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ABSTRACT: AIM The aim of this review was to demonstrate a new concept in the etiology 

of bilirubin-induced neurologic dysfunction (BIND) and highlight the role of D-Penicillamine 

(D-PA) in the treatment of HIV or EBOLA infection due to vertical transmission. METHOD 

We conducted a review searching the literature of bilirubin metabolism and of metal-

homeostasis, furthermore of neonatal HIV and EBOLA infection. RESULTS Over the past two 

decades there have been significant advances in our understanding of copper homeostasis 

and of neurodegenerative and neurodevelopmental diseases (NDs), and the pathological 

consequences of copper dysregulation. Thus, comprehension of metal homeostasis, details of 

transport and interactions with biomolecules, such as unconjugated bilirubin (UCB) or 

albumin, is essential for understanding the normal and pathological processes occurring in 

the neonatal period. UCB has a special affinity for the globus pallidus, the hippocampus, and 

the subthalamic nucleus. Furthermore, immaturity of the blood-brain barrier (BBB) also 

plays a role in kernicterus. Homeostasis of metal ions usually involves a huge set of proteins 

which regulate the proper metal biology. Metal ions, especially copper and iron play very 

important roles in NDs including BIND, having impact on both protein structure (misfolding) 

and oxidative stress. INTERPRETATION Free copper ion in itself or binding to UCB and 

forming metal-bilirubin complex(es) involved in neurologic dysfunction; therefore they are 

important factors for central nervous system (CNS) damage processes in BIND by the 

production of free radicals. Our present research article address the medical necessity of the 

use of a chelating agent (D-PA) in the treatment of neonatal hyperbilirubinemia (NHBI). 

Finally, the authors highlight that D-PA may have a huge impact on HIV or EBOLA infection 

caused by vertical transmission where NHBI is a very common symptom. 

KEYWORDS: Bilirubin-induced neurologic dysfunction; Reactive oxygen species; Copper 

dyshomeostasis; HIV or EBOLA infection; Neurodegeneration; D-Penicillamine in the 

neonatal period. 

 

INTRODUCTION 

The classic form of chronic bilirubin encephalopathy (kernicterus) is a well-described clinical 

tetrad of  abnormal movements and muscle tone,  an auditory processing disturbance with 

or without hearing loss,  oculomotor impairments, especially impairment of upward vertical 

gaze, and  dysplasia of the enamel of deciduous teeth. Hervieux first described the condition 

in 1847, and Schmorl first used the term kernicterus as early as 1903. 1, 2  NHBI is a common 

condition in the first week of postnatal life. Although generally harmless, some neonates may 
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develop very high levels of UCB. Subtle encephalopathy or BIND refers to individuals with 

subtle NDs. 3-5 In the past decades, interest in bilirubin damage of the brain has been 

reawakened by an increase in its prevalence, owing to failure to closely observe infants 

discharged from the hospital well before the peak of NHBI. 6 There is a tremendous variability 

in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, 

hypoxia, hypoperfusion, hyperosmolality, acidosis, hypalbuminemia and hemolytic disease et 

cet. (underlying diseases or comorbidities) are comprised as risk factors, so, the UCB levels 

and neurological abnormalities are not strictly correlated. Kernicterus may only be the “tip of 

the iceberg.” Subtle UCB damage may account for many more cases of: learning disabilities, 

central auditory processing disorders, dyslexia, oculomotor dyspraxia, movement disorders, 

and autism spectrum disease (ASD), and may even predispose to Parkinson’s disease (PD) or 

schizophrenia in adulthood. 7  The pathomechanisms of BIND have not been fully understood 

yet. The mechanisms of UCB neurotoxicity are still also unclear, and little is known about 

lasting sequelae attributable to NHBI.  Our hypothesis addresses the medical necessity of 

chelation therapy (with D-Penicillamine – D-PA) in the neonatal period 8, 9 as it is feasible 

that UCB molecule reviels particular affinity to copper stored in basal ganglia (BG) of the 

neonatal brain, where copper-bilirubin complex can be formed together with the production 

of hydroxyl radical (OH–). In addition, various amount of free metal ions can be found in the 

intravascular space and in the tissues (especially in BG) during hemolytic processes. 

Pathological Basal Ganglia Activity10  

The BG is a collection of large subcortical nuclear masses. It is agreed that core components 

comprise the caudate nucleus, the nucleus accumbens, the putamen, and the globus pallidus. 

The caudate nucleus and putamen together are sometimes called the striatum, and the putamen 

and globus pallidus are together sometimes described as the lentiform nucleus. 11, 12 

Functionally, the BG has considerable connections to the cerebral cortex, thalamus, and brain 

stem; so, anatomists consider portions of the thalamus as components of the BG. 13  A 

literature review was aimed at assisting us (as pediatricians) to provide further understanding 

with bilateral symmetrical BG and thalamic lesions on magnetic resonance imaging (MRI). 

The high-signal-intesity lesions on T2-weighted images can be caused by edema, gliosis, 

demyelinization, neuronal necrosis, or cystic degeneration both in Wilson disease (WD) and 

BIND. 14 

Role of metals and oxidative stress in the human neurodegenerative and 

neurodevelopmental disorders 

The brain (mostly the BG) accumulates among the highest levels of transition metals in the 

body for normal function, including redox-active copper. This high-redox metal load, in 

combination with the brain disproportionately active oxygen metabolism, makes this organ 

particularly susceptible to oxidative stress. 15-18 Metal ions such as calcium, zinc, iron and 

copper are key players in brain neurobiology; their homeostasis is altered in most ND 

conditions. The metal dyshomeostasis (MD) in the brain and related organs, and loss of the 

strict regulation is implicated in neurotoxic stress 19-21 and in a variety of NDs including 

BIND and prion-mediated encephalopathies and other diseases 22-24 which can be seen in the 

Table 1. 25-47 Parts emphasized with bold-faces show associations between the ND illnesses 

and BIND. Pathologic changes to the CNS in these disorders are always associated with a 

significant dyshomeostasis of tissue metals (particularly copper). Excess copper may combine 

with sulfhydryl, carboxyl, or amine groups, resulting in improper enzymatic activity or 

damage to cellular structure. Despite the ubiquitous presence of toxic copper within the brain, 
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pathologic findings are limited primarily to the BG, thalamus, and brain stem. Histopathologic 

studies have shown abnormalities throughout this system in patients suffering from MD. 

These abnormalities include atrophy, spongy softening, cavitation, a general reduction of 

neurons, increased cellularity, and the presence of characteristic cells (Opalski, Lewy bodies). 

The pathologic changes are presumed to result from an increased amount of extracellular 

copper, which causes oxidative stress and results in cell destruction. 48 Many diseases of the 

BG have some disorder of movement as their primary symptom, ranging from an excess of 

(abnormal) involuntary movements such as in chorea to a poverty and slowness of movement 

as in PD, Alzheimer disease (AD) and WD as illustrated in several clinical cases 49 and UCB 

encephalopathy 50   where a characteristic yellow staining can be observed in fresh or frozen 

sections of the brain obtained within 7-10 days after the initial bilirubin insult. If the affected 

infant survives the neonatal period and subsequently dies, the yellow staining may no longer 

be present, but the BG will display microscopic evidence of cell injury, neuronal loss, and 

glial replacement. Newborns, especially preterm infants, are particularly vulnerable to 

reactive oxygen species (ROS) because they exhibit accelerated production of free radical and 

limited antioxidant protection, which increases the susceptibility of rapidly growing tissues to 

damage. „Free radical-related diseases” of neonates promote cellular, tissue, and organ 

impairments. In 1988, Saugstad coined the phrase „oxygen radical disease in neonatology” to 

highlight the crucial role of ROS in a wide range of neonatal disorders. 51 There is now a large 

body of literature demonstrating that free or weakly bound iron and copper ions may exert 

their toxic action on BG. In a way, metals may provide the link between protein misfold and 

aggregation, oxidative stress and the cascade of biochemical alterations, eventually leading to 

neuronal cell death. Predominantly the cellular content of copper determines copper-induced 

toxicity in brain astrocytes. 52 

Potential molecular mechanisms of bilirubin-induced neurologic dysfunction 

The “classic” interpretation of bilirubin neurotoxicity does not give sufficient answers to the 

following questions: (1) How to call bilirubin: friend or foe? (2) If the bilirubin is really an 

„enemy”, how does it induce its dangerous effects?  

Ad (1) 

The exact UCB concentration associated with kernicterus in the healthy term infant is 

unpredictable. In a Danish popolation-based study, the neonates with total serum bilirubin 

levels of ≥ 25 mg/dL didn’t show any neurologic dysfunctions at 5 years of follow up. 53 

Toxicity levels may vary among ethnic groups, with maturation of an infant, and mainly in 

the presence of hemolytic disease. Bilirubin, which is derived from its metabolic precursor 

biliverdin, is the end product of heme catabolism. It has been proposed that UCB is an 

excellent endogen antioxidant present in human extracellular fluids 54. Bilirubin can suppress 

oxidation of lysosomes at oxygen concentrations that are physiologically relevant. It can act 

as an important cytoprotector of tissues that are poorly equipped with antioxidant defense 

systems, including myocardium and nervous tissue. 55, 56 Serum bilirubin in jaundiced and 

non-jaundiced pups exposed to 95% O2 shows a negative correlation with lipid 

hydroperoxides at 3 days of exposure. Higher UCB concentrations resulted in lower lipid 

hydroperoxide levels. 57 Therefore, we think that UCB in itself is actually our friend, that is: 

Bilirubin, The Gold Within.58 (BILIRUBIN- FRIEND OR FOE?? :  

Function as natural antioxidants in newborns. Attenuates graft rejection in cardiac transplant 

models. Inverse relation between bilirubin and coronary artery disease. Inverse relation 
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between bilirubin and colorectal cancer. – 2005 Powerpoint Presentation 

www.sfrbm.org/frs/FrielBilirubin.pdf ) 

Ad (2) Toxic Side of Bilirubin 

Erythrocyte morphological changes have been seen with incubation of cells with different 

molar ratios of UCB. These changes occur as the bilirubin/human serum albumin molar ratio 

increases. This indicates that bilirubin can illicit toxicity in the erythrocyte membrane in a 

concentration and temperature-dependent manner, causing hemolysis. 59  Several studies have 

found that NHBI is associated with higher risk of movement disorder and, even more, 

developmental delay. The management dilemma for a clinician is that UCB is a beneficial 

antioxidant at low (and may be at moderatly higher) levels, but a neurotoxin at >20 mg/dL 

levels (“vigintophobia” 60), where it can impair the normal developmental maturation of the 

neonatal brain.   

Among the 23 elements with known physiological functions, 12 are metals (sodium, 

magnesium, potassium, calcium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, 

and molybdenum). 61, 62 Copper is essential for the normal growth and development of human 

fetuses, infants, and children and it is crucial for the normal development of the brain 63 which 

has among the highest levels of copper, as well as iron and zinc, in the body. Copper is an 

interesting essential micronutrient. Deficiency and excess intake both induce a variety of 

clinical manifestations affecting mainly the hematopoietic system, the skeleton, the liver, and 

the brain. Although copper transport to the fetus is high and liver storage is efficient, copper 

export from the hepatocytes to the bile and to blood ceruloplasmin (Cp) are reduced during 

this stage of life because of liver function immaturity. This leads to a high copper 

accumulation in the liver and brain, in a magnitude similar to that observed in Wilson disease. 

In fact, an obvious analogy can be observed between the newborns and patients with Wilson 

disease in the field of the copper „(dys)homeostasis” (see: Table 1). The increased liver and 

brain copper storage of the fetus may have a selective evolutionary advantage since it may 

prevent copper deficiency during the first months of life when the child receives a relatively 

low copper supply from breast milk.64 

Metal regulatory proteins in the neonatal period 

A variety of proteins are involved in the regulation of metal metabolism and the oxidative 

response and many are involved in iron or copper metabolism due to the redox activity of 

those metals. Protein misfolding and conformational changes are also a cornerstone of NDs 

All metals with known physiological functions are bound by albumin. 65, 66 A decrease in 

metal binding of albumin means more free metal available to produce oxidative stress and 

other physiological effects such as influence of calcium (Ca++) homeostasis by altering the 

conformational structure of the pumps, enzymes, binding proteins, and channels that regulate 

Ca++ flow. Often, this results in elevating free intracellular Ca++ levels which may produce 

depletion of glutathione/GSH with a downstream induction of DNA damage and eventual cell 

death. 67 Therefore, the bilirubin-mediated neurotoxicity is partly due to increased rate of cell 

apoptosis and higher levels of intracellular free Ca++ ion level (as analogy, see Table 1.: 

Fahr’s disease). 42 

Ceruloplasmin (Cp) is a large blood protein synthesized by the liver with the primary role 

of transporting copper. If a disease process (e.g. hepatic failure) or insufficient synthesis in the 

neonatal period lowers the production of Cp, the free copper would increase and copper 
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mediated oxidative stress would be enhanced. In addition, there is some evidence that under 

oxidative stress conditions, Cp may induce further oxidative stress in a manner akin to a 

positive feedback mechanism. Also, when this protein is exposed to ROS, its ability to bind 

copper is reduced, releasing free copper, producing further oxidative stress. 68 

Copper transporter 1 (Ctr1) has a high affinity for copper and serves to transport copper 

into the interior of the cell. It is not highly expressed in the brain, where the choroid plexus 

may contain the greater proportion. The lower levels of expression in the brain, however,  

should not be taken as a sign that Cu metabolism is not important in the brain as several neural 

pathologies (Alzheimer’s disease, spongiform encephalopathies) have been linked to 

disordered copper metabolism. 69 

Metallothionein (MT) is a cysteine rich protein involved in the regulation of zinc and other 

metals (mainly copper, and selenium). This protein is found in a variety of forms (I-IV) in 

mammals, and MTII are the most abundant in the CNS where MT is found mostly in 

astrocytes. MT plays an important role in cell signaling. Neonatal brain has lower MT 

concentrations than adult brain, increasing to adult levels by Day 21. 70  Elucidating the role 

of the metallochaperone Atox1, 71, 72  it is obvious that Atox1-deficient cells accumulates 

high levels of intracellular copper, and metabolic studies indicate: this defect originated from 

the impaired cellular copper efflux. These data reveal a direct role for Atox1 in trafficking of 

intracellular copper to the secretory pathway of mammalian cells and demonstrate that 

metallochaperone plays a critical role in perinatal copper homeostasis.To sum up, the number 

of proteins involved in metal oxidative stress is large and fall into two groups: those involved 

in iron or copper metabolism, and those involved with the rest of the metals. Bilirubin-metal 

complexes have been made in vitro producing hydroxyl radical (OH͞― ) and there are no 

reasons not to believe that such complexes can also exist in vivo, especially since UCB can 

take on a ring-like configuration with one of the end pyrrol-rings in a lactim form and the 

other in a lactam form. 73, 74  To clarify how hyperbilirubinemia influences 

neurodevelopmental outcome, more sophisticated consideration is needed both of how to 

assess bilirubin exposure leading to neurotoxicity and of those comorbid conditions which 

may lower the threshold for braininjury.46 A decrease in metal binding means of course more 

free metal available to produce oxidative stress and other physiological effects. Six substances 

are transported with albumin: long chain fatty acids bilirubin, steroids, thyroid hormones, 

drugs and copper (also other metals eg. Zn, Pb…).75 Albumin interacts with a broad spectrum 

of compounds. Most strongly bound are hydrophobic organic anions of medium size, 100 to 

600 Da–long-chain fatty acids, hematin, and bilirubin. The equilibrium constant of UCB is 

about 3.8 ± 2.0 x 107 M-1 and the calculated Cu ion binding constant is 1.50 x 106 M-1.  In 

comparison, albumin is interacting selectively and non-covalently with Cu ions. 76-79   Neonatal 

blood has low content of glutathione peroxidase, superoxide dismutase, β-carotene, 

riboflavin, α-proteinase, vitamin E, selenium, copper, zinc, ceruloplasmin and other plasma 

factors. The premature brain is rich in polyunsaturated fatty acids, and easily oxidized 

compared to monounsaturated fatty acids. 80 

New concept for development of bilirubin-induced neurologic dysfunction 

Table 1. illustrates well that a remarkable similarity exists between Wilson disease and BIND. 

Very wide-ranging studies have long been made on the possible biochemical transformations 

of UCB, which is formed during the decomposition of haemoglobin. Particular attention has 

been paid to its photochemical and redox reactions 81 but the relevant publications comprise 

only a very small proportion of those dealing with the molecular biochemistry of UCB and 
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metals interactions. Bilirubin has a special affinity for the globus pallidus, the hippocampus, 

and the subthalamic nucleus because they are also target brain regions for divalent metal (Cu, 

Fe, Zn et cet.) accumulation.82  

Neurodegeneration: a return to immaturity? 83 This question certainly arouses the attention 

of neonatologists as the immature and strikingly vulnerable neurons play important role in 

the pathogenesis of BIND. The increased vulnerability of premature infants to brain damage 

may be due to a proneness of immature nerve cells to toxic stimulus. The developing neurons 

undergo programmed cell death, a necessary phenomenon for proper nervous system 

development. Following the developmental period, neurons mature and restrict the apoptotic 

pathway to permit long-term survival. On the basis of above described abundant research data 

and hypotheses, according to our concept, the BIND is an ND of immature brain caused by 

accumulation of free metals and UCB-Cu complex (as prooxidant) in the BG and other parts 

of CNS relevant to BIND. The rate of formation of UCB-Cu complex when bilirubin extracts 

copper from copper–albumin complex, as obtained in a very exciting experiment, is 

34.98 l mol−1 s−1 84. The main comorbidity is the hemolysis of neonatal blood red cells. 85 

During this process a great amount of heavy metals (mainly iron and copper) may circulate in 

free form in the bloodstream, and can pass through the BBB, finding entrance into the CNS 

as well. Understanding the differences between neonatal and adult erythrocytes is critical in 

the evaluation of perinatal erythrocyte disorders. The reason for the reduced RBC survival 

observed in newborns is not known, although there are many biochemical differences between 

adult and neonatal RBCs.86  Increased oxidant sensitivity of newborn red cells and relative 

instability of fetal hemoglobin have been considered as possible causes for this shortened 

lifespan. In a chinese study, 87 the erythrocyte’s copper content was significantly lower in the 

maternal blood than in the newborn cord blood. The compounds to be bound and transported 

by albumin are quite diverse and include bilirubin, fatty acids, metal ions and therapeutic 

agents. Bilirubin itself can displace metals (copper) from the albumin binding because UCB 

binds stronger to albumin than copper, in other words, copper loosely bound to albumin. 88 

Free or loosely bound, redox-active transition metal ions are potentially extremely pro-

oxidant, having the ability to catalyze the formation of damaging and aggressive ROS from 

much more innocuous organic and inorganic species. In strictly biological terms the two most 

important such metals are iron and copper.89 In fact, oxidative stress has been demonstrated 

to be a common link between several conditions such as PD, AD, stroke, prion diseases and 

UCB encephalopathy, where it is involved in neuronal injury.  

D-penicillamine as neonatal neuroprotectant 90, 91 

Our recently published case reports 92 and other healthy and highly educated patients of the 

long-term (28-42 years) follow-up suggest that D-PA therapy of newborn infants may have 

significant neuroprotective effects in cases jeopardized by BIND or ROP. The first patient (42 

ys) is now a member of a famous operahouse in Germany as an opera singer, the second one 

(16 ys) is excellent in music and matematics. These cases are all the more remarkable as the 

most common sequelae of NHBI is the sensorineural hearing impairment. These unexpected 

effects may be related to DPA capability to alter the most important gasotransmitters (nitric 

oxide /NO/ system, carbon monoxide /CO/, hydrogen sulfide /H2S/ biosynthesis, and Cu++ 

homeostasis in the brain). According to our hypothesis DPA can modulate the function of 

these neurotransmitters and can protect the brain (especially the BG and retina) from injury, 

such as BIND and ROP.  D-PA not only chelates copper from tissue, but also detoxifies tissue 

copper by promoting the synthesis of metallothionein, which forms a non-toxic combination 
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with copper. 36 There are very important age-related effects of D-PA in the neonatal period. 

In the Table 2. we demonstrate the results of our animal experiments regarding the age related 

differences in effects of D-PA. 93 The high activity of heme oxygenase in the newborn could 

reflect the enzyme-inducing action of metals: Cu and Fe derived from the breakdown of fetal 

erythrocytes. Chelation therapy in neonates restores the normal activity of enzymes 

participating in heme metabolism. Briefly, chelating agents facilitate heme synthesis and 

inhibit heme degradation. In other words, DPA as a chelating agent, boost or inhibit the 

immature enzyme systems to the adult levels The main comorbidity is the hemolysis of 

neonatal blood red cells. 85 During this process a great amount of heavy metals (mainly iron 

and copper) may circulate in free form in the bloodstream, and can pass through the BBB, 

finding entrance into the CNS as well.94 

 

CONCLUSION 

The basic role of metal ions in neurological pathologies is generally accepted, ― except for 

the case of BIND.  Free copper ion in itself or binding to UCB and forming metal-bilirubin 

complex(es) involved in neurologic dysfunction, therefore they are important factors for 

whole brain damage processes in BIND. Figure 1. demonstrates our concept about the chronic 

bilirubin encephalopathy based on the above described hypothesis. We hope that our theory 

will help answer some of the unsolved questions and concerns ocurred in the etiology and 

pathomechanisms of BIND. The beneficial neuropharmacological actions of metal-targeted 

(chelating) agents most likely arise from local metal redistribution rather than from massive 

metal removal. 95 The chelation therapy for non-metal overload indications continues to be 

investigated. Our present research article address the medical necessity of the use of a 

chelating agent (D-PA) in the treatment of NHBI. 96-106   

Possible beneficial effects of D-PA on the lethality of HIV or EBOLA infection due to 

vertical transmission 

West Africa is currently in the midst of the largest EBOLA outbreak in the history and HIV 

prevalence in sub saharan Africa is also very high.  

The structural and functional properties of DPA make it suitable for exerting antiviral activity. 

This drug caused a marked inhibition of polyo-virus-specific RNA and the protein 

synthesis.108 Searching the pertinent literature, several publications relating to the beneficial 

effects of D-PA-therapy in the treatment of AIDS-patients were found. The high doses 

resulted in good outcomes, but adult patients did not tolerate this therapy. In addition to this, 

it has been determined that the selective inhibition of replication of HIV type 1 (further: HIV) 

by this drug was concentration dependent, that is, at 40 microgram/ml concentration D-PA 

completely inhibited HIV replication in H9 cells in vitro 109 (a single 100 mg/kg bw. 

IVadministered DPA resulted in more multiple plasma concentration in premature infants 

110). This study has a promising idea wondering whether or not it is true that DPA has possible 

beneficial effects on the AIDS or EBOLA associated infant mortality rates because of its 

prolonged antiviral activity. Abundant experimental evidence and clinical observations exist 

to suggest that early viremia and immune responses in vertical HIV infection are different 

from those of adults. The developing immune system might allow for more efficient viral 

replication and less efficient immune containment of viral replication. In this respect, D-PA-

therapy may be a potent early regime to control HIV (or EBOLA) replication and offers the 
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golden opportunity to prevent or reverse the rapid progression of these diseases. The potential 

mechanism of antiretroviral actions of D-PA in infections caused by vertical transmission are 

as follows: 

 It is presumed that antioxidant treatment (D-PA is a well-known direct antioxidant) 

may provide a promising and cost-effective therapeutic aproach in treating neonatal 

HIV or 

 EBOLA infection. The newborn infants, especially the prematures, are suffering in an 

oxidative stress condition 111 

 It acts as a potent protease inhibitor in animal model 112. 

 The copper metabolism in Wilson’s disease and in newborn infants is strikingly 

similar: they both have large quantities of copper in the liver and low ceruloplasmine 

in the blood. It was previously found that cupric chloride, in the presence of a chelating 

agent, could inhibit the HIV-1 protease 113. 

 Extra cystein given in the form of DPA (β-β-dimethylcysteine) can cause an increase 

in intracellular cysteine and glutation content which play an important role as HIV 

inhibitors, at least in part because they facilitate the intracellular transport of Zn and 

Cu ions 114. 

 The HIV-1 nucleocapsid p7 protein contains two retrovirus-type zinc finger domains 

that are required for multiple phases of viral replication. Considering the chelating 

properties of DPA and its disulfide reaction with cysteine, one can conclude that 

HIVor 

 EBOLA- replication could be inhibited by this drug 115-120. 

It would be very exciting to be involved in this work, especially that D-PA will have a huge 

impact on HIV or EBOLA infection caused by vertical transmission where NHBI is a very 

common symptom. 

 

ABBREVIATIONS 

AD  -  Alzheimer disease; ASD  -  autism spectrum disease; BBB  -  Blood brain barrier; BG  

-  basal ganglia; BIND  -  Bilirubin-induced neurologic dysfunction;    CNS- central nervous 

system; Cp  - ceruloplasmin; CuFr  -  Free copper ion;   D-PA  -  D-Penicillamine; MD  -  Metal 

dyshomeostasis; MRI  -  Magnetic resonance imaging; MT  - Metallothionein; NHBI  -  

Neonatal hyperbilirubinemia; OH–  -  Hydroxyl radical; NDs  - Neurodegenerative and 

neurodevelopmental diseases; PD  -  Parkinson disease; ROS  -  Reactive oxygen species; 

UCB  -  Unconjugated bilirubin; UCBFr  -  free UCB; WD  - Wilson disease    
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APENDIX 

Table 1.  Neurodegenerative and neurodevelopment diseases involving metal dyshomeostasis (interpretation can be found 

in the text) 

 

Disease Clinical symptoms Histopathology 

MRI 

Metal dyshomeostasis 

Aceruloplasminemia 25      Ataxia, chorea, 

blepharospasmus, 

dementia 

Nerve cell loss,  

abnormal mastocytes, glubular structure;  

Bilateral low signal on T2 at the basal  ganglia                                                                                                              

Redox active  iron 

accumulation                                        

Alzheimer disease 26-28    Dementia and movement 

disorders  

Neuronal and synaptic loss, amyloid plaques, 

neurofibrillar 

degeneration;                

 Hippocampal and  whole brain atrophy 

                                                                                                                           

Abnormal  accumulation 

and  

distribution of  reactive iron 

and copper 

Amyotrophic lateral sclerosis 

29  

Slowly progressive, painless 

weakness,  with limb 

involvement or bulbar 

symptoms 

Cerebral atrophy, upper motor neuron dysfunction  

Hyperintense corticospinal tracts 

Copper mediated 

neurological disorder  

Menkes’s disease 30 Brittle, kinky hair  Feeding 

difficulties Irritability 

Lack of muscle tone, 

floppiness (hypotonia) 

 

Extensive neurodegeneration int he gray matter and 

arteries of the brain. 

Cerebral and cerebellar atrophy, delayed myelination, 

bilateral basal ganglia changes (thalamus) 

Copper mediated 
neurological disorder  

Huntington disease 31                                                                                  Impairments in voluntary 

movements and cognitive 

function, behavioral and 

pszichiatric disorders 

The striatum is the area most severely impacted; the 

outer cortical regions also shows damage T2 

ypointensities in basal ganglia 

Mitochondrial metal 

dyshomeostasis and 

dysfunction 
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Copper and iron 

concentrations are increased 

in the striata                                                                                                             

                                                                                                               

 

Occipital horn syndrome 32 Soft skin, weak muscle tone, 

stroke, internal bleeding, 

kyphoscoliosis 

 

A rare disorder of elastic tissue resulting in loose, 

redundant, hypoelastic skin. Irregularities consistent 

with periventricular leukomalacia  

Inborn errors of metal 

(copper) metabolism 

Table 1. Neurodegenerative and neurodevelopment diseases involving metal dyshomeostasis (cont.) 

Disease Clinical symptoms Histopathology 

MRI 

Metal dyshomeostasis 

Parkinson disease 33-35                                                                                      Tremor (shaking) 

Slowness of movement 

Rigidity (stiffness) Sleep 

problems Anxiety, Dementia 

Depression 

Loss of dopaminergic neurons from the substantia nigra 

associated with the presence of intraneuronal inclusions 

called Lewy bodies. 

With new imaging techniques: diffusional changes in the 

orbital-frontal region in the pre-motor phase of PD 

Iron accumulation and  

dyshomeostasis  

                                                                                                                 

Wilson disease 36, 37                                                                                          Deterioration in school 

performance or handwriting, 

mild tremors, dystonia, 

ataxia, muscular rigidity, 

dysarthria 

The lenticular nuclei macroscopically appear brown in 

color, degeneration occurs with disease progression, 

leading to necrosis, gliosis and cystic changes, and 

lesions can be seen in the brainstem, thalamus, 

cerebellum and cerebral cortex, presence of Opalski 

cells.  Hyperintense signals in putamen and globus 

pallidus 

Copper accumulation in 

the basal ganglia 

Distonias 38 Dystonia is an undesirable, 

involuntary muscular 

movement of a part of the 

body. 

Related to a problem in the basal ganglia. 

In most cases, no abnormalities are visible using MRI or 

other diagnostic imaging. 

Detrimental effects of 

transition metal (copper) 

dysregulation 

 

Tourette syndrome 39                                                                                    Different types of tics: arm 

thrusting, eye blinking, 

Structural changes in frontal cortex and striatum Genetic heavy metal 

toxicity, Free copper  
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jumping, kicking, repeated 

throat clearing or sniffing, 

shoulder shrugging 

 

Structural changes in the basal ganglia, limbic structures 

and prefrontal cortex, T2 relaxation time asymmetries 

may be elevated 

 

Autism spectrum 

disorders (ASD) 40, 41                                                                                                                                                                               

Delayed speech 

development,  

reacting unusally negatively,  

having repetitive 

movements.  

Developmental disorder 

affecting  

people interact with the 

world. 

The cerebellum have documented cellular and 

neurochemical 

alterations, cellular and gross anatomic changes of the 

vermis  

cerebelli 

Abnormally increased total brain volume.  

Decreases in cortical thickness in the frontal, temporal, 

and occipital lobes. 

The Zn/Cu ratio could be 

considered as biomarker of 

ASD. Free copper may be 

elevated 
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Table 1.  Neurodegenerative and neurodevelopment diseases involving metal dyshomeostasis (cont.) 

Disease Clinical symptoms Histopathology 

MRI 

Metal 

dyshomeostasis 

Fahr’s disease 42 

IBSPDC. 

 

 

 

 

 

Hallervorden-Spatz 

(HSD) disease 43 

 

Gait and speech 

disturbance, 

limb and truncal ataxia, 

dementia, bradykinesia, 

mild parkisonism 

 

Progressive dementia, 

spasticity, rigidity, 

dystonia, and 

choreoathetosis 

 

Idiopathic bilateral 

striatopallidodentate 

calcinosis (IBSPDC) 

A striking high density  

area in the basal ganglia 

and the dentate nuclei of the 

cerebellum. 

 

 

Juvenile-onset generalized 

neuroaxonal dystrophy 

Bilaterally symmetrical, 

hyperintense signal changes 
in the anterior medial globus 

pallidus, with surrounding 

hypointensity in the globus 

pallidus, on T2-weighted 

images. 

 

The increased 

levels of Cu, Zn, 

Fe and Mg reflect 

the involvement of 

metabolism of 

several metals 

and/or metal-

binding proteins 

during the 

progression of 

IBSPDC. 

Neurodegenerati

on with brain 

iron 

accumulation 

 

BIND 44- 47 Neurological, learning 

and movement disorders, 

isolated hearing loss, and 

auditory dysfunction 

The abnormalities result 

from damage to the basal 

ganglia.  

High T2 signal in globus 

pallidus 

„Abnormal” 

accumulation                                                                                                                  

and distribution of                                                                                                                    

reactive iron, copper 

and zinc in the basal 

ganglia 

 

Table 2. Age-related differences in the effects of D-Penicillamine 

            Neonates              Adults 

 

Hexobarbital                    shortened       no effect 

sleeping-time 

 

Hem-oxygenase                    inhibited       no effect 

 

Cytochrom- P- 450          increased       no effect 

 

Catalase                     increased       no effect 

 

Peroxidases                     increased       no effect 

 

LD50                                                            > 4000 MG/KG (IP)                 500 MG/KG (IV) 

 

Radioprotection                    significant            ? 
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Figure 1.   

Potential pathomechanisms of bilirubin-induced (metal mediated) neurodevelopmental 

dysfunction (BIND), and effects of D-Penicillamine (D-PA) in the neonatal 

hyperbilirubinemia (ROS = reactive oxygen species; CuFr = free copper; UCBFr = free 

bilirubin). Interpretation of D-PA written sideways: D = direct antioxidant; │ = scavenge of 

ROS and chelation of metals; P = inhibition of heme oxygenase (a decreased production of 

UCB) only in the newborn period (age related effect);  A = copper chelation 
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