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ABSTRACT: Experimental Wolbachia infections can reduce Plasmodium number in 

Anopheles mosquitoe in the laboratory, however, natural Wolbachia infections in field 

anophelines has never been reported. There is evidence of Wolbachia infections in Anopheles 

gambaie in Burkina Faso, West Africa. We modify the the malaria transmission model with 

two delays by including the effect of Wolbachia. By analyzing the characteristic equations of 

disease free and endemic equilibrium, we obtain the basic reproduction number R0 and prove 

the stability of the steady states. We were able to show that careful use of Wolbachia can 

curtail the spread of malaria in area where R0 is not higher enough. Otherwise, Wolbachia 

either eradicates the mosquito population, or has a little effect the spread of malaria. We 

suggest that the development of Wolbachia-based malaria control method can be a very 

effective in conjunction with other methods such as reduction of breeding sites. 
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INTRODUCTION 

Malaria 

Malaria is a mosquito-borne disease caused by Plasmodium parasite,which is transmitted 

through the bites of an infected mosquito. In 2017, the World Health Organization report 

reveals estimations of 216 million malaria cases and 445 thousand deaths due to malaria were 

registered world wide in 2016. However, the most malaria cases and deaths were shared by the 

WHO Africa region, which account for 90% of cases and 91% death. The most predominant 

malaria parasite in the WHO Africa region is Plasmodium falciparum, accounting for 99% of 

malaria cases in 2016 [1]. Malaria is a mosquito-borne disease which is due to four species of 

the genus plasmodium, namely, Plasmodium falciparum, Plasmodium vivax, Plasmodium 

malariae, and Plasmodium ovale. These parasites are transmitted to the human host through a 

bite by an infected female anopheles mosquito [12]. Sporozoites are injected into a human host, 

which are carried through the blood to the liver within 30 min. They invade hepatocytes and 

undergo a process of asexual replication (exoerythrocytic schizogony) to give rise to 10-40 

thousand merozoites per sporozoite. Up to this point, the infection is nonpathogenic and 

clinically silent. After about 7-9 days, the liver schizonts rupture to release the merozoites into 

the blood and clinical symptoms, such as fever, pain, chills, and sweat, may develop. Each 

merozoite invades an erythrocyte and divide to form an erythrocytic schizont containing about 

16 daughter merozoites . These merozoites either reinfect fresh erythrocytes, giving rise to 

cyclical blood-stage infection with a periodicity of 48-72h, depending on the plasmodium 

species, or differentiate into sexual transmission stages called gametocytes. When a second 

mosquito bites the infected human, the gametocytes are ingested, giving rise to extracellular 
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gametes. In the mosquito midgut, the gametes fuse to form a metile zygote (ookinete), which 

penetrates the id-gut wall and forms an oocyst, within which meiosis takes place and haploid 

sporozoites develop. These sporozoites migrate to salivary glands. The incubation period 

within the mosquito may least 8-22 days. The variation in the length of time is due to the 

invironmental temperature. For P. falciparum, the average time is 12 days. Malaria can also be 

transmitted through a blood transfusion, organtransplantation and transplacental malaria (i.e. 

congenital malaria) can also be significant in population which are partially immune to malaria 

[12]. Current insecticide-based control strategies to stop malaria transmission by targeting the 

mosquito vector are limited by the rapid spread of insecticide resistance [13]. In addition, these 

interventions target only indoor feeding and resting populations, with the use of insecticide-

treated bednets and the application of indoor residual sprays, respectively. Recent attempts to 

control transmission have proved unsustainable, so a new approach is needed. 

Wolbachia 

Wolbachia pipientis is an intracellular maternally inherited bacterial symbiont of invertebrates 

that is very common in insects, including a number of mosquito species [18,19]. It can 

manipulate host reproduction in several ways, including cytoplasmic incompatibility (CI), 

where by certain crosses are rendered effectively sterile. Females that are uninfected produce 

infertile eggs when they mate with male that carry Wolbachia, while there is a ’rescue’ effect 

in Wolbachia-infected embryos such that infected females can reproduce successfully with any 

males. Therefore uninfected females suffer a frequency-dependent reproductive using this 

powerful mechanism [20,21]. 

A strain of Wolbachia called wMelPop has been identified that over-replicates in somatic 

tissues and roughly halved the lifespan of laboratory Drosophila melanogaster [22]. A 

transinfection of wMelPop from Drosophila into the mosquito Aedes aegypti also leads to a 

similarly shortened lifespan in the lab, as well as inducing strong CI, which has made it a very 

promising candidate for the development of a new strategies for controlling mosquito-borne 

diseases [23]. All mosquito-borne pathogens require an extrinsic incubation period before they 

can be transmitted that is relatively long ( 9 days for malaria) compared to mean mosquito 

lifespan in the field; therefore, a reduction in the number of old individuals in the population 

will reduce disease transmission [24,25]. 

Indeed, while Wolbachia strains have been detected in many insects, attempts to identify these 

bacteria in field Anophele have failed, promoting the belief that these mosquitoes are not 

natural hosts for wolbachia [3]. Taken together with the report in P.gallinaceum development 

in wMelPop-infected Ae. aedypti, the data increase the desirability of creating stably wMelPop 

transinfection in important malaria vectors. The potential combination of lifespan shortening 

and direct inhibition of Plasmodium development in the mosquito would represent a very 

attractive control strategy, since both of these phenotypes are critical components of malaria 

vectorial capacity. Though lifespan reduction and Plasmodium inhibition can each 

substantially reduce the vectorial capacity of a mosquito population, together they act 

synergistically to reduce transmission. Depending on the scale of lifespan reduction that would 

be observed under field conditions, which is as yet unknown, the Plasmodium inhibition effect 

could dramatically increase the efficacy of the wMelPop infection in reducing malaria 

transmission [5]. 

Other wolbachia strain might also show malaria inhibition effects, particularly if they reach 

high somatic densities and/or induce large-scale immune stimulation. Despite wAlbB and 
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wMelPop suppresing immunity in older Anophele gambaie both these strain reduced the levels 

of the human malaria parasite Plasmodium falciparum within the mosquito [4,8]. If other 

wolbachia strains can be identified which also inhibit Plasmodium transmission, they would 

represent an attractive alternative to wMelPop if they do not shorten lifespan to the same extent, 

since they are therefore likely to have much lower fitness costs. Only the wMelPop strain has 

to date been found to produce a strong life-shortening phenotype [5]. Several studies present 

evidence that wolbachia is likely to provide some protection against human malaria 

plasmodium parasites if stable transinfection of Anopheles is achieved. The effect of the 

wMelPop strain on Plasmodium.gallinaceum was tested as this space of malaria parasite is 

known to be able to infect Ae. aegypti mosquitoes in the laboratory. The P. gallinaceum 

oocystload was reduced by 67-88% for wMelPop infected Ae. aegypti mosquitoes compared 

to wolbachiauninfected mosquitoes seven day after feeding on an infected chicken (Moreira et 

al.2009). In An. gambaie females transiently infected with wMelPop using adult injection, 

means Plasmodium berghei levels were reduced by 75-84% (Kambris et al.2010) although this 

combination of vector/parasite does not occur in nature, these results do highlight the ability 

of Wolbachia to significantly reduce the level of malaria parasites in A nopheles mosquitoes 

[2]. There are two ways in which Wolbachia-infected mosquitoes may be inferior malaria 

vectors: 

First, Adult mosquitoes experience a high daily mortality rate resulting in only a small 

parcentage of the total population actually surviving along enough to transmit malaria 

(Brownstein et al. 2003) therefore a reduction in the daily survival rates is likely to remove a 

large proportion of the mosquito population capable of transmitting malaria [6]. 

Second, Recent proof that Wolbachia infections of anopheles vectors limit the development of 

plasmodium parasites that cause malaria [5,6,10] make these bacteria a particularly attractive 

tool for the control of both endo-and exophagic population of malaria tranmsitting anophelines. 

Figure 1: Transfer diagram of the model [2.3] 

We shall set up a model that takes account of these changes in vector fitness and transmission 

potential. 

Modelling 
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We set up a model to study how introducing Wolbachia into An. gambaie population might 

affect the spread of malaria disease. In it, models for Wolbachia and malaria infection are 

superposed on an underlying model for the dynamic of stage structure insect population. In the 

absence of the density-dependent effect, the insect population may be modelled by 

  (2.1) 

Here, N is the population density of adult female insects, recruitment of offspring to the adult 

insect population is delayed by the development time Tµ, µ is the per capita death rate of adult 

mosquitoes, d is the per capita death rate of pre-adult mosquitoes, and B is the per capita birth 

rate. Hence, β is the per capita recruitment rate, or the rate of production of adult female 

mosquito for each adult mosquito alive at a time Tµ earlier, taking into account density 

independent deaths from the pre-adult stage. Density-dependent effects are then assumed to 

operate at the larval stage, and the model is modified as in Gurney et al.(1980) to give 

  (2.2) 

where Nˆ(t) = N(t − Tµ), and F is a decreasing function with F(0) = 1, and F(x) → 0 as x → 

∞.The model will be parameterised as Dye(1984) did, who took F(x) = e(−hxk), as we shall do 

when an explicit form is necessary. Note that Dye interpreted N as the size of a population of 

mosquitoes (in a particular temple complex in Bangkok), whereas we interpret it as a 

population density; this change will require us to make a correction to Dye’s value of h to 

account for the area of the temple complex. 

Based on delayed Ross-Macdonald model of malaria transmission included wolbachia-infected 

mosquitoes [6] . Now, we first present the model that we will use to study the effect of 

wolbachia on the malaria transmission. The model is an extension of the four delayed equations 

model of malaria originally discussed by Macdonald [13] and Anderson and May [16] adapted 

to include a Wolbachia-carrying mosquitoes population complete with the impact of reducing 

lifespan on the population dynamics. We then analyzed the equilibrium point and their stability 

for the two cases in which the time delays are zero and time delays are nonzero. We then 

discuss the method for numerical solution of these equation using Matlab. 

We make the following modelling assumption: 

-Firstly, We assume that the vector population keeps at a constant number before and after 

introducing Wolbachia. This is because previous experiments show that the hatch rate of 

mosquitoes depends on the environmental conditions such as climate, amount of breeding sites, 

and so on. For example, if they were to eliminate all larvae, pupae, and adult Anophele gambiae 

at once from a site, its population could recover two weeks later as a result of egg hatching 

following rainfall or the addition of water to containers harboring eggs. Therefore we assume 

that the egg supply is always sufficient but the environmental capacity determines the vector 

population. 

-Second, We assume that the proportion of Wolbachia-infected mosquitoes in the whole 

population has arrived to its equilibrium. If it declines to 0, Wolbachia has no effect on the 

vectors, and the case is the same as the model we have in section 3.1. If Wolbachia is spread 

to fixation  ,from our earlier analysis, we assume the range of  is between 0.53 and 1. -

Wolbachia is a maternally transmitted [3], with transmission probability v; we shall take v = 1. 
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Other mechanisms of transmission are so rare that they may be neglected. When a 

Wolbachiainfected male mosquito fertilizes an uninfected egg, whether it is uninfected because 

its mother was uninfected or because its mother was infected but vertical transmission failed, 

there is a certain probability u that the zygote dies through cytoplasmic incompatibility [3]; we 

shall usually take u = 1. Wolbachia may alter the fecundity , longevity and malaria transmission 

of it host [6]. Mosquitoes do not become immune to Wolbachia; no case of mosquito immunity 

to Wolbachia has been reported. 

-Mosquitoes with and without Wolbachia are equally likely to become infected with malaria; 

although they may differ in their ability to transmit it. 

-Finally, we denote the mortality rate of Wolbachia-infected and Wolbachia-free mosquitoes 

by µmw and µmn, respectively; and we assume that its value satisfies µmn 6 µmw 6 2µmn. This 

assumption is based on laboratory Experiments. However, the laboratory provided a good 

environment for mosquitoes live, and we expect the life span of mosquitoes in wild to be 

shorter as a result of limited source of food, existence of predators and so on. Therefore, 

Wolbachia non-carriers have a shorter lifespan than the ones in laboratory, and the life-

shortening effect of Wolbachia is not as strong as it was observed in lab. 

Based on the above assumptions, we separate the mosquito population into two groups: 

Wolbachia carriers and Wolbachia non-carriers mosquitoes. We want to look at the dynamics 

of infectious mosquitoes within each group, and see for different proportions of 

Wolbachiainfected mosquitoes, how the infectious human number will change. 

The change of exposed and infectious humans depends on the infectious number of both 

Wolbachia-infected and uninfected mosquitoes. We assumed the Wolbachia level in 

mosquitoes has already reached to a fixed number before malaria is introduced into the 

human population, therefore the factors ) and (1

 ) represent the proportion of Wolbachia-infected and non-carriers 

mosquitoes who do not have the disease(i.e.,who are not infected or infectious) at time t. For 

simplicity, assume the total populations of humans are constants and denoted by Nh. The 

mosquitoes are divided in two kinds, Wolbachia carriers mosquitoes denoted by Nmw(t) and 

Wolbachia no-carriers mosquitoes denoted by Nmn given by Nmn(t) = Nm(t)−Nmw(t). Let Eh(t) 

and Ih(t) represent the number of exposed and infectious humans. Emw(t) and Imw represent the 

number of exposed and infectious Wolbachia-infected mosquitoes, and Imn(t) and Emn(t) are the 

corresponding numbers for Wolbachia non-carriers. Let a and ˆa be the rate of biting on 

humans by a single Wolbachia-free and carrying mosquito (number of bites per unit time), 

respectively. Then the number of bites on humans per unit time per human is  for 

Wolbachia-carrying mosquito). Let b be the proportion of infected bites on humans that 

produce an infection. 

The model contains two time delays for transition from infected to infectious stage in humans 

(τ1) and from infected to infectious stage in mosquitoes (τ2). The equations of the model are: 
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(2.3) 

Let µh, µmn and µmw represent the mortality rate in the human population, the mortality rates in 

the non-Wolbachia and Wolbachia-carrying mosquito populations, r is the recovery rate of 

infectious humans from the disease. 

Here, βZˆ
mn and βZˆ

mw are equivalent to the term in (2.2), and represent the basic recruitment 

rate of Wolbachia-free and Wolbachia-infected adults, in the absence of density-dependent 

effects. The un-delayed form obtained by keeping track of the number of infected and 

uninfected offspring are given by 

 . (2.4) 

The arguments of these are as follows. First, offspring infected by Wolbachia are only produced 

by Wolbachia-infected mothers Nmw producing offspring that survive to maturity (in the 

absence of density-dependent effects) at a rate βˆ, of which a fraction v are themselves infected; 

hence, βZmw = βvNˆ 
mw, or Zmw = vφNmw. Second, offspring uninfected by Wolbachia are 

produced both by Wolbachia-uninfected mothers Nmn producing offspring at rate β, all of whom 

are uninfected, and by Wolbachia-infected mothers producing offspring at rate βˆ, a fraction 1 

− v of which are uninfected, which gives potential offspring βZmn = βNmn + β(1 − v)Nmw. But 

we then have to take into account that these potential offspring may be inviable (with 

probability u) if their father is infected by Wolbachia, because CI. Assuming random mating, 

the probability of invability is therefore uNmw/(Nmn + Nmw), which leads to the first equation of 

(2.4). The terms in F in system (2.3) represent the competition between all larvae, whether 

infected either Wolbachia or not. 

The first equation of the sytem (2.3) represents the rate of change of the infected human 

population. The uninfected human Nh − Eh(t) − Ih(t) will produce new infectious humans 

)] at time t. The term (

 

τ1)][Nh − Eh(t − τ1) − Ih(t − τ1)]e
−(r+µh)τ1 represents the rate at which humans move from the 

infected to the infectious stage after a latency period of time τ1. The factor e−µhτ1 allows for the 
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death rate of humans during the period τ1. The term muhEh(t) represents the death rate of 

infected humans at time t. 

Second equation of the system represents the rate of change of infectious human population. 

The term (  again 

represents the rate at which infected humans move to the infectious stage after a delay time τ1. 

The term −µhIht represents the death number of infectious humans at time t and the term −rIht 

represents the recovery number of infectious humans from the disease. 

Fourth and seventh equations of the system represents the rate of change of exposed for 

infected non-Wolbachia and Wolbachia -carrying mosquitoes population,respectively. In third 

equation (  )] and in fifth (

 

Imw(t)] represent the rate at which non-Wolbachia and Wolbachia-caryying mosquitoes, 

respectively, become exposed by biting an infectious human. The factor 

[(Nm−Nw)−Emn(t−)−Imn(t)] and [Nw −Emw(t)−Imw(t)] represent the number of the non-Wolbachia 

and Wolbachia-carriers , respectively, without disease at time t. 

The term  and 

 

τ2)[Nw − Emw(t − τ2) − Imw(t − τ2)]e
−µmwτ2 represents the rate at which non-wolbachia and 

wolbachia-carriers mosquitoes, respectively, move from the exposed to infectious stage after 

a latency period τ2. The factor e−µmnτ2 and e−µmwτ2 allow for the death rate of all both mosquitoes 

during the period τ2. The term −µmnEmn(t) and −µmwEmw(t) represent the death rate of infected 

non-Wolbachia and Wolbachia-carrying mosquitoes, respectively, at time t. 

The fifth and the eighth equations represents the rate change of the non-Wolbachia and 

Wolbachia-carrying infectious mosquito population respectively.The term (

 

Nw)−Emn(t−τ2)−Imn(t−τ2)]e−µmnτ2 and ( 

again represent the rate at which non-

Wolbachia and Wolbachia-carrying mosquitoes, respectively, move from the infected to 

infectious stage after a time τ2. The term −µmnImn(t) and −µmwImw(t) represent the death rate of 

non-Wolbachia and Wolbachia-carrying mosquitoes, respectively, at time t. 
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Table 1: Parameter descriptions and Values for models. The Wolbachia- related 

parameters are for the wMelpop strain. 

Parameter Description Estimated value Source 

m  Ratio of mosquitoes to humans 7.7 [6] 

a  Biting rate on human per Wolbachia-free mosquito 0.5day− [6] 

b  Infected mosquito to human transmission effeciency 0.4 [6] 

c  Infected human to Wolbachia-free mosquito 

Efficiency 

0.79 [6] 

µh  Human death rate by Malaria 0.333day−1 [14] 

µmn  Per capita mortality rate of Wolbachia-free 

mosquito 

0.15day−1 [6] 

aˆ  Biting rate on human per Wolbachia-carrier 

mosquito 

0.565day−1 [6] 

cˆ  Infected human to Wolbachia-carrier mosquito 

Efficiency 

0.07day−1 [6] 

µmw = δµmn Per capita mortality rate of Wolbachia-carrier 

mosquito 

0.175day−1 [6] 

r  Per capita human recovery rate 0.02 − 0.05day−1 [6] 

τ1  incubation period for P.falciparum in human 9.5day [17] 

τ2  Length of the latent period for mosquito 12day [6] 

 

Analysis 

We shall always assume (for a nontrivial problem) that the mosquito population has the 

potential to survive in the absence of Wolbachia, so that its maximum per capita birth rate β 

exceeds its per capita death rate µmn,β > µmn then the system (2.3) has a base-line 

(malaria and Wolbachia-free) steady state given by (Eh,Ih,Nmn,Emn,Imn,Nmn,Emw),Imw = 

0), where ) is uniquely defined and positive since F is 

a 

decreasing function with F(0) = 1,F(x) → 0 as x → ∞. Guided by the base line steady state, we 

non-dimensionalise the variables in the model as follow: 

, , eh = Eh/Nh, ih = Ih/Nh,  

zmn = Zmn/Nmn∗ , 

zmw = Zmw/Nmn∗ , 

emn = Emn/Nmn∗ 

, emw = Emw/Nmn∗ , 

imn = Imn/Nmn∗ , imw = Imw/Nmn∗ ,

 m = Nmn∗ /Nh 

(3.1) 

Then eh(t), emn(t) and emw(t) are the proportion of infected but not yet infectious humans, 

Wolbachia-free and Wolbachia-carrying mosquitoes at time t, respectively, ih(t), imn(t) and 

imw(t) are the proportion of infectious humans,Wolbachia -free and Wolbachia-carrying 
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mosquitoes at time t, respectively, m is the number of female mosquitoes per human ( 

where  is the whole Wolbachia-free mosquito population and Nh is the human population) 

We obtain the following delayed model: 

 

where 

  (3.3) 

Now, the model in terms of proportions (3.2) are defined in subset Ω  where 

Ω = {eh,ih,emn,imn,emw,imw : 0 6 eh + ih 6 1,0 6 emn + imn 6 nmw 6 1,0 6 emw + imw 6 nmw 

6 1} the hat denote evalution at t − τ, and we have defined the following non-dimensional 

parameter combinations: 

 φ = β/β,ˆ δ = µmw/µmn, α = β/µmn, τ = µmnTµmn. (3.4) 

The function f defined by ) is monotonic decreasing with f(0) = 1,f(1) = 1/α 

and f(x) → 0 as x → ∞. The parameter φ and δ represent the birth (fecundity) and death rate of 

Wolbachia-infected compared to uninfected mosquitoes, and so φ 6 1,δ ≥ 1 and α > 1 is the 

non-dimensional birth rate for mosquitoes in a Wolbachia-free system. 

Mosquito-Only System 

Since the total densities of both Wolbachia-uninfected and Wolbachia-infected mosquitoes are 

independent of any of the other population densities, the system can be decoupled and the 

equations for the mosquito densities can be studied in isolation. We shall initially neglect delay 

effects, and return to discuss these later. With these assumptions, the equations become 

 
 (3.5) 
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where zmn and zmw are given by Eq.(3.3). Here, we consider the special but realistic case (u,v) = 

(1,1),α > 1 (since otherwise the Wolbachia-free mosquitoes go to extinction), α phi > δ (so that 

Wolbachia-infected mosquitoes go to extinction), and φ 6 1 6 δ (so that Wolbachia has fitness 

costs in fecundity and survival). The system has steady states E0 = (0,0) and E1 = (1,0),E2 = 

(0,k), where k = (1/φ)f−1(δ/αφ), and E3 = kδ(φ,δ − φ)/(δ(δ − φ) + φ), a co-existence state in the 

positive quadrant.The steady state E0 is unstable, E1 and E2 are stable, and E3 is a saddle point. 

The system as a whole will therefore lead to bistability whenever cytoplasmic incompatibility 

and maternal transmission are complete, (u,v) = (1,1). Which equilibrium is reached depends 

on the initial populations of both types of mosquitoes, with two basins of attraction separated 

by a separatrix. 

Let us now consider the delay terms in equations. Looking for solutions as multiple of esτ near 

the semi-trivial equilibria E1 = (1,0) and ), we obtain transcendental equations 

satisfied by the eigeinvalues s, since the delay terms contribute factors to the equations 

(Maynard Smith 1974; Britton 2003). The Jacobian matrix J at E1 is triangular and at E2 

diagonal, so that in both cases the equation for s may immediately be factorised. The 

eigenvalues at (1,0) satisfy s = −1 + (1 + αf0(1))e−sτ or s = −δ + φe−sτ. 

For each of these equations, we shall consider how solutions s move in the complex plane as τ 

increase from zero, where s = αf0(1) < 0 for the first and s = −δ + φ < 0 for the second. Because 

of the exponential terms, each equation will define multiple branches of s as τ increases, and 

we wish to determine whether any branch crosses the imaginary axis. If so, then instability 

occurs for some sufficiently large τ, but if not, then instability does not occur for any τ. For the 

second equation, s = 0 is not a solution for any τ, so a branch of solution can only cross the 

imaginary axis away from the origin. Let s = u + iv; then u = −δ + φe−uτcosvτ, v = φe−uτsinvτ, so 

(u + δ)2 + v2 = φ2e−2uτ, and there is no solution s = u + iv with u > 0 if φ2 < δ2 + v2, which is true 

in the biologically realistic case φ < δ. A similar argument for the first equation shows that 

instability is only possible if α|f0(1)| > 2, or in dimensional 

variables. For (0,n ), eigenvalues are given by s = −1 and the roots of 

, and instability is only possible if 

, 

or  in dimensional variables. A calculation with Dye’s parameter 

values(Dye 1984), and with his function F(x) = exp(−hxk), show that neither (  0) nor 

) is destabilised by the delay terms whatever the value of Tµmn, so that these are the 

stable states of the mosquito-only subsystem. 

It follows that the only stable (and therefore biologically interesting)spatially uniform steady 

states of the system a whole must involve either Wolbachia-infected or uninfected mosquitoes, 

but not both. In the spatially uniform case it is therefore justifiable to proceed by studying two 

four-dimensional subcases of the complete system (3.2): the system obtained at the 

Wolbachiafree equilibrium and the system obtained at the completely Wolbachia-infected 

equilibrium. The spatially non-uniform case may be analysed by adding diffusion terms to the 

system (3.5), 

, 
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where D is mosquito diffusion coefficient and solving the resulting partial differential 

equations numerically (using pdepe, MATLAB’s built-in solver for parabolic and elliptic 

PDEs). 

 Wolbachia-free System 

The set of equations with the mosquito population at the Wolbachia-free equilibrium is given 

by 

 
 (3.6) 

To deduce the threshold for the disease to establish in the human, we have to analyze the 

existence of equilibria and their stability for model (3.6). Find the basic reproduction R0 which 

may be read as the average number caused by a single infectious subject in a wholly susceptible 

population. At the beginning of the epidemics, to have malaria spread in both vector and human 

population, the number of infectious hosts and vectors need to increase. If either of them fails, 

the disease cannot persist in the population. 

From the system (3.6), when an epidemic occur, we have 

  (3.7) 

or 

abmimn(t − τ1)(1 − eh(t − τ1) − ih(t − τ1))e−(r+µh)τ1 − rih(t) − µhih(t)|t=0 > 0 

(

3.8) −µmnτ2 acih(t − τ2)(1 − emn(t − τ2) − imn(t − τ2))e − µmnimn(t)|t=0 > 0 

At the beginning of an epidemic, the number of non-susceptible hosts and vectors can be 

assumed negligible and 

Nh − Eh(0) − Ih(0) ≈ Nh =⇒ 1 − eh(0) − ih(0) ≈ 1 and 

Nm − Emn(0) − Imn(0) ≈ Nm =⇒ 1 − emn(0) − imn(0) ≈ 1, 

Also the number of infectious hosts at time t and t−τ1 is almost the same, so is the number of 

infectious vectors at time t and t − τ2 

Ih(t) ≈ Ih(t − τ1) =⇒ ih(t) =⇒ ih(t − τ1) and 

Imn(t) =⇒ Imn(t − τ2) =⇒ ımn(t) ≈ imn(t − τ2) 
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Then the system (3.8) becomes 

(abmimn(t)e−(r+µh)τ1 > (r + µh)ih(t) 

acih(t)e−µmnτ2 > µmnimn(t) 

Multiplying the two inequalities, we have 

(3.9) 

a2bcmimn(t)ih(t)e−(r+µh)τ1−µmnτ2 > µmn(r + µh)ih(t)imn(t) 

Equivalent to 

(3.10) 

  (3.11) 

The above inequality is the condition for the disease to spread. So the expression of the basic 

reproduction number has the form: 

  (3.12) 

An heuristic derivation is as follows. Take a primary case with a recovery rate of r, the average 

time spend in an infection state is 1/r. During this time, since the incubation period in humans 

has duration τ1, the average number of mosquito bites received from m susceptible mosquitoes 

each with a biting rate a give a total of acme−(r+µh)τ1/r+µh mosquitoes infected by the primary 

human case. Each of these mosquitoes survives for an average time 1/µmnand with another 

incubation period τ2in mosquitoes, makes a total of abe−µmnτ2/µmn infectious bites. 

The total number of secondary cases is thus a2bcme−(r+µh)τ1−µmnτ2/µmn(r + µh), which is the basic 

reproduction number Ro. Notice that a appear twice in the expression since the mosquito biting 

rate controls transmission from humans to mosquitoes and from mosquitoes to humans. Then 

we have the following results on the existence of equilibria. 

Lemma 3.2.1 In the first quadrant,(3.6) has at most two equilibria. More precisely, 

(i) If R0 < 1, then system (3.6) has a unique trivial equilibrium E1(0,0,0,0); 

(ii)If R0 > 1, then the system (3.6) has two equilibria, the trivial equilibria E1(0,0,0,0) and 

the positive equilibrium , where 
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(3.13) 

The endemic equilibrium E2 is only biologically meaningful for R0 ≥ 1. It coincide with the 

disease-free equilibrium E1 at R0 = 1, and this is therefore a bifurcation point. Since R0 defined 

by (3.12) and the steady state values given in (3.13) are all delayed dependent, increasing the 

delay values will decrease to make it equal to 1 and will make the positive steady state to 

coincide with the trivial equilibrium. Thus, Hopf bifurcation does not occur when the delay 

increases as there are no bifurcating periodic solution due to the increase of the delays value. 

Next we discuss the stability of E1(0,0,0,0) and ). First we consider the 

linearized system of (3.4) at E1(0,0,0,0): 

 (3.14) The characteristics 

equation associated with system (3.14) takes the form 

λ3 + (r + 2µh + µmn)λ2 + (µ2h + rµh + rµmn + 2µhµmn 

 − a2bcme−(r+µh)τ1−µmnτ2
e−(τ1+τ2)λ)λ (3.15) 

+ µh(rµmn + µhµmn − a2bcme−(r+µh)τ1−µmnτ2e−(τ1+τ2)λ) = 0 

Let 

G(λ,τ1,τ2) = λ3 + (r + 2µh + µmn)λ
2 

 + (µ2h + rµh + rµmn + 2µhµmn − a2bcme−(r+µh)τ1−µmnτ2e−(τ1+τ2)λ)λ (3.16) 

+ µh(rµmn + µhµmn − a2bcme−(r+µh)τ1−µmnτ2e−(τ1+τ2)λ) 
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It is clear that G(λ,τ1,τ2) is an analytic function. G(0,τ1,τ2) = µhµmn(r + µh)(1 − R0), and 

G(λ,0,0) = λ3 + (r + 2µh + µmn)λ
2 + (µ2

h + rµh + rµmn + 2µhµmn − a2bcm)λ 

(3.17) 

+ µh(rµmn + µhµmn − a2bcm) 

To discuss the distribution of the roots of the transcendental (3.15, we consider three cases. 

(i) If R0 < 1, then G(0,τ1,τ2) > 1 and Gλ
0(λ,τ1,τ2) > 0 for all positive λ,τ1 and τ2. Hence,(3.15) 

has no zero root for positive τ1 and τ2. Now, we claim that (3.15) has a pair of purely imaginary 

roots ±ωi,ω > 0 for some τ1 and τ2 . Then ω must be a positive root of ω6 + (r + 2rµh + 2µ2h 

+ µ2mn)ω4 + (µ4h + 2rµ3h + r2µ2mn + r2µ2h + 2rµhµmn2 + 2µ2hµ2mn 

−(r+µh)τ1−µmnτ2)2)ω2 + µ2h((rµmn + µhµmn)2 − (a2bcme−(r+µh)τ1−µmnτ2)2) = 0(3.18) − 

(a2bcme 

However, it is easy to see that (3.18) does not have nonnegative real roots when R0 < 0. Hence, 

(3.15) doesn’t have any purely imaginary roots. On the other hand, One can easily get that the 

roots of G(λ,0,0) all have negative real parts roots when R0 < 1. By the implicit function 

theorem and the continuity of G(λ,τ1,τ2), we know that all roots of (3.15) have negative real 

parts for positive and, which implies that E1(0,0,0,0) is stable. 

(ii) If R0 = 1, then G(0,τ1,τ2) and G0
λ(λ,τ1,τ2) for λ ≥ 0,τ1 > 0 and τ2 > 0. Hence, (3.15) has a 

simple zero root τ1 and τ2 and non positive real root for all positive and. Using a similar 

argument as in (i), we can obtain that except a zero root, all roots of (3.15) have negative real 

parts for positive τ1 and τ2. Thus, E1(0,0,0,0) is a degenerate equilibrium of codimension one 

and is stable except in one dimension. 

(iii) If R0 > 1, then G(0,τ1,τ2) < 0 and G0
λ(λ,τ1,τ2) > 0 for λ ≥ 0,τ1 > 0 and τ2 > 0. Hence, 

(3.15) has a positive real root for all positive τ1 and τ1. On the other hand,G(λ,0,0) has at least 

one negative real root λ . From the implicit function theorem, (3.15) has a root with negative 

real part for small τ1 and τ2. Therefore, E1(0,0,0,0) has both stable and unstable manifold for 

some τ1 and τ2. To determine the unstable manifold of (0,0,0,0) when R0 > 1, we discuss the 

stability of the other equilibrium ) when R0 > 1. 

Remark 3.2.2 We would like to point out, as suggested by one the referees, that the stability 

of the trivial equilirium E1(0,0,0,0) can also be analyzed via the real eigenvalues of its 

Jacobian matrix by using a theorem on page 92 in Smith (1995). 

The the linearized system of (3.4) at  
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(3.19) 

From the above system we change variables in term , 

. 

The characteristic equation associated with system (3.19) takes the form 

 λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = 0 (3.20) 

where 

A1 = r + 2µh + 2µmn + Q3 + Q, 

A2 = µ2h + µ2mn + rµh + 2rµmn + 4µhµmn + Q3(r + µh + µmn) + Q(2µmn + r − 

re−(r+µh)τ1e−λτ1) 

+ QQ3 − Q1Q2e−((r+µh)τ1+µmnτ2)e−λ(τ1+τ2), 

A3 = rµ2mn + 2µhµ2mn + 2µ2hµmn + 2rµhµmn + Q3(µ2h + rµh + rµmn + 2µhµmn) 

−((r+µh)τ1+µmnτ2)e−λ(τ1+τ2)) + QQ3(r + µh 

+ µmn (3.21) + Q(µ2mn + 2rµmn + 2µhµmn − 2rµmne 

− re−((r+µh)τ1+µmnτ2)e−λ(τ1+τ2)) − Q1Q2e−((r+µh)τ1+µmnτ2)e−λ(τ1+τ2), 

A4 = µ2hmu2mn − rµhmu2mn + Q3(µh2mumn + µhmumn) + Q(rµ2mn + µhmu2mn − 

rµ2mne(r+µh)τ1e−λτ1) 

+ QQ3(rµmn + µhmumn − rµmn)e−(r+µh)τ1e−λτ1 − 

Q1Q2µhmumne−((r+µh)τ1+µmnτ2)e−λ(τ1+τ2) For any non negative τ1 and τ2, we have the 

following proposition. 

Proposition 3.2.3 For any endemic equilibrium  of the system with 

characteristic equation (3.20), one always has 

 A1 > 0; A2 > 0; A3 > 0; A4 > 0; A1A2 − A3 > 0; 

  (3.22) 
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It is clear that A1 > 0, and known conditions, according to Routh-Hurwitz criteria [11], the 

proof of the proposition is staightforward. 

Case 1. When τ1 = τ2 = 0, as a results of proposition 1 and Hurwitz criterion, all roots of the 

characteristic equation (3.20) have negative real parts and the endemic equilibrium  of the 

(3.6) is stable when τ1 = τ2 = 0. 

Case 2. When τ1 > 0,τ2 = 0, the characteristic equation (3.20) becomes 

 λ4 + A01λ3 + A11λ2 + A21λ + A31 = e−λτ1(T11λ2 + T21λ + T31 (3.23) 

Where 

A01 = r + 2µh + 2µmn + aci∗+abmi∗mn, 

A11 = µ2h + µ2mn + rµh + 2rµmn + 4µhµmn + acrih∗ + acµhih∗ + acµmni∗h + 

abmri∗mnabmµhi∗mn + 2abmµmni∗mn + a2bcmi∗hi∗mn, 

A21 = rµ2mn + 2µhµ2mn + 2µ2hµmn + 2rµhµmn + acih∗µ2h + aci∗hrµh + aci∗hrµmn + 

2aci∗hµhµmn 

+ abmi∗mnµ2mn + 2abmi∗mnrµmn + 2abmµhµmni∗mn + a2bcmi∗hi∗mn + 

a2bcmµmnih∗i∗mn, 

A31 = µ2hµ2mnrµhµ2mn + acµ2hµmnih∗ + acµhµmni∗h + abmrµ2mni∗mn + 

abmµhµmn2i∗mn 

 + a2bcmrµmni∗hi∗mn + a2bcmµhµmni∗hi∗mn, (3.24) 

T11 = (abmri∗mn + a2bcm − a2bcm(e∗h(1 − imn∗) + ih∗(1 − i∗mn) + e∗mn(1 − i∗h) 

+ i∗mn(1 − e∗h))e−(r+µh)τ1, 

T21 = (2abmrµmni∗mn + a2bcmri∗hi∗mn + a2bmcµh + a2bcmµmn − (a2bmcµh + 

a2bcmµmn) 

(e∗h(1 − i∗mn) + i∗h(1 − i∗mn) + e∗mn(1 − ih∗) + imn∗(1 − e∗h))e−(r+µh)τ1, 

T31 = abmrµ2mni∗mn + a2bcmrµmni∗hi∗mn + a2bcmµhµmn − a2bcmµhµmn(e∗h(1 − imn∗) 

+ i∗h(1 − i∗mn) 

+ e∗mn(1 − i∗h) + i∗mn(1 − e∗h))e−(r+µh)τ1 

By the implicit function theorem and the continuity of the left-hand side function of (3.20), all 

roots (3.23) have negative real parts for small τ1. Notice that the condition R0 > 1 is equivalent 

to 

  (3.25) 

Furthermore, we claim that (3.23) does not have any non negative real roots for any τ1 > 0. 

Rewrite (3.23) by moving the positive terms from the right-side to the left-hand side. The 

rewritten (3.23) takes the form 
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 λ4 + A01λ3 + Ag11λ2 + Ag21λ + Ag31 = e−λτ1(Tf11λ2 + Tf21λ + Tf31) (3.26) 

where 

Ag11 = A11 − (abmri∗mn + a2bcm)e−(r+µh)τ1, 

Ag21 = A21 − (2abmrµmni∗mn + a2bcmri∗hi∗mn + a2bcmµh + 

a2bcmµmn)e−(r+µh)τ1e−λτ1, (3.27) 

Ag31 = A31 − (abmrµ2mni∗mn + a2bcmrµmni∗hi∗mn + a2bcmµhµmn)e−(r+µh)τ1e−λτ1 

It is easy to see that 0 and 0 for all λ > 0 and ) . Consequently 

the left- hand side in (3.26) is positive for all λ ≥ 0 while the right-hand side is negative for all 

λ ≥ 0 and the two cannot be equal for any λ ≥ 0 . Therefore, (3.23)does not have any non 

negative real roots for any ) . Now we want to show that all roots of (3.23) have 

negative real parts for is ). To do so , we show that (3.23) does not have any purely 

imaginary roots for all ). We assume that λ = iω with ω > 0 being root of (3.23). 

Then ω must satisfy the following system: 

ω4 − A11ω
2 + A31 = (T31 − T11ω)cos(ωτ1) + T21ω sin(ωτ1), 

(

3.28) A01ω − A21ω
3 = T21ω cos(ωτ1) + (T11ω

2 − T31)sin(ωτ1), 

Thus ω must be a a positive root of 

ω8 + B1ω6 + B2ω4 + B3ω2 + B4 = 0 

where 

, 

(3.29) 

B2 = A211 + 2A31 − 2A01A21 − T112 , 

B3 = A201 − A11A31 + 2T31T11 − T212 , B4 = A231 − T312 

Let z = ω2, then (3.25) 

(3.30) 

z4 + B1z
4 + B2z

2 + B3z + B4 = 0 (3.31) 

  

Clearly if B1 > 0,B2 > 0,B3 > 0 and B4 > 0, then (3.31) has no positive real roots. Therefore, 

(3.23) does not have any purely imaginary roots for all so that all roots of the characteristic 

equation (3.23) have negative real real parts and the endemic equilibrium  is stable. 

Case 3. When ,τ2 > 0,τ1 = 0 the characteristic equation (3.20) becomes 

 λ4 + A02λ3 + A12λ2 + A22λ + A32 = e−λτ2(T12λ2 + T22λ + T32) (3.32) 

where 

A02 = r + 2µh + 2µmn + aci∗h + abmi∗mn, 

A12 = µ2h + µ2mn + rµh + 2rµmn + 4µhµmn + acrih∗ + acµhih∗ + acµmni∗h + abmri∗mn 
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+ abmµhi∗mn + 2abmµmni∗mn + a2bcmi∗hi∗mn, 

A22 = rµ2mn + 2µhµ2mn + 2µ2hµmn + 2rµhµmn + acih∗µ2h + aci∗hrµh + aci∗hrµmn + 

2aci∗hµhµmn 

 + abmi∗mnµ2mn + 2abmimn∗ rµmn + 2abmµhµmnimn∗ + a2bcmri∗hi∗mn + 

a2bcmµmni∗hi∗mn, 

A32 = µ2hµ2mn + rµhµ2mn + acµ2hµmni∗h + acµhµmni∗h + abmrµmni∗h + 

abmµhµ2mni∗mn (3.33) 

+ a2bcmrµmni∗hi∗mn + a2bcmµhµmni∗hi∗mn, 

T12 = a2bcm(1 − (e∗h(1 − i∗mn) + i∗h(1 − i∗mn ) + e∗mn(1 − ih∗) + i∗mn(1 − e∗h))e−µmnτ2, 

T22 = (a2bmcµh + a2bcmµmn)(1 − (e∗h(1 − imn∗) + ih∗(1 − i∗mn) + e∗mn(1 − i∗h) 

+ i∗mn(1 − e∗h))e−µmnτ2, 

T32 = a2bcmµhµmn(1 − (e∗h(1 − i∗mn) + ih∗(1 − imn∗) + e∗mn(1 − i∗h) + i∗mn(1 − 

eh∗))e−µmnτ2 The condition R0 > 1is equivalent to 

  (3.34) 

Using a similar as in case 2, we know that all roots of (3.32) have negative real parts for 

) when C ≥ 0,C2 ≥ 0,C3 ≥ 0 and C4 ≥ 0, where 

C1 = A222 − 2A12, 

C2 = A212 + 2A32 − 2A02A22 − T122 , 

(3.35) C3 = A202 − A12A32 + 2T32T12 − T222 , C4 = 

A232 − T322 

Case 4. When τ1 > 1,τ2 > 1, the condition R0 > 1 is equivalent to 

  (3.36) 

From cases 1, and 2 the roots of (3.20) only have negative real parts for ) and τ2 = 0 

the left-hand side function (3.20), there is a τ2(τ1) satisfying 0  ), such that all 

roots of (3.20) have negative real parts for 0 < τ2 < τ2(τ1). We show that  

when Bi ≥ 0 and Ci ≥ 0,i = 1,2,3. Suppose that 0  ) for ), then 

there must be at ˜   ), such that one root of (3.20) has non 

negative real part for τ2 = τ˜2(τ1). As a result of the continuity of τ2 in τ1, we have ˜

 . However, from the argument in case 3, we know that all the roots of 

(3.20) have negative real parts for τ1 = 0 and ) contradict. Thus ) which 

implies that the endemic equilibrium E2 is stable when 0 and 

Ci ≥ 0,i = 1,2,3. 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.6, No.4, pp.33-57, November 2018 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

51 

Print ISSN: 2053-2229 (Print), Online ISSN: 2053-2210 (Online) 

The above analysis can be summarized into the following theorem. 

Theorem 3.2.4 If R0 > 1, Bi ≥ 0 and Ci ≥ 0,i = 1,2,3, the unique endemic equilibrium E2 of 

system (3.6) is stable. 

Completely Wolbachia-infected system 

A very similar analysis can be performed for the case when all of the mosquitoes are infected 

by Wolbachia. In this case, the system is given by 

 
 (3.37) 

This is just a scaled version of Eqs.(3.6) (With emn replaced by and 

b, eh and ih unchanged). Doing the same deduction as in 3.7 the basic reproduction number  

is given by 

  (3.38) 

Again they may be one or two equilibria, the disease-free equilibrium 0) and the 

endemic equilibrium  

(3.39) 
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With the endemic equilibrium only being biologically meaningful for  

Wolbachia-free case, a similar argument shows that Since  defined by (3.38) and the steady 

state values given in (3.39) are all delayed dependent, increasing the delay values will decrease 

 to make it equal to 1 and will make the positive steady state to coincide with the trivial 

equilibrium. Thus, Hopf bifurcation does not occur when the delay increases as there are no 

bifurcating periodic solution due to the increase of the delays value. 

 

RESULTS AND DISCUSSION 

In this section, we present some numerical results of system (2.3), (3.6)and (3.37) that support 

and extend our theoretical research for some particular values of the parameters. 

 Numerical simulations 

To investigate the effect of introducing Wolbachia to the dynamics of infectious humans, we 

choose various Wolbachia levels in the mosquito population: 85, and 1. We 

perform all simulations and graphs with MATLABR2014a. 

To numerically illustrate the results, we need to choose some parameter value (see table 1); 

The incubation period of Plasmodium falciparum in human was reported between 9 and 10 

days with a mean of 9.5days (Molineaux and Gramicia (1980)) [17]. Before introducing 

Wolbachia, for a Wolbachia-free system (3.6) we have the following parameters: a = 0.5day−1, 

b = 0.4, c = 0.79,m = 7.7, r = 0.05day−1, µh = 0.333day−1, µmn = 0.15day−1, τ1 = 9.5days, τ2 = 

12days. We can see that the basic reproduction number R0 = 0.0460 < 1 and in two months the 

solution approaching the trivial equilibrium (0,0,0,0) (see Fig.2(a). 

After introducing Wolbachia,a completely Wolbachia infected system (3.37) the mortality rate 

of mosquitoes is increased to mumw = 1.16µmn, biting rate increase to ˆa = 1.13a and 

susceptibility decrease to ˆc = c/11 [6]. For a typical parameter values  is about 0.53. Then 

the basic reproduction number is reduced to 1. This reduction depends on Nmn 

since nmw does. Prevalence level in both human host and mosquito decrease and in one month 

the solution are approaching the trivial equilibrium (0,0,0,0). clearly in Wolbachia infected 

system almost one month before a disease die out compare to Wolbachia-free system (see 

Fig.2(b)). 
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Fig. 2: The density of infected and infectious mosquitoes and human over a 100-day period. 

The initial values used were eh = 0.1, ih = 0.1, emn = 0.1, with imn = 0.1 and nmn = 1 for (a) and 

 , emw = 0.1n∗mw and imw = 0.1n∗mw for (b), and the parameter values were were a = 

0.5, b = 0.4, c = 0.79, r = 0.05, µh = 0.333, µmn = 0.15, τ1 = 9.5 and τ2 = 12, and in (b) aˆ = 0.565, 

ˆc = 0.07 and µmw = 0.175, relevant to the wMelpop strain. Fig(a) show the situation when the 

entire Anophele gambaie population is Wolbachia-free. In (b) the entire Anophele gambaie 

population is exposed with Wolbachia. In (b), the density tends to zero as t →∞. the value for

 is 0.53. 

Fig.3 shows the dynamics of exposed, infectious humans and vectors when  changes. In 

Fig.3(b),all the curves have a similar behavior. They increase to a peak and decay, then 

oscillate around and eventually approach to an equilibrium. Moreover, as  increase, the 

first peak becomes smaller and more delayed, and the equilibrium also decreases. A Wolbachia 

level that is less than 1 is sufficient to lower infection to 0. 

 

 (a) Dynamics of exposed humans (b) Dynamics of Infectious humans 

 

(c) Dynamics of exposed vectors (d) Dynamics of Infectious vectors 

Fig. 3: Numerical simulation of dynamics of (a) exposed humans, (b) infectious humans, (c) 

exposed vectors, 

(d) infectious vectors for different Wolbachia levels in vector population. The initial condition 

is eh = 0.1, ih = 0.1, emn = 0.1, imn = 0.1. The parameter value of this simulation:a = 0.5, b = 

0.4, c = 0.79, τ1 = 

9.5, τ2 = 12, µh = 0.333, µmn = 0.15, aˆ = 0.565, cˆ= 0.07, µmw = 0.175 (see 

table 1). 
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Reproduction Number 

At which level is Wolbachia high enough to eliminate the malaria spread? The easiest way to 

see it is to calculate reproduction number. At the beginning of an endemic, non-susceptible 

humans or vectors are negligible, so 1

 

and . The same as the deduction in system (3.6), we find that 

Malaria will spread if and only if 

abm[imn(t) + imw(t)]e−(r+µh)τ1 > (r + µh)ih(t), 

 acih(t)(1 − n∗mw)e−µmnτ2 > µmnimn(t), (4.1) 

aˆciˆ h(t)n∗mwe−µmwτ2 > µmwimw(t) 

Dividing the second and the third inequalities by µmn and µmw on both sides respectively, 

summing them up, and multiplying by the first inequality, we have 

  (4.2) 

and 

  (4.3) 

Therefore, the new basic reproduction number after introducing Wolbachia is 

  (4.4) 

To study how the Wolbachia level  will affect R, with our data in table (1) it is easy to 

verify that reproduction number R < 1, but if we choose death rate for human caused by malaria 

µh = 0.000093day−1(which is 0.0028month−1) from the work of (Bakary Traore et al.,(2017)) 

[34], and pick other parameter values in table (1), this makes R > 1 for small values of . 

Fig.4 shows the relationship between  and R. The basic reproduction number decreases as

 increases,and arrives to 1 when 90 In other words, when the proportion of 

 

Fig. 4: The basic reproduction number with Wolbachiavs. Wolbachia level. The intercept of 

the curve and R = 1 is at  
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Wolbachia-carriers is greater than 90%, the malaria infection can be eliminated from the 

populations based on our current parameter values. Which means that under our assumptions, 

using Wolbachia to fight malaria has a high success rate. But when the reproduction number is 

high enough, even all mosquitoes are infected with Wolbachia malaria disease will persist in 

human population. 

 

CONCLUSION 

We have analyzed a model for wolbachia and malaria infection superposed on an underlying 

data-based model for Anophele gambiae population dynamics. There are three possible 

outcomes for the system as a whole, with or without Wolbachia and with malaria. Which one 

is reached depends first on whether the chosen Wolbachia strain is able to establish itself and 

then on what the corresponding reproduction number of malaria infection is. If both Wolbachia 

and malaria persist, then there is a reduction in endemic level of malaria and the size of malaria 

epidemics, depending on the properties of the strain of Wolbachia. 

Key questions remains are the use of Wolbachia for malaria control will require stably infected 

lines of major malaria vector such as Anophele gambiae s.l. (Africa), Anophele Stephansi 

(India) and Anophele darlingi (central and South America) and a comprehensive assessment 

of the protective effect against human malaria parasites such as P.falciparum/ and P.vivax. The 

applied use of Wolbachia for malaria control would also require significant characterization of 

Wolbachia’s phenotypic effect in diverse genetic background of these anopheles vector 

species. In reality, widespread control of malaria using Wolbachia-based methods is not 

achievable. For example, the difficulties of colonizing An.darlingi (and therefore transinfecting 

this spacies with Wolbachia) would prevent the applied use of Wolbachia for control malaria 

in parts of the Amazonian region. In that case, transinfection of colonisable spacies such as 

Anopheles aquasalis (Dasilva et al. 2006) would provide applicability in areas where this 

spacies has vectorial importance. Lastly, one has to be aware that the complexity of malaria 

vector population ( Lanzaro et al,.1998, Donelly et al.2002) would be a major complicating 

factor in the use of Wolbachia for malaria control. However, this novel approach may provide 

an effective mechanism of malaria control in some malaria endemic areas in which a single, 

vector species is present. 

Appreciation 

This work is supported by the NNSF of China (11461041), the NSF of Gansu Province of 

China (148RJZA024) and the Development Program for HongLiu Distinguished Young 

Scholars in Lanzhou University of Technology. 

 

REFERENCES 

[1] WHO, ”World malaria report 2017” Licence:CCBY-NC-SA3.0 IGO, World Health 

Organization, Geneva, Switzerland, (2017). 

[2] Walker.T, Moreira.LA, ”Can wolbachia be used to control malaria?” Mem Inst 

Oswaldo Cruz 106 (suppl.1): 212-217. 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.6, No.4, pp.33-57, November 2018 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

56 

Print ISSN: 2053-2229 (Print), Online ISSN: 2053-2210 (Online) 

[3] Baldini F, Segata N, Pompon J, Marcenac P, Robert Shaw W, et.al(2014), ”Evidence of 

natural Wolbachia infections in field population of Anophele gambaie”. Nat commun 6: 

3985. 

[4] Hughes GL, Koga R, Xue P, Fukastu T, Rasgon JL(2011) ”Wolbachia infections are 

virulent and inhibit the human malaria parasite plasmoodium falciparum in Anopheles 

gambaie” Plos Pathog 7: e1002043. 

[5] Kambris Z, Blagborough AM, Pinto SB, Blagrove MSC, Goolfray HCJ, et.al(2010) 

”Wolbachia stimulate immune gene expression and inhibit plasmodium development in 

anopheles gambaie ” Plos Pathog 6: e1001143. 

[6] Shaw, W.R.et al. ”Wolbachia infections in natural anopheles population affect egg 

laying and negatively correlate with plasmodium development” Nat commun 7: 

11772doi:10.1038. 

[7] Bourtzis K, Dobson SL, Xiz, Rasgon JL, Calvitti N, et.al(2014) ”Harnessing 

mosquitoWolbachia symbiosis for vector and disease control”. Acta Trop 132S: S150-

S163. 

[8] Hughes GL, Vega-Rodriguez J, Xue P, Rasgon JL (2012) ”Wolbachia strain wAlbB 

enhances infection by the rodent malaria parasite plasmodium berghei in anopheles 

gambaie mosquitoes” Appl Environ Microbios 78: 1491-1495. 

[9] Bion G, Joshi D, Dong Y, Lu P, Zhon G, et.al(2013) ”Wolbachia invades anopheles 

Stephensi population and induces refractoriness to plasmodium development infection ” 

science 340: 748-751. 

[10] Zele F, Nicot A, Duron O, Rivero A(2012) ”Infection with Wolbachia protects 

mosquitoes against plasmodium-induced mortality in a natural system”. J Evol Biol 25: 

1243-1252. 

[11] J.D.Murray, ”Mathematical Biology” Springer-Verlag Berlin, (1998). 

[12] Hui Wan, Jing-an Cui ”A malaria model with two delays”, Discrete Dynamics in 

Nature and Society 601265, 1-8 (2003). 

[13] Ranson, H.et.al. ”Pyrethroid resistance in African anopheline mosquitoes: What are the 

implication for malaria control?” Trends Parasitol.27, 91-98(2011) 

[14] J.Tumwine, L.S.Luboobi, J.Y.T.Mugisha. ”Modelling the effect of treatment and 

mosquito control on malaria trasmission”, Department of Mathematics and Statistics, 

Makerere university, Uganda. (1998). 

[15] Shigui Ruan, Dongmei Xiao, John C.Beier. ”On the delayed Ross-Macdonald Model 

for malaria transmission” Bull Math Biol 2008 May;70(4): 1098-1114. doi:10.1007 

[16] Roy M. Anderson, Robert M.May. ”Infectious Diseases of Humans:Dynamics and 

control”, Oxford university Press, (1992). 

[17] L.Molineaux, G.Gramiccia, ”The Garki Project” World Health Organization, Geneva, 

(1980). 

[18] Hilgenboecker K, Hammerstein P, Schlattman P, Telschow A, Werren JH, ”How many 

species are infected with Wolbachia?-a statistical analysis of current data” FEMS 

Microbiol Lett 281: 215-220 (2008). 

[19] Sinkins SP ”Wolbachia and cytoplasmic incompatibility in mosquito” Insect Biochem 

Mol Biol 34: 723-729 (2004). 

[20] Turelli M, Hoffmann AA ”Rapid spread of inherited incompatibility factor in 

California Drosophila” Nature 353: 440-2 (1991). 

[21] Hoffmann AA, Turelli M ”Cytoplasmic incompatibility in insects. In: O’Neill RV, 

Hoffman AA, Werren JH, eds. Influential Passengers. Oxford”: Oxford University 

Press. pp 42-80 (1997). 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

Vol.6, No.4, pp.33-57, November 2018 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

57 

Print ISSN: 2053-2229 (Print), Online ISSN: 2053-2210 (Online) 

[22] Min KT, Benzer S ”Wolbachia, normally a symbiont of Drosophila, can be virulent, 

causing degeneration and early death”, Proc Natl Acad Sci USA 94: 10792-10796 

(1997). 

[23] McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M,et al. ”Stable introduction of 

a life-shorteningWolbachia infection into the mosquito Aedes aegypti.” Science 323: 

141-144 (2009). 

[24] Brownstein JS, Hett E, O’Neill SL ”The potential of virulent Wolbachia to modulate 

disease transmission by insects” Invertebr Pathol 84: 24-29 (2003). 

[25] Cook PE, McMenimann CJ, O’Neill SL ”Modifying insect population age structure to 

control vector-borne disease” Adv Exp Med Biol 627: 126-140(2008). 

[26] Smith HL. ”Monotone Dynamic Systems, An introduction to the theory of the 

Competitive and Cooperative systems” Am. Math. Soc., Providence. (1995). 

[27] Da Silva AN, Dos Santos CC, Lacerda RN, Santa Rosa EP, De Souza RT, Galiza D, 

Sucupira I, Conn JE, Povoa MM ”Laboratory colonization of Anopheles aquasalis (Diptera: 

Culicidae) in Belem, Para, Brazil” J Med Entomol 43: 107-109 (2006). 

[28] Donnelly MJ, Simard F, Lehmann T ”Evolutionary studies of malaria vectors” Trends 

Parasitol 18: 75-80 (2002). 

[29] Lanzaro GC, Toure YT, Carnahan J, Zheng L, Dolo G, Traore S, Petrarca V, Vernick 

KD, 

Taylor CE. ”Complexities in the genetic structure of Anopheles gambaie population in West 

Africa as revealed by microsatellite DNA analysis.” Proc Natl Acad Sci USA 95: 

14260-14265 (1998). 

[30] Britton, N.F. ”Essential mathematical biology” Berlin:Springer (2003). 

[31] Dye, C. ”Model for the development dynamics of yellow fever mosquito, Aedes 

aegypti” J.Anim. Ecol.,53, 247-268 (1984). 

[32] Gurney,W. S. C., Blyth, S. P., and Nisbet, R. M. ”Nicholson’s blowflies revisited” 

Nature, 287, 17-21 (1980). 

[33] Maynard Smith, J. ”Models in ecology” Cambridge: Cambridge University Press. 

(1974). 

[34] Bakary Traore, Boureima Sangare, and Sado Traore. ”A mathematical model of malaria 

transmission with stuctured vector and seasonality” Hindawi (2017). 

http://www.eajournals.org/

