1

𝛽
+ 1) – 

𝜃Γ(
1

𝛽
+1)

2
1
β

  

∴  𝛼2 = 𝜃Γ (
1

𝛽
+ 1) [1 −

1

2
1
β

]           [20]    

The first and second L-moments of the three-parameter Weibull 𝛼1and 𝛼2 are to be estimated from 

a finite sample. If we have an ordered sample  𝑥1:𝑛 ≤  𝑥2:𝑛 ≤  … ≤ 𝑥𝑛:𝑛 , it can be characterized 

better by the estimator of the probability-weighted moments Ω𝑟. According to Hosking and Wallis 

(1997), an unbiased estimator of Ω𝑟 based on ordered samples is given as  

𝜔𝑘 =
1

𝑛
(

𝑛 − 1
𝑘

)
−1

∑ (
𝑗 − 1

𝑘
) 𝑥𝑗:𝑛

𝑛
𝑗=1                                                                                            [21] 

Following the general expression for the population L-moments (equation [16]), the general 

formula for the sample L-moments is defined as; 
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𝛼̂𝑟 = ∑ 𝑃𝑟−1,𝑘
𝑟−1
𝑘=0 𝜔𝑘          [22] 

𝑤ℎ𝑒𝑟𝑒 𝑃𝑟−1,𝑘 = (−1)𝑟−1−𝑘 (
𝑟 − 1

𝑘
) (

𝑟 − 1 + 𝑘
𝑘

) 

Now, with this we derive estimators of the first two L-moments (𝛼̂1 and 𝛼̂2) for a finite sample of 

size n.  

For 𝑟 = 1  

𝛼̂1 = ∑ 𝑃0,𝑘
0
𝑘=0 𝜔𝑘   = 𝑃0,0𝜔0 = (−1)0 (

0
0

) (
0
0

) [
1

𝑛
(

𝑛 − 1
0

)
−1

∑ (
𝑗 − 1

0
) 𝑥𝑗:𝑛

𝑛
𝑗=1 ]  

∴ 𝛼̂1 =
1

𝑛
∑ 𝑥𝑗:𝑛

𝑛
𝑗=1 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 = 𝜔0        [23]     

                  

For 𝑟 = 2,   

 𝛼̂2 = ∑ 𝑃1,𝑘
1
𝑘=0 𝜔𝑘   = 𝑃1,0𝜔0 + 𝑃1,1𝜔1 

= (−1)1 (
1
0

) (
1
0

) 𝜔0 + (−1)0 (
1
0

) (
2
0

) 𝜔1 = −𝜔0 + 2𝜔1 

∴  𝛼̂2 = 2𝜔1−𝜔0           [24] 

Equating the population L-moments to their sample estimates gives; 

𝜔0 =  𝛾 + 𝜃Γ (
1

𝛽
+ 1)          [25] 

2𝜔1−𝜔0 = 𝜃Γ (
1

𝛽
+ 1) [1 −

1

2
1
β

]          [26] 

From equation [25], 𝜃Γ (
1

𝛽
+ 1) = 𝜔0 −  𝛾  

Substituting 𝜔0 −  𝛾 for  𝜃Γ (
1

𝛽
+ 1) in equation 26 gives; 

2𝜔1−𝜔0 = (𝜔0 −  𝛾) [1 −
1

2
1
β

] 

Solving for 𝛽; 
2𝜔1−𝜔0

𝜔0− 𝛾
= 1 −

1

2
1
β

  

1 −
2𝜔1−𝜔0

𝜔0− 𝛾
=

1

2
1
β

  

1 −
2𝜔1−𝜔0

𝜔0− 𝛾
= 2

− 
1

β  

ln [1 −
2𝜔1−𝜔0

𝜔0− 𝛾
] = − 

1

β
ln 2  
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]

ln 2
= − 

1

β
  

β̂ =
− ln 2

ln[1−
2𝜔1−𝜔0

𝜔0− 𝛾
]
    where 𝜔𝑘 =

1

𝑛
(

𝑛 − 1
𝑘

)
−1

∑ (
𝑗 − 1

𝑘
) 𝑥𝑗:𝑛                                                                            𝑛

𝑗=1 [27]

                                                                                            
We, therefore, propose the use of equation [27] to estimate the shape parameter of the three-

parameter Weibull distribution. 

https://www.eajournals.org/
https://doi.org/10.37745/ejsp.2013


European Journal of Statistics and Probability 

Vol.9, No.2, pp, 44-55, 2021  

                                                      Print ISSN: 2055-0154(Print),  

                                                                                     Online ISSN 2055-0162(Online) 

50 
@ECRTD-UK   https://www.eajournals.org/           https://doi.org/10.37745/ejsp.2013 
 
 

Comparison of closed-form estimators of 𝛃 
We compare the proposed estimator with the existing estimators discussed above. To perform the 

comparison, the Monte Carlo simulation is carried out. Random samples from the three-parameter 

Weibull distribution are generated with known β values, then the estimators are applied to the 

samples to estimate β. To determine whether the value of the shape parameter affects the 

performance of the estimators, the true shape value is varied (β = 0.1, β = 0.5, β = 1, β = 1.5 β =
2.5, β = 3.5, β = 5). Sample size is also varied (n= 10, n = 30, n =100, n = 500) to determine if 

the sample size affects the performance of the estimators. The process is repeated 5000 times for 

each sample condition. The root mean squared error (RMSE) is used here as the metric for 

accuracy because it measures how far an estimate is from the true value. The root mean squared 

error can be expressed as; 

𝑅𝑀𝑆𝐸 = √𝐸[(β̂ − β)2]                                                                                                                 [28]  

where β̂ is the estimated value and β is the true value. 

 

RESULTS 

 

The tables below show the methods ranked according to their performance based on their RMSE 

for the categories of simulation. 

 Table 1: Results for 𝛃 = 𝟎. 𝟏    

 Rank Method RMSE 

n = 20 1 Proposed estimator 0.09536534 

2 Percentile estimator 0.14401863 

3 Teimouri and Gupta estimator  0.15464661 

4 Goda et al polynomials 9.41301964 

n = 50 1 Proposed estimator 0.06929465 

2 Teimouri and Gupta estimator 0.07195404 

3 Percentile estimator 0.11144796 

4 Goda et al polynomials 10.22591168 

n = 100 1 Proposed estimator 0.06310422 

2 Teimouri and Gupta estimator 0.07182955 

3 Percentile estimator 0.10899955 

4 Goda et al polynomials 10.11075527 

n = 200 1 Teimouri and Gupta estimator 0.03093812 

2 Proposed estimator 0.05300597 

3 Percentile estimator 0.09970828 

4 Goda et al polynomials 10.77889314 
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Table 2: Results for 𝛃 = 𝟎. 𝟓   

 Rank Method RMSE 

n = 20 1 Teimouri and Gupta estimator 0.119806 

2 Proposed estimator 0.12436 

3 Percentile estimator 0.284908 

4 Goda et al polynomial 0.509229 

n = 50 1 Teimouri and Gupta estimator 0.07624271 

2 Proposed estimator 0.07780251 

3 Goda et al polynomial 0.1840455 

4 Percentile estimator 0.20938301 

n = 100 1 Teimouri and Gupta estimator 0.05395386 

2 Proposed estimator 0.05445809 

3 Goda et al polynomial 0.09415163 

4 Percentile estimator 0.17959128 

n = 200 1 Proposed estimator 0.03540425 

2 Teimouri and Gupta estimator 0.03758375 

3 Goda et al polynomial 0.04477563 

4 Percentile estimator 0.16443088 

         

Table 3: Results for 𝛃 = 𝟏   

 Rank Method RMSE 

n = 20 1 Proposed estimator 0.1879985 

2 Teimouri and Gupta estimator 0.1960125 

3 Percentile estimator 0.4401827 

4 Goda et al polynomial 0.484632 

n = 50 1 Proposed estimator 0.1172147 

2 Teimouri and Gupta estimator 0.119213 

3 Goda et al polynomial 0.2153293 

4 Percentile estimator 0.2773543 

n = 100 1 Proposed estimator 0.08160166 

2 Teimouri and Gupta estimator 0.08255023 

3 Goda et al polynomial 0.13643637 

4 Percentile estimator 0.22150362 

n = 200 1 Proposed estimator 0.058323 

2 Teimouri and Gupta estimator 0.058445 

3 Goda et al polynomial 0.094765 

4 Percentile estimator 0.195226 
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Table 4: Results for 𝛃 = 𝟏. 𝟓   

 Rank Method RMSE 

n = 20 1 Proposed estimator 0.3316861 

2 Teimouri and Gupta estimator 0.3597133 

3 Goda et al polynomial 0.9502196 

4 Percentile estimator 2.39759 

n = 50 1 Proposed estimator 0.1866692 

2 Teimouri and Gupta estimator 0.2150955 

3 Percentile estimator 0.3844049 

4 Goda et al polynomial 0.3869839 

n = 100 1 Proposed estimator 0.126544 

2 Teimouri and Gupta estimator 0.1488701 

3 Goda et al polynomial 0.2332038 

4 Percentile estimator 0.296014 

n = 200 1 Proposed estimator 0.1005869 

2 Teimouri and Gupta estimator 0.1029094 

3 Goda et al polynomial 0.1585457 

4 Percentile estimator 0.2500391 

Table 5: Results for 𝛃 = 𝟐. 𝟓   

 Rank Method RMSE 

n = 20 1 Proposed estimator 0.900808 

2 Teimouri and Gupta estimator 0.9468059 

3 Percentile estimator 0.9948187 

4 Goda et al polynomial 2.3148297 

n = 50 1 Proposed estimator 0.4375576 

2 Percentile estimator 0.6272668 

3 Teimouri and Gupta estimator 0.6671635 

4 Goda et al polynomial 0.9422117 

n = 100 1 Proposed estimator 0.3785296 

2 Percentile estimator 0.4664347 

3 Teimouri and Gupta estimator 0.5034881 

4 Goda et al polynomial 0.5685845 

n = 200 1 Proposed estimator 0.2775372 

2 Goda et al polynomial 0.3677054 

3 Teimouri and Gupta estimator 0.3857527 

4 Percentile estimator 2.8308696 
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Table 6: Results for 𝛃 = 𝟑. 𝟓   

 Rank Method RMSE 

n = 20 1 Proposed estimator 1.676932 

2 Teimouri and Gupta estimator 1.73039 

3 Goda et al polynomial 4.166346 

4 Percentile estimator 5.212321 

n = 50 1 Proposed estimator 1.305476 

2 Teimouri and Gupta 1.329823 

3 Goda et al polynomial estimator 1.627909 

4 Percentile estimator 4.342122 

n = 100 1 Proposed estimator 0.7221477 

2 Goda et al polynomial 0.9762473 

3 Teimouri and Gupta estimator 1.0945583 

4 Percentile estimator 4.0255074 

n = 200 1 Goda et al polynomial 0.6237123 

2 Proposed estimator 0.7083365 

3 Teimouri and Gupta estimator 0.8954279 

4 Percentile estimator 5.440778 

Table 7: Results for 𝛃 = 𝟓   

 Rank Method RMSE 

n = 20 1 Proposed estimator 2.959233 

2 Teimouri and Gupta estimator 3.018996 

3 Goda et al polynomial 6.335933 

4 Percentile estimator 7.364682 

n = 50 1 Goda et al polynomial 2.421429 

2 Proposed estimator 2.497171 

3 Teimouri and Gupta estimator 2.525136 

4 Percentile estimator 6.047462 

n = 100 1 Goda et al polynomial 1.500637 

2 Proposed estimator 1.561893 

3 Teimouri and Gupta estimator 2.19721 

4 Percentile estimator 5.6495 

n = 200 1 Goda et al polynomial 1.034314 

2 Proposed estimator 1.583582 

3 Teimouri and Gupta estimator 1.902128 

4 Percentile estimator 5.440778 
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SUMMARY OF FINDINGS 

 

From the results shown in tables 1-7 which was obtained from the simulation experiments, it can 

be seen that when β = 0.1, the proposed estimator performed better than the other methods that 

were compared for all sample sizes considered. When β = 0.5, the Teimouri and Gupta estimator 

performed better for sample sizes n = 20, 50 and 100. However when n = 200, the proposed method 

performed better. When β = 1, 1.5, and 2.5, the proposed estimator performed better than the other 

methods that were compared for all sample sizes considered. When β = 3.5, the proposed method 

performed better than the other methods that were compared for n = 20, 50 and 100 but for n = 

200 the proposed estimator is slightly edged out by Goda’s polynomial estimator. When β = 5, the 

proposed method performed better than the other methods that were compared for n = 20, but for 

n = 50, 100 and 200, the proposed estimator was slightly edged out by Goda’s polynomial 

estimator. 

 

CONCLUSION 

 

In this study, the performance of three existing closed-form estimators (Teimouri and Gupta 

estimator, Goda et al estimator, percentile estimator) and a proposed closed-form estimator of the 

shape parameter of the three-parameter Weibull distribution were compared. Based on the 

findings, we conclude that generally the proposed estimator performs very well compared to the 

other closed-form estimators compared. Teimouri and Gupta estimator and Goda et al also showed 

good performances in some cases. 

 

Recommendation 

 

Based on the results of this study, we recommend the use of the proposed estimator for the 

estimation of the shape parameter of the three-parameter Weibull distribution when tractability 

and simplicity are required because in general, it performs very well when compared to the other 

closed-form estimators. We also recommend further study into proposing more accurate closed-

form estimators for the three-parameter Weibull distribution for the sake of tractability and 

estimation speed. 
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