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ABSTRACT: This work applied Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) approach to modelling volatility in Rwanda Exchange rate returns. The Autoregressive 

(AR) model with GARCH errors was fitted to the daily exchange rate returns using Quasi-

Maximum Likelihood Estimation (Q-MLE) method to get the current volatility. Asymptotic 

consistency and asymptotic normality of estimated parameters were given.   Akaike Information 

criterion was used for appropriate GARCH model selection while Jarque Bera test used for 

normality testing revealed that both returns and residuals have fat tails behaviour. It was shown 

that the estimated model fits Rwanda exchange rate returns data well. 
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INTRODUCTION  

 

Exchange rates are a challenging concept due to the fact that one has to deal with foreign exchange 

rates whenever he/she travels to a foreign country. Foreign exchange rates markets are world 

decentralized marketplaces that determine the relative values of different currencies. Volatility 

refers to the spread of all likely outcomes of an uncertain variable. Statistically, volatility is often 

measured as the sample standard deviation. Volatility is related to but not exactly the same as risk. 

Risk is related with undesirable results, but volatility can be defined as a measurement of the 

change in price over a given period of time. The conditional volatility in exchange rate returns is 

considered as the origin of exchange rates risk and has certain significances on the volume of 

international trade. Exchange rate volatility is a measure of the fluctuations in exchange rate 

markets. 

 

The risk in foreign exchange can be defined as exposure to uncertainty and it cannot be dismissed 

in exchange rate markets since both importers and exporters of goods and services are affected by 

exchange rates fluctuations. Exchange rate risk also known as Foreign exchange risk or currency 

risk refers to a financial risk posed by an exposure to unanticipated changes in the exchange rate 

between two currencies. It may also be defined as the variability of a portfolio’s value caused by 

uncertain fluctuations in the exchange rates. A value of any currency fluctuates as its demand and 

supply fluctuates, this means that if demand decrease or supply increase this can cause depreciation 

of the currency’s value. On other hand if supply decreases and demand increases, this can cause 
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appreciation of the value of currency (Madura, 1989). When volatility in exchange rates increases 

it leads to uncertainty in pricing and this hurts importers who spend more for the same quantity.  

The volatility in prices has implications on the profits and survival of business enterprises Smith 

et al.( 1990).  

 

Recently, researchers and academics have estimated conditional volatility of exchange rates return 

using different techniques.  Maana et al (2010) modeled exchange rate volatility of Kenya 

exchange rate markets using GARCH (1, 1) model. They found that the importers and exporters 

of goods and services are both affected by exchange rate fluctuations. Ghysels and Jasiak (1996) 

estimated the volatility as non-constant and non-symmetric with left fat tail. Some researchers 

argue that the true volatility cannot be estimated because there is no relationship between prior, 

current, and future volatilities for financial assets. If so, approaches utilizing volatility in 

estimating VaR should invalid, Sandmann & Koopman(1998). 
 

Blum &Dacorogna (2002) studied extreme moves in daily Foreign Exchange rates and risk limit 

setting and they found that foreign exchange rates can be subject to considerable daily fluctuations 

(up to 5 percent within one day) and can cause serious losses on open overnight positions. They 

quantified the risk by concentrating their attention on the tails of the distribution and showed how 

to use estimations to compute limits that a risk manager can set to open positions to avoid 

unexpected huge losses.  

 

Researchers in the past years have found out two fundamental attributes regarding distributions of 

returns of financial assets returns. First, most of the times, the distributions of financial assets 

returns are not normal, for example see, Hull & White (1998). Manganelli& Engle (2001) showed 

that financial returns, especially exchange rate and interest rate returns are not normally 

distributed, suffer from volatility clustering and are not independent. Some researchers argue that 

the distribution should have fat tails, Longin (1996) and Neftci (2000), and others argue that it 

should not be symmetric, Glosten (1993). Secondly, some researchers found that the distributions 

of financial assets returns are not constant over time. Such findings are related to another field of 

research in finance: the prediction of volatility of financial assets. There have been a lot of debate 

about the attributes of volatility; whether volatility is time-varying or constant, whether it should 

be weighed through time or not, or what time interval from the past is relevant for current volatility, 

Nelson (1991).  

 

MATERIAL AND METHODS 
 

This work applied GARCH approach to estimate exchange rate volatility of Rwanda Francs versus 

Japan Yen (Frw/JPY), Rwanda Francs against US Dollars (Frw/USD) and Rwanda Francs versus 

Sterling Pound (Frw/GBP) for the time period of 5 years. The daily data were obtained from The 

National Bank of Rwanda while R-software was used to generate the data. The choice of the 

currencies was based on their relative proportions in the Bank’s foreign exchange investment 

portfolio and based also on its currency composition of imports. The data used were the average 



European Journal of Statistics and Probability 

Vol.2,No.3.pp. 23-33, December 2014 

             Published by European Centre for Research Training and Development UK (www.eajournals.org) 

25 
ISSN 2055-0154(Print), ISSN 2055-0162(Online) 
 

of buying and selling of the Rwanda Exchange Rate covering the period from June 1st 2009 to June 

1st 2014.  

 

Volatility Estimation 

In literature, different models in econometrics have been proposed to deal with pattern facts about 

volatility. These models include models from the ARCH/GARCH family. Engle (1982) and 

Bollerslev (1986) suggested ARCH and GARCH models respectively to resolve the problem of 

volatility clustering and persistence in financial data. ARCH/GARCH models play a crucial role 

in modeling of conditional volatility since they manage changing volatility with the assumption of 

conditional normality. Consider a sequence {𝑒𝑡} of independent and identically distributed random 

variable such that 𝑒𝑡~𝑁(0,1).  𝜖𝑡 is a GARCH (𝑞, 𝑝) process if 

{
 𝜖𝑡 = 𝜎𝑡𝑒𝑡, 𝜖𝑡~(0, 𝜎𝑡

2)

𝜎𝑡
2 = 𝜔 + ∑ 𝛼𝑖

𝑞
𝑖=1 𝜖𝑡−𝑖

2 + ∑ 𝛽𝑗
𝑝
𝑗=1 𝜎𝑡−𝑗

2                                                                                  (1) 

The size of the parameters 𝛼𝑖 and 𝛽𝑗 determine the short run dynamics of the resulting volatility 

process. The non-negativity of 𝛼𝑖 and 𝛽𝑗 ensure that 𝜎𝑡
2 is strictly positive. Large ARCH error 

coefficients  𝛼𝑖  imply that volatility reacts significantly to market movements. Large GARCH 

coefficients 𝛽𝑗 indicate that shocks to the conditional variance take long time to die out. High 𝛼𝑖 

coefficients, relative to 𝛽𝑗 indicate that volatility tends to be more extreme. Since 𝜎𝑡
2 is the one-

period ahead forecast volatility based on the past information, it is called conditional volatility and 

it is specified as a function of three terms: unconditional volatility 𝜔, news about volatility from 

the previous period measured as the lag of the squared residuals from the mean equation 𝑟𝑡−1
2   

(ARCH term) and last period volatility 𝜎𝑡−1
2   (GARCH term). The Akaike information criterion 

has been used to select a good GARCH model for each currency, Jarque and Bera (1982) came up 

with test for normality testing, this test has also been applied to see whether our data is normally 

distributed or not.. To test whether our data is stationary, this study has applied Augmented Dickey 

Fuller Test and Lagrange Multiplier test has been used for Arch effect testing in residuals. The 

GARCH (𝑝, 𝑞) model was fitted to the daily exchange rate returns using Quasi-Maximum 

likelihood Estimate to get the current volatility.  

𝜎̂𝑡 = √𝜔̂  + ∑ 𝛼̂𝑖
𝑞
𝑖=1 𝜖𝑡−𝑖

2 + ∑ 𝛽̂𝑗
𝑝
𝑗=1 𝜎𝑡−𝑗

2                                                                                      (2) 

 

Quasi-Maximum Likelihood Procedure 

To get the Quasi-Likelihood function, we consider the situation where the true probability 

distribution 𝑓0(𝑟𝑡, 𝜃0) of the exchange rate at time 𝑡  and incorrect probability distribution given 

by 𝑓(𝑟𝑡, 𝜃) are used to build the likelihood function. Now model (1) can be reformulated by letting 
{ 𝑟𝑡} be a sequence with the true model yield 

{
 𝑟𝑡 = 𝜖0𝑡, 𝜖0𝑡 = 𝜎0𝑡 𝑒𝑡   

𝜎0𝑡
2 = 𝑉𝑎𝑟( 𝑟𝑡|ℱ𝑡−1) = 𝐸[( 𝑟𝑡)

2|ℱ𝑡−1]
                                                                                 (3)                                                         

Where  𝜖0𝑡~N(0, 𝜎0𝑡
2 ), 𝐸(𝜖0𝑡|ℱ𝑡−1 ) = 0 almost sure (𝑎. 𝑠) and ℱ𝑡 = 𝜎(𝜖0𝑡, 𝜖0𝑡−1, 𝜖0𝑡−2, … ), the 

conditional variance can be defined as 𝐸(𝜖0𝑡
2 |ℱ𝑡−1) =𝜎0𝑡

2  (the subscript 0 indicates the true values 

of parameters). We also assume  𝑟𝑡 = 𝜖𝑡 = 𝜎𝑡𝜀𝑡 , 𝜖𝑡~N(0, 𝜎𝑡
2) to be the model for the unknown 
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parameters (misspecified model). Hence the true and misspecified distributions are; 

 𝑓0(𝑟𝑡) = 
1

𝜎0𝑡√2𝜋
𝑒𝑥𝑝 [−

(𝜖0𝑡)
2

2𝜎0𝑡
2 ]                                                                                                    (4) 

      𝑓(𝑟𝑡)=
1

𝜎𝑡√2𝜋
𝑒𝑥𝑝 [−

(𝜖𝑡)
2

2𝜎𝑡
2 ]                                                                                                    (5) 

Let us assume that innovations follow a GARCH (1, 1) process; 

 𝜎0𝑡
2 = 𝜔0(1 − 𝛽0) + 𝛼0𝜖0𝑡−1

2 + 𝛽0𝜎0𝑡−1
2  𝑎. 𝑠                                                                         

An equivalent expression for the conditional variance can be derived as: 

 𝜎0𝑡
2 = 𝜔0 + 𝛼0∑ 𝛽0

𝑘∞
𝑘=0 𝜖𝑡−1−𝑘

2   𝑎. 𝑠,                                                                                    
we also assume that the process is described with true parameters in the vector form given as 

𝜃0 = [𝜔0, 𝛼0, 𝛽0]
′                                                                                                                   (6) 

and for the model with the unknown parameters, 

 𝜎𝑡
2(𝜃) = 𝜔(1 − 𝛽) + 𝛼𝜖𝑡−1

2 + 𝛽𝜎𝑡−1
2  ,   𝑡 = 2,3, … , 𝑇                                                         

with the setup or initial condition  𝜎1
2(𝜃) = 𝜔, this gives the convenient expression for the 

conditional variance process  

𝜎𝑡
2 =  𝜔 + ∑ 𝛽𝑘𝑡−2

𝑘=0 𝜖𝑡−1−𝑘
2                                                                                                     

Let us also assume that the innovation 𝜖𝑡 is the model for the unknown parameters  

𝜃 = [𝜔, 𝛼, 𝛽]′, with| 𝛽| < 1                                                                                                 (7) 

Now we can define the compact parameter space Θ, in the following way. 

Θ ≡ {θ: 0 < 𝜔𝑙 ≤ 𝜔 ≤ 𝜔𝑢;  0 < 𝛼𝑙 ≤ 𝛼 ≤ 𝛼𝑢;  0 < 𝛽𝑙 ≤ 𝛽 ≤ 𝛽𝑢 < 1}                           (8) 

Where subscript 𝑙  and  𝑢 indicate lower and upper limits respectively. We assume that the true 

parameter 𝜃0 ∈ Θ, this implies that 𝛼0 > 0 ,   𝛽0 > 0, which means that  𝜖𝑡 is strictly a GARCH 

process. We can also define standardized residuals 𝑒𝑡 =
𝜖𝑡
𝜎𝑡⁄  by constructing 𝐸(𝑒𝑡|ℱ𝑡−1 ) =

0 𝑎. 𝑠 and 𝐸(𝑒𝑡
2|ℱ𝑡−1) = 1 𝑎. 𝑠 frequently, estimation of GARCH models is done under the 

assumption that 𝑒𝑡 ~𝑖. 𝑖. 𝑑 𝑁(0,1) so that the likelihood is easily specified. The maximum 

likelihood estimators of the parameters of the misspecified distribution are obtained by 

maximizing the log-likelihood function 

𝑙𝑛𝐿(θ) = ∑ 𝑙𝑛𝑓(𝑟𝑡; θ) 
𝑛
𝑡=1                                                                                                       (9) 

The 𝜃 estimator is obtained by setting the first order conditions given by 

 𝑙(𝜃) =
𝜕𝑙𝑛𝐿

𝜕𝜃
=∑

𝜕𝑙𝑛𝑓(𝑟𝑡;θ)

𝜕𝜃

𝑛
𝑡=1                                                                                                    (10) 

 to zero. Let us take expectations of the gradient vector in (10) with respect to the true probability 

distribution 𝑓0(𝑟𝑡; 𝜃0). 

𝐸0[𝑙(𝜃)] = ∫ 𝑙(𝜃)
∞

−∞
𝑓0(𝑟𝑡; 𝜃0)𝑑𝑟𝑡  

                =∫ ∑
𝜕𝑙𝑛𝑓(𝑟𝑡;𝜃)

𝜕𝜃

𝑛
𝑡=1

∞

−∞
𝑓0(𝑟𝑡; 𝜃0)𝑑𝑟𝑡 

               =∫ ∑
𝜕𝑓(𝑟𝑡;𝜃)

𝜕𝜃

𝑛
𝑡=1

∞

−∞

𝑓0(𝑟𝑡;𝜃0)𝑑𝑟𝑡

𝑓(𝑟𝑡;𝜃)
                                                                                  (11) 

Where 𝐸0[. ] means that the expectation taken with respect to the true distribution, this expression 

is not guaranteed to equal zero except in the case where the distribution is specified 

correctly 𝑓(𝑟𝑡; 𝜃) = 𝑓0(𝑟𝑡; 𝜃0). In this case, (11) may be simplified by exchanging the integration 

and differentiation operators and using the property of a probability distribution to give 

𝐸0[𝑙(𝜃)]   =∑
𝜕

𝜕𝜃

𝑛
𝑡=1 ∫ 𝑓(𝑟𝑡; 𝜃)

∞

−∞
𝑑𝑟𝑡 

                 =∑
𝜕

𝜕𝜃

𝑛
𝑡=1 1 
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 𝐸0[𝑙(𝜃)] = 0                                                                                                                         (12) 

Thus sufficient condition for (12) to hold is that the model is specified correctly. There are 

however, some important cases where 𝐸0[𝑙(𝜃)] = 0 even when the distribution is misspecified. 

Let us assume that the Gaussian Likelihood is applied to form the estimator. Then, the Log 

Likelihood takes the form   

𝐿𝑛(θ) =
1

2𝑛
∑ 𝑙𝑡(θ),
𝑛
𝑡=1                                                                                                          (13)                                                                                 

Where  𝑙𝑡(θ) = − [ln 𝜎𝑡
2(θ) +

𝜖𝑡
2

𝜎𝑡
2(θ)
]  and  𝐿𝑛(θ) is typically referred to as a quasi-likelihood 

function of parameter θ, since the likelihood need not to be the correct density. The vector of 

parameter value, denoted by 𝜃𝑛 maximizes the likelihood Equation (13) on the subspace Θ𝐼belongs 

to compact space Θ (Θ𝐼 ⊂ Θ) is obtained as:                                                                                  

𝜃𝑛 = 𝑎𝑟𝑔max
𝜃∈Θ𝐼

𝐿𝑛(θ)                                                                                                    (14) 

 We also need to investigate the asymptotic consistency and asymptotic normality properties of 

the quasi-maximum estimator 𝜃𝑛 of the GARCH process. To study the asymptotic properties of 

our estimators, we may discuss two important questions in asymptotic properties of our estimators: 

first, does our estimator work properly asymptotically? i.e, does it provide as with the correct 

answer if we give it enough data? The second, how asymptotic efficient is our estimator?  

 

Asymptotic Consistency  

An estimator say 𝜃𝑛 is consistency to the actual parameter 𝜃𝑛 means that when sample size is 

sufficiently large the estimator 𝜃𝑛 will be very likely to be very close to the actual parameter 

value 𝜃𝑛. When an estimator converges in probability to the true value as the sample size increases, 

then, the estimator is asymptotically consistent. In this study, let us suppose that we observe the 

daily exchange rate returns data 𝑟−𝑝+1, … 𝑟0, 𝑟1, … , 𝑟𝑛 generated by the model (3) with 𝜃0 as the 

parameter. Assume that the data up to 𝑟0  are available to us and the process 𝑟0 is described with 

true parameters in the vector form given as in (6). One can define 

 𝜎̂∗𝑡
2 (𝜃) = 𝜔(1 − 𝛽) + 𝛼𝜖𝑡̂−1

2 + 𝛽𝜎̂∗𝑡−1
2  𝑡 = 1,2, . . 𝑇                                                              (15) 

together with initialization  𝜎̂0𝑡
2 (𝜃) ≥ 0 this means that the log-likelihood of (𝑟1, … , 𝑟𝑛)

′ given 

(𝑟0, 𝜎0)
′ under 𝑒𝑡𝑖. 𝑖. 𝑑~𝑁(0,1) is approximately equal to  

𝐿̂𝑛(𝜃) = −
1

2
∑ (ln𝜎̂∗𝑡

2 (𝜃) +
𝑟𝑡
2

𝜎̂∗𝑡
2 (𝜃)

)
𝑛

𝑡=1
                                                                                 (16) 

The Quasi-Maximum Likelihood Estimator  𝜃𝑛 is the parameter value which maximizes 𝐿̂𝑛  on 

subspace Θ1, since Θ1 is an approximately chosen compact subset of the parameter space Θ. 

Therefore, Quasi-MLE 𝜃𝑛 is strongly consistency if the following conditions on the random 

variable 𝑒𝑡 are satisfied: 

𝐷1.  𝑒𝑡 is sequence of independent and identically distributed random variables such that E(𝑒𝑡)=0 

𝐷2.  The vector parameter 𝜃0 is in the interior of compact set Θ. 

𝐷3. For some a>0 there exists a constant 𝑏 < ∞ such that 𝐸[𝑒𝑡
2+𝑎] ≤ 𝑏 < ∞ 

𝐷4. 𝑒𝑡
2+𝑎 is non degenerate 

𝐷5. 𝐸[𝑙𝑛(𝛽0 + 𝛼0𝑒𝑡
2)] < 0 

𝐷6. If for some t holds   𝜎0𝑡
2 = 𝜔0 + ∑ 𝜔𝑘

∞
𝑘=1 𝜖𝑡−𝑘

2  and  𝜎0𝑡
2 = 𝜔0

∗ + ∑ 𝜔𝑘
∗∞

𝑘=1 𝜖𝑡−𝑘
2  

Therefore 𝜔𝑗 = 𝜔𝑗
∗ for every 1 ≤ 𝑗 < ∞ 
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If these conditions are satisfied we can conclude the consistency of Quasi-MLE in the following 

theorem. 

 

Theorem 

Under the conditions 𝐷1. −𝐷6 𝑎𝑏𝑜𝑣𝑒,  the quasi-maximum likelihood estimate 𝜃𝑛 is strongly 

consistent that is 

 𝜃𝑛 
𝑎.𝑠
→ 𝜃0, 𝑛 → ∞                                                                                                                       (17) 

 

Asymptotic normality 

The distribution of estimators is said to be asymptotically normal if, as the sample size increases, 

the distribution of the estimators approaches a normal distribution. To show that our estimators 

are asymptotically normal we need the following additional assumptions.  

𝐷7. 𝜎∗𝑡
2  is twice continuously differentiable on subspace Θ1  

𝐷8. The following moment conditions hold: 𝐸(𝑒0
4) < ∞, 𝐸 [

|∇𝜎∗0
2 (𝜃0)|

2

𝜎0
4 ] < ∞, 𝐸‖∇𝑙𝑛‖Θ1 < ∞ and 

𝐸‖∇2𝑙𝑛‖Θ1 < ∞. 

If the conditions 𝐷1 − 𝐷8 hold, the following theorem can be stated for the asymptotic normality 

of the quasi-Maximum likelihood estimator. 

 

Theorem 

Under the conditions 𝐷1 −  𝐷8, the Quasi-Maximum Likelihood Estimator 𝜃𝑛 is strongly 

consistent and asymptotically normal, that is 

 √𝑛 (𝜃𝑛  − 𝜃0)
𝑑
→𝑁(0, 𝑉0) as 𝑛 → ∞.                                                                                    (18) 

Where 𝑉0 is the asymptotic variance of the estimator 𝜃𝑛. Under asymptotic normality, the estimator 

𝜃𝑛 not only converges to the unknown parameter, but it converges fast enough, at a rate 1/√𝑛. For 

more details see (Francq and Zakoïan, 2004) and (Posedel, 2005).  

 

EMPIRICAL RESULTS 
 

This chapter presents empirical results on the estimation of extreme risk in exchange rates using 

volatility and Extreme value theory. The plots in Figures 1 below show the daily fluctuations of 

Exchange rate series. 
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Figure 1: Trends in the Exchange rates 

In order to estimate the volatility in the exchange rates data, the Log-returns was applied. The log-

returns in plots in Figure 2 show that the data appear to be stationary in mean after logarithm 

transformation. These plots also reveal dependence structure where period of high returns tend to 

be followed by the high returns as well as the period of low returns tend to be followed by low 

returns. This is evidence of short-range dependence (volatility clustering in data), which must cast 

doubt on the assumption of independent and identically distributed 𝑖. 𝑖. 𝑑 of data. The clustering of 

exchange rate returns data indicates presence of stochastic volatility in exchange rate series. Plots 

in Figure 2 allow identifying the most extreme losses and their approximate time occurrence.  

 
Figure 2: Daily Exchange rate returns 

Descriptive statistics for the exchange rate returns are presented in Table 1. The mean of the 

exchange rate returns is negligible for each currency but standard deviation is significant for all 

currencies. The distributions of returns in FRW/JPY and in FRW/GBP exhibit negative skewness 

(means frequent small gains and few extreme losses). This indicates that they have what 
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statisticians call a long left tail, which for investors can mean a greater change of extremely 

negative outcomes. However the returns series of FRW/USD exhibit positive skewness 

coefficients. This indicates that the distribution of the returns in this currency is slightly right 

skewed. This implies that depreciations in exchange rates occur slightly more often than 

appreciation. In this case investors can have frequent small negative outcomes and few extreme 

gains. 

The excess kurtosis coefficients for log-returns of all currencies are positive to indicate that the 

underlying distributions of exchange rate returns have tails which are significantly heavier than 

that of the normal distribution. Jarque Bera test for normality rejects null hypothesis for all 

currencies since 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is too small compared to significance level. This indicates that none 

of these currencies is normally distributed. Augmented Dickey Fuller (ADF) test used for 

stationarity testing revealed that exchange rate returns for all currencies are statioanary in mean. 

The ADF statistics used in the test is a negative number for all the currencies. More negative 

indicates the stronger the rejection of the null hypothesis. 

Table 1: summary statistics of Log-Returns data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Autocorrelation function (ACF) and Partial Autocorrelation function (PACF) were applied to 

obtain the lags in the GARCH (𝑝, 𝑞) model. These functions help to determine which past series 

values are most useful in predicting future values. The length of past conditional variance (𝑝) was 

determined by ACF where the lag at which the ACF cuts off is the indicated the number of GARCH 

term (𝑝). The PACF determine the length of past squared innovations (𝑞) where the lag at which 

PACF cuts off is the indicated number of ARCH term (𝑞). The Akaike information (AIC) criterion 

and Bayesian information criterion (BIC) tests were applied to select the best model for each 

currency. As suggested by Akaike (1973) and Schwarz (1978), the best model for financial data is 

the one that minimize the AIC and BIC respectively. The results presented in Table 2 show that 

GARCH (1, 1) is the best model for all currencies.  

 

Statistics  FRW/JPY FRW/USD FRW/GBP 

Mean 9.7e-05 0.00015 0.0001729         

Minimum -0.0386 -0.01119 -0.04536 

Maximum 0.03989 0.008339 0.053518 

Standard dev. 0.00676 0.000746 0.005989 

Skewness -0.3285         0.050277 -0.07602 

Excess.Kurtosis 5.66189 129.5456 8.307359 

JB.Test(p-value) <2.2e-16 < 2.2e-16 < 2.2e-16 

ADF. Statistics(10) -10.753 -8.8158 -10.4837 

ADF.Test(p-value) 0.01 0.01 0.01 

Significance level 0.05 0.05 0.05 

No. of Observations 2758 2758 2758 
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Table 2: summary of GARCH model selection 

Frw/ 𝝎̂ 𝜶̂ 𝜷̂ 𝜶̂ + 𝜷̂ observations 

JPY 4.93e-06 0.1569 0.7463 0.9032 Low persistent 

USD 7.17e-09 0.4383 0.7403 1.1786 High persistent 

Pound 2.2e-06 0.0529 0.885 0.9379 Low persistent 

 

The plots in Figure3 reveal volatility clustering characteristics. Statistically, volatility clustering 

implies a strong autocorrelation. Volatility clustering describes the tendency of large changes in 

exchange rate series to follow large changes and tendency of low changes to be followed by low 

change. In other word the current level of volatility tends to be positively correlated with the 

preceding periods. The sum of the ARCH and GARCH coefficients for FRW/USD exceed unity. 

This indicates that the conditional variance is highly persistent to the shocks in the volatility of the 

Frw/USD currency; therefore, the memory of the shocks for this currency is remembered in the 

exchange rates markets. The sum of ARCH term and GARCH term coefficients for Frw/JPY and 

for Frw/Pound are below the unity. This indicates that the variance is relatively less persistent of 

the shocks in the volatility.  

 
Figure 3: Daily exchange rate volatility 

In all GARCH models, the estimated parameters are significant at 5% level. Lagrange Multiplier 

(LM) test for ARCH effects rejects the null hypothesis of no ARCH effects at 12 degrees of 

freedom for Frw/JPY. This indicates the presence of ARCH effects in residuals of exchange rate 

returns. The ARCH effects decrease with the increase of the number of lags. The ARCH effects in 

the exchange rate returns for Frw/JPY dies out after (64) lags. There is no arch effect in the 

Frw/USD and in Frw/GBP at 12 degrees of freedom. LM test shows that there is no Arch effect in 

Frw/USD at all lags however the Arch effect in Frw/GBP dies out after (9) lags. 
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CONCLUSION AND RECOMMENDATION 

In this work, the GARCH models were applied to estimate volatility in the Rwandese foreign 

exchange market data for the period June 2009 to June 2014. Quasi-Maximum Likelihood 

estimation procedure was used to estimate parameters in GARCH and the estimators were found 

to be consistency and asymptotically normal. The exploratory analysis showed that exchange rate 

data exhibit leptokurtosis. Lagrange Multiplier test for ARCH effects revealed presence of ARCH 

effects in both returns series and residuals. Augmented Dickey Fuller test for unit roots showed 

that the return series for all currencies are stationary in mean. Results of this work will contribute 

a lot to understanding of how changes in exchange rate affect the prices of goods and services in 

international trade. Nelson (1991) introduced Exponential Generalized Autoregressive 

Conditional Heteroscedasticity (EGARCH) model and listed three shortcomings with the GARCH 

models; the lack of symmetry in response to shocks, the GARCH models impose parameter 

restrictions to ensure the conditional variance is positive and the difficulty in measuring the 

persistence using GARCH model. From these drawbacks, it is recommended that the future 

research should focus on asymmetric models to see whether these shortcomings can have 

significance impact to volatility estimation. 

 

References 

Akaike, H. (1973). Information Theory and Extension of the Maximum Likelihood Principle. . In: 

B.N. Petrov and F.Cs'aki Eds. Akad emia kiad'o, Budapest , 267-281. 

Bera, A., & Jarque, C. (1982). Model Specification Tests: A simultaneous Approach. Journal of 

Econometrics Vol.20 , 57-82. 

Blum, P., & Dacorogna, M. (2002). Extreme moves in daily Foreign Exchange rates and risk limit 

setting. . Department of Mathematics General Guisan Quasi Vol26 , , 8092Z'urich. 

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity . Journal of 

Econometris Vol.31 , 307-327. 

Engle, F. (19982). Autoregressive Conditional Heteroscedasticity with Estimates of Variance of 

United Kingdom Inflation. Econometrica Vol.50 , 987-1008. 

Francq, C., & Zakoian, J. (2004). Maximam Likelihood Estimationof Pure GARCH and ARMA-

GARCH Processes. Bernoulli Vol.10 , 605-637. 

Ghysels, E., Harvey, A., & Renault, E. (1996). Stochastic Volatility. In Handbook of Statistics. 

Statistical Methods in Finance, Maddala, G.S. Ed. North- Holland, Amsterdam Vol.14 , 119-

91. 

Glosten, L., Jagannathan, R., & Runkle, D. (1993). On the relation between the expected value 

and the Volatility of Nominal excess return on stocks. Journal of Finance Vol.48 , 1779-

1801. 

Hull, J., & White, A. (1998). Value at Risk When Changes in Market Variables are not Normally 

Distributed. Journal of Risk Vol.1 , 47-61. 

Longin, F. (1996). The Asymptotic Distribution of Extreme Stock Market Returns . Journal of 

Business Vol.67 , 383-408. 

Maan, I., Mwita, N., & Odhiambo, R. (2010). Modelling the Volatility of Exchange Rates in the 

Kenyan Markets. Journal of Business Management Vol.4 , 1401-1408. 

Manganelli, S., & Engle, R. (2001). Value at Risk Models in Finance,European Central Bank 

Working Paper Series, Frankfurt. Modelling. Mathematical Finance Vol.14 , 75-102. 



European Journal of Statistics and Probability 

Vol.2,No.3.pp. 23-33, December 2014 

             Published by European Centre for Research Training and Development UK (www.eajournals.org) 

33 
ISSN 2055-0154(Print), ISSN 2055-0162(Online) 
 

Neftci, S. (2000). Value at Risk Calculations, Extreme Events and Tail Estimation. Journal of 

Derivatives Vol.7 , 23-38. 

Nelson, D. (1991). Conditional Heteroscedasticity in asset returns: A new Approach. 

Econometrica Vol.59 , 347-370. 

Posedel, P. (2005). Properties and Estimation of GARCH(1,1) Model . Metodolo S Ki Zvezki Vol.2 

, 243-257. 

Sandmann, G., & Koopman, S. (1998). Estimation of Stochastics Volatility Models Via Monte 

Carlo Maximum Likelihood . Journal of Econometrics Vol.87 , 271-301. 

Schwartz, G. (1978). Estimating the Dimension of a Model . Annals of Statistics Vol6. , 461-464. 

Smith, W., Clifford, C., & Stykes, W. (1990). Managing Financial Risk . New York, Harper and 

Row.  

 

 


