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ABSTRACT: A detailed and qualitative matrix representation of the one-dimensional periodic 

Anderson model (PAM) is presented giving the ground state as a function of band filling using the 

exact diagonalization technique.The simplest lattice system of two electrons on two sites is 

consider, in the study the results of the matrix element were compared and it was found that for 

the symmetric case where the energy of the f  electrons Ef =-U/2 and the hybridization matrix 

element V switched off, the results are consistent with  the Kondo model Hamiltonian matrix in the 

J =0 region.The results obtained in the study are also in agreement with the famous Hubbard (t –

u) model if the Hybridization term V of the PAM and the energy of the localized f orbital Ef are 

switched off. The results of the ground state energies were used to determine the transition from 

antiferromagnetic (AFM) phase to a ferromagnetic (FM) phase and vice versa. 
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INTRODUCTION 

The periodic Anderson Model (PAM)[1,2] describe the essential physics of many transition 

metals, rare earth and actinide compounds including the so-called heavy-fermion system.  The 

model has also been proposed to describe the cuprate superconductors.  It is one of the archetypical 

models of correlated fermions on a lattice, consisting of a band of “light” uncorrelated electrons 

[2]. 

The Anderson model (1961) is another model for a system of conduction electrons that interact 

with a local spin. The model has some terms that are similar to those of the Kondo and Hubbard 

models. Early workers thought that the Kondo and Anderson models made very similar 

predictions. Now it is known that the Anderson model has a variety of behaviour. It has a more 

interesting Physics. The Kondo model treats the local spin as a separate entity. The Anderson 

model treats the local spin as just another electron. It can undergo exchange and other processes 

with the conduction electrons. The Anderson model is more realistic [3]. 

The objective here is to explore the periodic Anderson model by numerical calculations in which 

exact solutions are obtained for clusters of one dimension. This kind of study has been very 

informative in applications to Hubbard, t – J, and the extended Hubbard models. The exact 

diagonalization technique is used in this context as a result of some of its advantages over other 

techniques. It allows us to study chains longer than what is achievable by other techniques. The 

ED technique also avoids the problem of Monte Carlo calculations where very low temperatures 

are difficult to attain. Another complication is: the Lanczos method which is commonly employed 
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to extract a few low lying eigenvalues of large matrices is inadequate in the case for many 

interesting values of the parameters; which can only be made available by exact diagonalization 

technique. This may occur if there is large difference in energy between C and f levels. The 

Lanczos method may not give accurate results over a large enough range of energies to describe 

all the interesting features. It main advantages are that there are no restrictions to infinite or large 

coulomb repulsion U, or to large degeneracy N. In addition, there is no finite size effects since the 

method offers an exact treatment of an impurity coupled with an infinite sea of conducting 

electrons. As a result, we have to employ a method which obtains all the eigenvalues. These 

considerations have limited our calculations so far to exact diagonalization technique in one 

dimension. 

The scientific study of magnetism started in the 16th century, after people had come to some 

understanding of the principles of magnetic induction and magnetization [4]. Basically, magnetism 

is due to the motion of electric charges. The electrical basis for the magnetic properties of matter 

has been verified down to the atomic level. An electronic charge in motion gives rise to an tiny 

magnetic field, each electronic charge in motion always feel the presence of other neighbouring 

electrons because of the Coulomb  and spin interactions between them. The resulting interaction 

of these charges in motion is what is usually referred to as electron correlations [5]. For a system 

of many electrons, the electrons are paired within energy levels, according to Pauli Exclusion 

Principle which states that no two electrons with the same spin can occupy the same site, this 

follows that for the two electrons to occupy the same site, and then their spins must be in opposite 

directions. Thus there are three possibilities of electronic pairing: The two electrons have opposite 

spin either at the same site or at two different sites, and in both cases we get a singlet state (i.e. a 

state with zero unit of spin); Each of the two electrons has a spin pointing up and each electrons 

has a spin pointing down. In the second and third possibilities, the electrons must necessary be on 

different sites yielding triplet states that is one unit of spin [6]. In the context of strongly correlated 

electron systems one is mainly interested in magnetic phase transition involving the conduction 

electrons [7]. As prototypes we will consider ferromagnetic (FM) and antiferromagnetic (AFM) 

phase transitions in this research. 

In this research work we followed the procedure employed where the spin and magnetic correlation 

of the I – D Hubbard model were investigated and the results show no clear transition from FM to 

AFM [8]. The ground state properties of interacting electrons in the Anderson Model were 

analyzed [9] where transitions were obtained using the Computaional ED Techniques. 

Using the Density Functional theory and Inter – Atomic force constants [10,11,12], some of the 

authors here investigated theoretically the phonon phase diagrams in Aluminium(Al), Copper 

(Cu),  Nickel (Ni), Platinium (Pt), Lead (Pb) and Palladium(Pd); the results shows that there are 

computational lattice error and underestimation of lattices in these metals.The rest of the paper is 

organized as follows: After introducing the periodic Anderson model (PAM) in section 2, the 

problem of two interacting electrons on two sites lattice systems under this Hamiltonian in one-

dimension is solved in section 3. We present our results in section 4; and offer a summary and 

discussion in section 5. 
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The periodic Anderson Hamiltonian 

We consider the standard periodic Anderson Hamiltonian in one-dimension: 
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where C i
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 create and annihilate conduction electrons with spin 
2

1
   at site 1, and 

f i



  and f i  create and annihilate local f electrons. Here t is the hopping matrix element for 

conduction electrons between neighbouring sites and ij  denotes a pair of nearest neighbours. Ef 

is the energy of the localized f  orbital, U  is the on-site coulomb repulsion of the f  electrons, and 

V is the on-site hybridization matrix element between electrons in the f  orbital and the conduction 

band C. In the limit of large U, the interaction term is the dominant term. We will assume that the 

conduction band is infinitely wide and structureless; therefore, V, is neither energy nor chemical 

dependent. The minus sign in the first term means that the lowest C level will have zero 

wavevector. Both direct hopping and direct exchange between f electrons are neglected here. In a 

situation of large U and negative Ef local moments of the f sites becomes well defined. Since there 

are two electronic orbital’s on each site, the quarter filled case corresponds to Nel = N and the half-

filled case has Nel = 2N. Where Nel = number of electrons and N = number of sites in the lattice 

system. 

It is useful to introduce a representation of the f electron operators in terms of auxiliary particles, 

which serves to linearize the coulomb interaction terms. Hence from (2.1) 
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A significant feature of this model is the hybridization term V, which allows the f  electrons in 

heavy fermion systems to become mobile, despite the fact that they are separated by a great 

distance[1]. 

Two interacting electrons on a two-site lattice system (1-D) 

Considering two interacting electrons on a two-site lattice system in one-dimension, these 

correspond to the quarter filled case (Nel = N). a maximum of four electrons can be accommodate 

in this lattice, but with only two electrons in each site (Quarter-filled band). Here we have six 

possible electronic states. 
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Using the Hamiltonian (2.1) to act on the basis electronic states (3.1), the Hamiltonian 

matrix form is: 
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The ground state energy Eg is: 

2

4816 22

f

g

Evutu
E


             (3.3) 

From (3.2) the eigenvalues corresponding to the singlet states energy (Es) and triplet state energy 

(Et) are given by (3.4) and (3.5) respectively. 
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And component of the corresponding eigenvector are given in (3.6) 

22
16

4

1
utu

t
X




 , 1

2
X , 0

3
X and 14 X      (3.6) 

Now the normalized wave-functions  for the singlet states 
s

 can be written as (3.7): 
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And the normalized wave-function  for the triplet state 

t
 can also be written as (3.8) 
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RESULTS  

For simplicity, we shall concentrate here on two particular cases of the Anderson Hamiltonian: 

The symmetric case in which Ef  = -U/2 with V term switched off and, the case of where Ef  = -U/2 

with V term switched on. 

CASE ONE: Ef  = -U/2 with V term switched off. 

The table obtained is given below, where we varies t and keep U constant (i.e. U = 10) 

Table 4.1 

 

 

                                                                      Fig 4.1 Graph of Es,Et against t (Colour on-line) 

Now let’s consider the case  where we varies u and keep t constant (i.e. t = 0.5) 

 

 

u t Es Et 

10 -0.08 -10.0026 -10 

10 -0.07 -10.002 -10 

10 -0.06 -10.0014 -10 

10 -0.05 -10.001 -10 

10 -0.04 -10.0006 -10 

10 
-0.03 -10.0004 -10 

10 
-0.02 -10.0002 -10 

10 
-0.01 -10 -10 

10 
0 -10 -10 

10 
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Table 4.2 

t U Es Et 

 

0.5 0 -1 0 

0.5 1 -1.61803 -1 

0.5 2 -2.41421 -2 

0.5 3 -3.30278 -3 

0.5 4 -4.23607 -4 

0.5 5 -5.19258 -5 

0.5 6 -6.16228 -6 

0.5 7 -7.14005 -7 

0.5 8 -8.12311 -8 

0.5 9 -9.10977 -9 

0.5 10 -10.099 -10 

0.5 11 -11.0902 -11 

0.5 12 -12.0828 -12 

0.5 13 -13.0765 -13 

         Fig. 4.2       Graph of Es, Et against u 

CASE TWO: Ef  = -U/2 with V term switched on. 

Keeping the values of the hybridization term constant (i.e. V = 10) and the Hopping matrix element 

t (t =1) 

Table 4.3 

V t U Es Et 

 

10 1 49 -11.4689 -9 

10 1 49.2 -11.3627 -9.2 

10 1 49.4 -11.2565 -9.4 

10 1 49.6 -11.1503 -9.6 

10 1 49.8 -11.0441 -9.8 

10 1 50 -10.938 -10 

10 1 50.2 -10.8318 -10.2 

10 1 50.4 -10.7257 -10.4 

10 1 50.6 -10.6196 -10.6 

10 1 50.8 -10.5134 -10.8 

10 1 51 -10.4073 -11 

10 1 51.2 -10.3012 -11.2 

10 1 51.4 -10.1951 -11.4 

10 1 
51.6 -10.089 -11.6 

      Fig 4.3 Graph of Es, Et against U 
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SUMMARY AND CONCLUSION 

Summary 

Usually, the eigenvalue solution of the matrix form of the Hamiltonian will yield the total energy 

which is the energy spectrum of the system and the lowest of them is the ground state energy of 

the system. 

The condition to produce a ferromagnetic phase is that the lowest state energy of the triplet state, 

Et must be smaller than that of the singlet state, Es, i.e Et<Es [13]. If the singlet states provides the 

lowest energy, then the system will be Antiferromagnetic (i.e. zero spin polarization), while it will 

be ferromagnetic (i.e. full polarization) if the triplet state provides the ground state energy. 

The value at which Et = Es gives rise to a transition from antiferromagnetic phase to the 

ferromagnetic phase or vice-versa. This point is called the transition point, Tp. 

We first consider two electrons on two sites system using the symmetric case Ef = -u/2 and V =0. 

In this strong coupling case, the Anderson Model Hamiltonian matrix is consistent with the Kondo 

Model Hamiltonian Matrix giving the same ground State Energy in the small J or J = 0 region. The 

Hubbard Hamiltonian matrix was also recovered if the hybridization term V and Energy of the 

localized ƒ orbital Ef  are switched off. 

In the context of the Kondo lattice Model, table 4.1 and Fig. 4.1 the ƒ electrons will interact mainly 

with the single unpaired electron and will tend to align ferromagnetically. The physical meaning 

of this nature of graph is not completely antiferromagnetic or ferromagnetic, which indicates that 

it is unstable; hence it shows no transition. We note that, for an ƒ electron to interact with one 

electron of the doubly occupied conduction band and produce a spin flip , one conduction electron 

needs to hop to a higher energy level. When the effective Kondo coupling J, is zero, the effect 

becomes more important, as there is no finite separation between the conduction energy level. 

From table 4.2 and fig. 4.2, it was observed that U, the on-site coulomb repulsion energy of the f  

electron, suppresses ferromagnetism tendencies in the lattices considered. It was discovered from 

computations, that in table 4.3 and fig. 4.3 , as the values of U increases, from 49 to 50.5, the lattice 

is still antiferromagnetic.  At U =-10.6 which is the transition point, Tp a cross-over from 

antiferromagnetic phase to ferromagnetic was observed. Within this section, the relationship 

becomes Es › Et, which is condition for ferromagnetism. 

While the technique gives energy that is in principle exact, it has proven to give quite accurate 

results for One-Dimensional (1-D) quantum lattice system. 

The method provides a controlled way of numerically diagonalizing a finite system. One can 

increase the accuracy by increasing the number of states. 

Within the Exact method we fixed the number of electrons Nel to be equal to number of sites N 

(quarter filled band), and find the ground state energy. 

In conclusion, we constructed the matrix of the one –dimensional Anderson Lattice using the Exact 

diagonalization technique, as we consider the symmetric cases, Ef  =-u/2, where we either switch 
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on or off the hybridization term V. When this is done, the results are consistent with Hubbard (t-

U) Model and Kondo Model Hamiltonian Matrix. Hence the Anderson Model is in qualitative 

agreement with these two famous models. 
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NOTE: Technically speaking the symmetric case corresponding to Ef  -U = -u/2, where u is the 

chemical potential of the non interacting conduction electrons which varies as a function of the 

filling. The Ef  = -u/2 corresponds to the symmetric  case at half filling for which u = 0. 


