
European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

1

@ECRTD-UK- https://www.eajournals.org/

K-VARIANT ARCHITECTURE TO IMPROVE SECURITY OF WEB SERVICES AND

APPLICATIONS

Berk Bekiroglu

Department of Computer Science, Illinois Institute of Technology

Citation: Berk Bekiroglu (2022) K-Variant Architecture to Improve Security of Web Services and Applications,

European Journal of Computer Science and Information Technology, Vol.10, No.2, pp.1-17

ABSTRACT: The K-variant is a multi-variant architecture to improve security against memory

exploitation attacks. Unlike other multi-execution architectures, variants in the K-variant

architecture are generated by program transformations at the source code level. Because variant

generation processes can be automated, the cost of systems has significantly decreased compared

to similar architectures such as N-version. Multi-execution architectures were designated to

improve the security of the mission and safety-critical systems. However, to meet the high-security

requirements of organizations and companies, multi-execution architectures have been utilized to

enhance the security of web services and applications. The increasing number of memory-related

vulnerabilities in web servers and services makes systems vulnerable to memory exploitation

attacks. The K-variant architecture can provide statistical security for memory exploitation attacks

by providing a diversity of critical data in memory. In this paper, the design of a K-variant

architecture for web services and applications is proposed. Also, different levels of diversities in

K-variant systems are discussed in the implementation of the K-variant architecture.

KEYWORDS: K-variant architecture, design diversity, memory exploitation attacks, secure web

services, and applications

INTRODUCTION

With the proliferation of e-commerce platforms, businesses must develop more reliable and secure

systems to instill confidence in their consumers. Unreliable and insecure systems can result in the

loss of a large number of current and prospective customers. Additionally, businesses' reputations

may suffer due to unreliable and insecure web services. Additionally, businesses and organizations

may incur legal and financial liabilities as a result of service disruptions or failures. For these

reasons, more secure web services and applications are required.

Most web services and applications are written in memory-safe languages such as Java and C#.

Therefore, the risk of memory exploitation attacks on those systems is low. However, high-

performance websites and applications still use machine-compiled code like C++ and C to make

services or applications fast to start up and execute. Memory-unsafe languages can improve the

performance of web services and applications. On the other hand, they can be exposed to memory

exploitation attacks. Exploiting a buffer overflow vulnerability may allow adversaries to corrupt

web services, expose confidential information, or execute malicious code.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

2

@ECRTD-UK- https://www.eajournals.org/

Buffer overflow vulnerability attacks may still be possible even if a web service or application is

coded in a safe memory language because the interpreter and libraries can be written in unsafe

languages. For example, PHP is a scripting language that is not itself affected by memory

exploitation attacks. However, the PHP interpreter is written in the memory-unsafe C

programming language. Therefore, systems can be affected by memory-related attacks [1].

Another example is a memory-safe Java application that uses a compression library written in the

memory-unsafe C programming language. The library can allow overwriting of the Java

executable file by exploiting a buffer overflow vulnerability. These examples show that services

and applications written in a memory-safe language can be exposed to memory exploitation

attacks. Therefore, memory-related vulnerabilities should be considered in web services and

applications requiring high security.

The CVE Details vulnerability database [2] shows that reported memory-related vulnerabilities

have increased recently. Newly discovered memory-related vulnerabilities in popular web servers

allow attackers to corrupt services and override existing files and executables. Although

developers and communities provide patches for new vulnerabilities, many unreported

vulnerabilities still exist and are exploitable by attackers. Therefore, architecture-level security

may be required for web services and applications that require high security.

Fault tolerance architecture is one of the methods to improve the reliability and security of software

systems through redundancy. Diversity in design, programming languages, and operating systems

can be achieved to produce spare components and programs. The N-version architecture is one of

the fault tolerance architectures that appeared in the 70s to improve mission-critical systems'

reliability and security. However, high reliability and security are also required in web services

and applications for companies and organizations to provide more confidence to their customers

and users. Moreover, some companies may pay a monetary penalty when their systems fail because

of unreliable components or cyber-attacks.

In the N-version architecture, multiple versions of a program are developed by different developers

that usually do not share anything except software specifications. Each version may have different

designs and may be developed in a different programming language. So, it is expected that each

version has different vulnerabilities. If one of the versions fails because of the exploitation of a

vulnerability, the other versions may continue to operate as expected. The apparent disadvantage

of the N-version architecture is its high cost. The cost of a project may double or triple for the

second and third variants, respectively. Generating more than three variants is unlikely if the

system is not mission or safety-critical. Another side effect of the N-version architecture is the

verification of each variant. Especially for large programs, it is challenging to verify that each

version is functionally equivalent, especially for large programs.

The K-variant is an alternative architecture that takes advantage of the N-version architecture at a

reasonable cost. Variants in the K-variant architecture are generated by simple and safe source-to-

source program transformations. So, the cost of the variant-generation process is significantly

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

3

@ECRTD-UK- https://www.eajournals.org/

reduced. Program transformations in the K-variant architecture provide the diversity of critical

data in memory for each variant. In this way, the survivability of systems against memory

exploitation attacks is significantly improved [3]. In addition to memory level diversity in the K-

variant architecture, diversity in the execution environment can also be achieved, similar to the N-

version architecture [4]. Variants in K-variant systems can be deployed to different web servers

that may run on different operating systems. That may provide better security against memory

exploitation attacks.

The main contributions to this paper are as follows:

 A K-variant architecture for web services and applications is proposed.

 The high-level design of the K-variant architecture for web services and applications is

explained.

 Implementation of K-variant systems and other diversities such as operating system and

web server level in the K-variant architecture are discussed.

The remainder of this paper is structured as follows. Section 2 explains the related research.

Section 3 presents the K-variant architecture for web services and applications. Section 4 describes

the high-level design of the K-variant architecture for web services and applications. Section 5

briefly explains the program transformation techniques used in the K-variant architecture. Section

6 discusses the implementation details of the K-variant architecture for web services and

applications. Finally, Section 7 concludes and discusses future work.

RELATED RESEARCH

The reliability of web services was improved with a single version of a program by redundant data

and functions using SOAP [5]. This approach is based on procedure triplication [6], where

important procedures are triplicated to have the same signature but different implementations. The

fault tolerance is achieved by calling each procedure sequentially with similar inputs; then, all

results are voted by a majority algorithm.

Diversity is an important concept for improving the reliability and security of computer systems.

Diversity makes systems more robust against replicated attacks [7]. In addition, diversity may

tolerate accidental faults [8]. Diversity can be achieved at different levels, such as the interface

level, application level, execution level, hardware level, and operating system level. Address space

randomization [9], instruction set randomization [10, 11], DLL based randomization [12], stack

space randomization [13], heap randomization [13], calling sequence diversity [14], encrypted

instructions [15] are some of the diversity techniques that are used to improve security.

Diversity in architecture is one of the valuable techniques in fault tolerance. N-version

programming [16, 17] is a prominent architecture that is used to improve mission and safety-

critical systems. In N-version programming, multiple versions or variants of a program run

concurrently to perform a mission or an operation. Multiple versions or variants are generated by

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

4

@ECRTD-UK- https://www.eajournals.org/

different developers, only sharing software specifications. Different designs and programming

languages can be used when developing different versions or variants. Eventually, each variant

will have different vulnerabilities. Thus, if one of the variants is compromised because of an attack

or a bug, the other versions or variants may continue to operate successfully.

N-version programming is an expensive process. Developing the second and third versions can

double and triple the project cost. Besides the high cost, verifying the functional equivalence of all

versions is a challenging process. Even for two small programs, it is hard to prove that two

programs are functionally equivalent. For all these reasons, N-version programming is used only

in mission or safety-critical systems where very high reliability and security are required.

However, today, many business-to-business systems and profit or nonprofit organizations require

high reliability and security because failures of these systems may cause huge losses in profits and

prestige for them. Thus, N-version programming has started to be used in general-purpose systems

such as web servers. The source [4] proposes an architecture for dependable web services using

N-version programming. The prosed architecture uses design diversity and WS-BPEL (Web

Services Business Process Execution Language) to make systems more adaptable. A variety of

options for operating systems, web servers, application servers, database servers, programming

languages, and IDEs are provided to achieve design diversity. Another fault tolerance architecture

for web services is proposed in [18]. The proposed architecture is called FT-Web. In that

architecture, a request is sent to active replicas of services. A component responsible for managing

variants in the system analyzes received responses and decides the final response. A similar

architecture is also proposed in [19]. A transparent middle layer achieves fault tolerance by sending

requests to all replicas in the system. The middle layer also manages all variants, provides

consistency between variants, and decides the final response to clients.

The K-variant architecture was proposed in [20] to improve the security of time-bounded mission-

critical systems. The K-variant architecture is an alternative to N-version programming. Unlike N-

version programming, all variants in the system are generated by automated, safe, inexpensive

program transformations. Since the variant generation process is automated in the K-variant

architecture, the cost of systems is significantly reduced.

K-variant architecture for web services and applications

In this section, the K-variant architecture for web services and applications and its components are

described. The K-variant architecture uses active replication to enhance security. Different variants

of a program are generated automatically by using program transformations. In this paper, two

versions of the K-variant architecture for web services and applications are explained. The first

version is static, in which all variants are generated and deployed when the system starts up. The

variants are never updated during runtime. The second version is dynamic, in which variants can

be updated during the execution time. The proposed architecture can easily be switched between

static and dynamic versions.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

5

@ECRTD-UK- https://www.eajournals.org/

Client

Controller 1

Variant 1

Variant 2

Variant 3

Engine Monitor

Controller 2

Variant Generator

ServiceDirectory

Figure 1 K-variant architecture for web services and applications.

The K-variant architecture for web services and applications consists of the following components.

Some of the parts are similar to the traditional N-version architecture for web services that is shown

in [4].

 Client: It is a user that requests service from the system. The Client may search for services

from the serviceDirectory, an indexing engine, to find registered services.

 ServiceDirectory: It is a directory to keep registered/published services in the system. The

Client looks up the ServiceDirectory to find available services and addresses of services. All

services can be indexed with unique IDs, service names, interfaces, specifications, and

addresses.

 EngineMonitor: It is an interface that clients interact with to get services. The EngineMonitor

forwards requests to a controller to perform services. When there is more than one Controller

in the system, the EngineMonitor also decides on a controller based on various factors, such as

load balancing, the proximity of servers, etc. In the K-variant architecture, it is assumed that the

EngineMonitor is safe because of the single point of failure.

 Controller: It is the core component of the K-variant architecture. It is responsible for managing

variants, sending requests to variants, and voting for final results. The Controller receives

clients' requests from the EngineMotor and sends them to all variants in the system

simultaneously. In the Controller, a voting module is used to decide the final response to the

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

6

@ECRTD-UK- https://www.eajournals.org/

Client. There may be more than one Controller in the K-variant architecture to prevent a single

point of failure.

 VariantGenerator: It is a component that automatically generates variants using program

transformations. The used program transformations are simple and safe. Thus, no additional

software testing is required for automatically generated variants. The VariantGenerator deploys

variants to different servers or locations after generating them. The VariantGenerator also has

a timer for the dynamic model, in which variants are updated periodically during the runtime.

 Variant: It is a program that provides services. All variants are generated by the same program

by applying source-to-source program transformations. Increasing the number of variants tends

to improve the security of a K-variant system.

Figure 1 represents the high-level architecture of the K-variant architecture. The Client looks up a

web service by using a service's specifications in the ServiceDirectory. Then, the Client sends its

service request to the EngineMonitor. The service request can be synchronous or asynchronous

depending on the Client's application and the used protocol between the Client and the

EngineMonitor. EngineMonitor decides on one of the Controllers in the system and forwards the

service request to the selected Controller. The Controller sends service requests to all variants in

the system simultaneously. After the Controller receives all of the results from variants, it votes

for the final result. After that, the final result returns to the EngineMonitor. Finally, the Client

received the result of the requested service from the EngineMonitor.

The EngineMonitor and Controllers form a middle layer, which is transparent to clients. The Client

may not be aware of the number of variants, controllers, and engine monitors in the system.

The high-level design of K-variant architecture for web services

In this section, the object-oriented design of the K-variant architecture is demonstrated. Figure 2

shows the class diagram of the K-variant architecture for web services. The rest of the section

explains each method in each class and design details.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

7

@ECRTD-UK- https://www.eajournals.org/

Client

+EngineMonitor
+serviceDirectory

-process()

Controller

+variantList

Variant

Variant_1

-service()
-process()

Variant_2

-service()
-process()

Variant_3

-service()
-process()

ControllerServer_1

-register(*Variant)
-unregister(*Variant)
-callService()
-vote()

ControllerServer_2

-register(*Variant)
-unregister(*Variant)
-callService()
-vote()

EngineMonitor

+controllerList

-selectController()
-forwardService()
-serviceInterface()

VariantGenerator

+variantList
+sourceCode
+programTransformation
+TimerEnabledFlag

-applyProgramTransformation()
-timer()

ServiceDirectory

+ServiceList

-registerService(spec)
-unregisterService()
-searchService()

ProgramTransformation

ProgramTransformation 1

-applyProgramTransformation()

ProgramTransformation 2

-applyProgramTransformation()

Figure 2. Class diagram of the K-variant architecture for web services.

Client Class: It has a process() that invokes searchService() from the ServiceDirectory to look up

a service. Then, the process() calls serviceInterface() from EngineMotor to get the service.

ServiceDirectory Class: Offered services are published and unpublished by the register() and

unregister() methods, respectively. Service specifications, including service name, ID, and

interface, are provided when registering a web service. An internal data store (serviceList) may be

used to keep service data. searchSerive() finds and returns the name of a published service from

the serviceList by using service specifications.

EngineMotor Class: serviceInterface() provides an interface for the Client to get a service. Service

name and parameters may also be sent when calling serviceInterface(). selectController() and

forwardService() are called inside serviceInterface(). selectController() selects one of the

controllers from the controllerList. That selection can be random. Also, different factors, such as

load balancing, server proximity, etc., may be considered when selecting a controller.

forwardService() forwards the service request with the required service parameters to the selected

Controller.

Controller Class: register() and unregister() methods can add and remove variants from the

variantList, which is a data structure to keep variants' information such as variant addresses,

specifications, etc. callService() calls a requested service to all variants in the variantList. After

receiving responses from all variants, the vote() method is called to decide the final result. Any

voting mechanism that is used in the N-version architecture can also be used in the K-variant

architecture.

VariantGenerator Class: It applies ProgramTransformation() method that takes the original

source code and generates a variant by applying a program transformation. The strategy pattern

[21] is used to apply different program transformations. The strategy pattern allows adding new

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

8

@ECRTD-UK- https://www.eajournals.org/

program transformations with a minimum change in design. Program transformation classes

include the implementation of different program transformations, which are called in

applyProgramTransformation(). After generating new variants, they are deployed to different

locations using addresses in the variantList. Depending on the programming language, the source

codes of variants may need to be compiled. Thus, variant programs may be compiled, and

executable files are deployed in different locations.

ProgramTransformation classes: These classes are related to the strategy pattern. Different

program transformations are implemented in these classes. applyProgramTransformation() is a

method that applies a specific program transformation.

Variant classes: They contain the implementation of web services. service()is a method that calls

process() to perform a web service.

Figure 3. Original Program

Program transformations for the K-variant architecture

Variants in the K-variant architecture are generated by applying source-to-source program

transformations. The goal of program transformations in the K-variant architecture is to shift the

vulnerable memories in each variant. By applying memory shifter program transformations [22],

the addresses of vulnerable memory will not be totally overlapped. This approach may improve

the security against memory exploitation attacks. If one variant in the system is compromised

because of an attack on vulnerable memory, the other variants may continue to deliver expected

services. All program transformations that are used in the K-variant architecture have the following

common features:

 They do not impact the functions or behaviors of programs.

 They shift the vulnerable data to different locations.

 They do not cause additional bugs in a program.

 The transformed program does not need significant software testing.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

9

@ECRTD-UK- https://www.eajournals.org/

 The original source code is preserved as much as possible.

 They have acceptable memory and runtime overheads.

In this section, program transformations that have been used in the K-variant architecture are

briefly explained. These program transformations were explained in detail [22].

Inserting dummy buffers

It was the first program transformation for the K-variant architecture [20]. In this program

transformation, a random number of dummy buffers with random sizes are inserted into the source

code. A dummy buffer is a buffer that is defined but never used. A dummy buffer does not affect

the program's execution, but it takes up space in the memory.

Dummy buffers can be inserted after the existing buffers in the source code. That may prevent

potential buffer overflow vulnerabilities. An example program transformation of inserting dummy

buffers is shown in Figure 4. In the example, a dummy buffer is inserted after the existing buffer

in the original source code, which is shown in Figure 3. When a buffer overflow occurs in buffer1,

the dummy buffer is manipulated instead of the critical data, which may affect the program's

outcomes.

Figure 4. Inserting dummy buffers. The source code after the program transformation.

In this program transformation, any number of dummy buffers of any size can be inserted into the

source code. The only limitation of this program transformation is the machine's memory size on

which a variant runs.

Expanding the size of existing buffers

In this program transformation, random existing buffers are expanded by random sizes. Unlike

inserting new dummy buffers, expanding the size of existing buffers provides more control over

shifting vulnerable memory. New dummy buffers may not be placed next to existing buffers in

some systems. In that case, inserting new dummy buffers may not prevent buffer overflows. On

the other hand, the location of unused buffers can be easily determined with respect to the existing

buffers by expanding the size of the existing buffers.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

10

@ECRTD-UK- https://www.eajournals.org/

An existing buffer can be expanded to the right, left, or both directions. An example of the

expanding buffer to the right is shown in Figure 5. In the expansion to the right, only the definition

of the expanded buffers is updated. All the uses and references of the expanded buffer remain the

same. In Figure 5, buffer1 is expanded to the right by five units in its definition. The use of buffer1

in the assignment statement does not change.

Figure 5. Expanding buffers to the right. buffer1 is expanded to the right by five units.

Figure 6 represents the expanding buffer to the left. Similar to the expansion to the right, the

definition of the expanded buffer is updated in the left expansion. However, each use or reference

of the expanded buffer must also be updated in its scope because the unused buffer is located at

the beginning of the existing buffer. Therefore, the buffer's use or reference in the assignment

statement is also updated in Figure 6. In this program transformation, all the values in the buffer

are shifted to the right by the size of the expansion. In the example, all values in buffer1 are shifted

to the right by five. Thus, the index (val) of buffer1 is incremented by five.

Figure 6. Expanding the buffers to the left. buffer1 is expanded to the left by five units.

 In order to expand buffers in both directions, the left and right expansions can be applied

consecutively. When buffers are expanded in both directions, the existing data is put in the middle

of the expanded buffers.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

11

@ECRTD-UK- https://www.eajournals.org/

The apparent disadvantage of program transformations of expanding buffers is that the number of

expanded buffers is confined to the number of buffers in the program. On the contrary, there is no

such limitation on inserting new dummy buffers.

Increasing dimensions of existing buffers

In the previous two program transformations, the data in the buffer was continuous. The goal of

this program is to separate the data inside buffers and add dummy buffers between them. In this

program transformation, the dimension of random buffers is expanded by random sizes. In this

way, the data in the existing buffers are spread throughout the memory.

In addition to updating the definition of the expanded buffer, any references or uses of the

expanded buffer must also be updated in their scope. Because only one index is utilized in the new

dimension, a random index needs to be selected for use or reference in the expanded buffers.

Figure 7 shows an example of increasing the dimension of existing buffers. The one-dimensional

buffer is expanded to a two-dimensional buffer. The size of the new dimension is four. The use of

the buffer in the assignment statement has also been updated. The new dimension index in the use

of the buffer is two, a random number smaller than the size of the new dimension.

Figure 7. Increasing the dimension of existing buffers. The dimension of buffer1 is expanded. The size of the new dimension is 4.

Index 2 is selected using the expanded buffer for the new dimension.

Converting primitive data type variables into buffers

One way to shift the vulnerable memory is by converting primitive data types, such as characters,

floats, integers, and Booleans, into random-size buffers or arrays. In this program transformation,

the value of the variable is placed in a random index in the new buffer. Other indexes in the buffer

are unused. This program transformation involves updating both the definition and uses/references

of the variables in the source code within its scope.

Figure 8 displays converting a primitive data type variable into a buffer. In this example, the integer

variable var is converted into an integer array of size five. The value in variable var is moved to

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

12

@ECRTD-UK- https://www.eajournals.org/

the second index of the buffer. Therefore, var is replaced with var[2] in the use of the variable in

Figure 8.

Figure 8. Converting primitive data type variables into buffers. The integer variable val is converted to an integer array. The

value of val is moved to the second index in the new buffer.

Implementation of K-variant architecture

This section explains and discusses some implementation details of the K-variant architecture. The

modules in the K-variant architecture can be implemented within a single program and run on a

single machine. Alternatively, a separate program can be developed for each module that runs on

single or multiple machines. Although the K-variant architecture provides diversity in memory

locations of critical data, other levels of diversity, such as operating systems, web servers, and

messaging protocols between modules, can be achieved for additional security.

In the N-version architecture, variants can be implemented in different programming languages.

However, that is not possible in the K-variant architecture, in which all variants are generated by

source-to-source program transformations. However, depending on the programming language,

diversity on the webserver can be provided. Because each web server will have a different

vulnerability, the security of the K-variant system will increase if the diversity of the web server

is achieved for each variant.

Table 1 shows the most popular web servers with their supported operating systems, programming

languages, the total number of reported vulnerabilities, and reported memory-related

vulnerabilities. Supported languages and operating systems for the web servers are not limited to

Table 1. With third-party support and new distributions, the coverage of the web servers keeps

increasing. Therefore, more diversity can be achieved at the webserver level in the K-variant

architecture. As seen in Table 1, an important percentage of the overall reported vulnerabilities are

memory-related. Furthermore, a significant portion of these memory-related vulnerabilities has

been reported in recent years. For example, 287 memory-related vulnerabilities have been reported

since 1999 on the Apache Web Server. 133 of 287 memory-related vulnerabilities in the Apache

Web Server have been reported since 2017 in the CVE Details vulnerability database [2]. That

shows the potential threat of memory-related attacks on web servers and applications. For this

reason, it is advised to have a diverse set of webservers in the K-variant design.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

13

@ECRTD-UK- https://www.eajournals.org/

Table 1. Operating systems and web servers that can be used in K-variant systems to provide diversity. The vulnerability data

numbers were retrieved from CVE Details [2].

Web Server
Operating

system

Supported

Languages

of Reported

vulnerabilities

of memory-

related

vulnerabilities

Apache HTTP

Server

Linux, Unix

Windows,

OpenVMS, Mac

OS X

PHP, ASP.NET,

Python, Prolog,

Ruby, Perl,

Lisp, Lua, JSP

1497 287

The Internet

Information

Server (IIS)

Windows

PHP, ASP.NET,

Python, Prolog,

Ruby, Perl

100 35

lighttpd

FreeBSD,

Windows, Linux,

Solaris, Mac OS

X

PHP, Python,

Perl, Ruby, Lua
29 4

Oracle iPlanet

Web Server

(OiWS)

Linux, Unix,

Windows, Solaris,

PHP, Python,

Perl
17 11

Jigsaw Server

Linux, Unix,

Windows, Mac

OS X, FreeBSD

PHP, JSP
3

0

Various program transformations can be utilized in VariantGenerator to generate new variants.

The algorithms for four program transformations that can be used in the K-variant architecture are

shown in [22]. By applying the strategy pattern, different program transformations can be selected

at runtime. After generating the source code of variants, they may need to be compiled depending

on the programming language. If variants are deployed on different operating systems, different

compilers will be required to generate binary files for a specific operating system. In this case, the

VariantGenerator also needs to keep a list of compilers with their corresponding target operating

systems and commands to generate binary files for a specific operating system. On the other hand,

if the service is written in a scripting language, the implementation of the VariantGenerator may

be much simpler. The transformed source code can be deployed to the server without any

compilation.

The messaging protocol is another implementation detail that needs to be considered in K-variant

systems. If variants are deployed on diverse operating systems and web servers, they need to be

communicated efficiently and securely without any issues. SOAP (Simple Object Access Protocol)

and REST (Representational State Transfer) are two standards that allow communication between

diverse systems. Both SOAP and REST use the HTTP protocol available on all web servers.

Therefore, SOAP and REST can be utilized in K-variant systems to communicate between

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

14

@ECRTD-UK- https://www.eajournals.org/

modules. SOAP uses only the XML format, which may cause an additional burden of creating and

parsing XML files. On the other hand, REST is not constrained to the XML file format. Any file

format, including JSON, XML, CSV, etc., can be used with REST. REST can provide much faster

communication than SOAP. However, creating requests and parsing responses is easy to

implement with REST if a .NET language is used. So, the selected messaging protocol can depend

on the performance and used programming language.

The Controller has one of the highest responsibilities in the K-variant architecture. Because of the

single point of failure, multiple controllers can be introduced to a system. The Controller finds the

service and requests all variants concurrently. The received responses need to be voted on to

produce the final result. The voting module in the Controller can be a simple majority algorithm.

Because all variants are generated from the same code, their trustworthiness is the same, and no

weighted voting algorithm is required. An acceptance test module can also be introduced to the

Controller to prevent voting responses from compromised variants.

CONCLUSIONS

In this paper, the K-variant architecture for web services and applications is described. The K-

variant is a multi-variant architecture that improves security against memory exploitation attacks.

By applying source-to-source simple and safe program transformations, multiple variants are

generated in the K-variant architecture. These program transformations shift the addresses of

vulnerable data in memory so that the diversity of memory locations of critical data in each variant

is achieved. This paper proposes designing a K-variant architecture for web services and

applications. The proposed architecture aims to improve security against memory-related attacks.

Unlike other multi-execution architectures, the cost of the K-variant architecture is low because of

the automation in generating multiple variants. In this paper, four program transformations:

inserting dummy buffers, expanding the size of existing buffers, increasing the dimensions of

existing buffers, and converting primitive data type variables into buffers are briefly explained. In

addition, the added diversity at the webserver and operating system levels is discussed for K-

variant systems for web services and applications. Deploying variants to different web servers that

run on different operating systems may provide additional security for K-variant systems.

In future work, the effectiveness of the K-variant architecture for web services and applications

will be investigated experimentally for various types of memory attacks. Moreover, the overhead

program transformations for web services and applications will be investigated.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

15

@ECRTD-UK- https://www.eajournals.org/

References

[1] J. Dahse, "sonarsource," 20 6 2017. [Online]. Available:

https://blog.sonarsource.com/security-flaws-in-the-php-core?redirect=rips. [Accessed 90 7

2021].

[2] "cvedetails," [Online]. Available: https://www.cvedetails.com/. [Accessed 31 7 2021].

[3] B. Bekiroglu and BogdanKorel, "Source Code Transformations for Improving Security of

Time-bounded K-variant Systems," Information and Software Technology, vol. 137, 2021.

[4] E. Nourani, "A new architecture for Dependable Web Services using N-version

programming," in 2011 3rd International Conference on Computer Research and

Development, Shanghai, China, March 2011.

[5] G. K. Saha, "Single version fault tolerant web services," Ubiquity, no. 2007, p. 4:1, 2007.

[6] G. K. Saha, "A Single-Version Scheme of Fault Tolerant Computing," in JOURNAL OF

COMPUTER SCIENCE & TECHNOLOGY, 2006.

[7] S. Forrest, A. Somayaji and D. Ackley, "Building diverse computer systems," in

Proceedings. The Sixth Workshop on Hot Topics in Operating Systems, Cape Cod, MA,

USA, May 1997.

[8] Y. Deswarte, K. Kanoun and J.-C. Laprie, "Diversity against accidental and deliberate

faults," in Proceedings Computer Security, Dependability, and Assurance: From Needs to

Solutions, York, UK & Williamsburg, VA, USA, 7-9 July 1998.

[9] S. Bhatkar, Defeating memory error exploits using automated software diversity, Thesis

State University of New York at Stony Brook, 2007.

[10] G. S. Kc, A. D. Keromytis and V. Prevelakis, "Countering code-injection attacks with

instruction-set randomization," in Proceedings of the 10th ACM conference on Computer

and communications security, Washington D.C., USA, October 27, 2003.

[11] G. Portokalidis and A. D. Keromytis, "Fast and practical instruction-set randomization for

commodity systems," in Proceedings of the 26th Annual Computer Security Applications

Conference, Austin, Texas, USA, December 6, 2010.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

16

@ECRTD-UK- https://www.eajournals.org/

[12] S. Bhatkar, D. C. DuVarney and R. Sekar, "Address obfuscation: an efficient approach to

combat a board range of memory error exploits," in Proceedings of the 12th conference on

USENIX Security Symposium - Volume 12, Washington, DC, August 4, 2003.

[13] S. Bhatkar, R. Sekar and D. C. DuVarney, "Efficient techniques for comprehensive

protection from memory error exploits," in Proceedings of the 14th conference on USENIX

Security Symposium - Volume 14, Baltimore, MD, July 31, 2005.

[14] D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C. Knight and A. Nguyen-Tuong,

"Security through Diversity: Leveraging Virtual Machine Technology," IEEE Security

Privacy, vol. 7, no. 1, pp. 26-33, January 2009.

[15] M. Milenković, A. Milenković and E. Jovanov, "Using instruction block signatures to

counter code injection attacks," ACM SIGARCH Computer Architecture News, vol. 33, no.

1, p. 108–117, March 1, 2005.

[16] A. Avizienis, "The N-Version Approach to Fault-Tolerant Software," IEEE Transactions

on Software Engineering, Vols. SE-11, no. 12, pp. 1491-1501, December 1985.

[17] L. Chen and A. Avizienis, "N-VERSION PROGRAMMINC: A FAULT-TOLERANCE

APPROACH TO RELlABlLlTY OF SOFTWARE OPERATlON," in Twenty-Fifth

International Symposium on Fault-Tolerant Computing, 1995, ' Highlights from Twenty-

Five Years'., Pasadena, CA, USA, June 1995.

[18] G. Santos, C. L. Lau and C. Montez, "FTWeb: a fault tolerant infrastructure for Web

services," in Ninth IEEE International EDOC Enterprise Computing Conference

(EDOC'05), Enschede, Netherlands, Sep. 2005.

[19] X. Ye and Y. Shen, "A middleware for replicated Web services," in IEEE International

Conference on Web Services (ICWS'05), Orlando, FL, USA, July 2005.

[20] B. Korel, S. Ren, K. Kwiat, A. Auguste and A. Vignaux, "Improving operation time

bounded mission critical systems' attack-survivability through controlled source-code

transformation," Sydney, Australia, November 14, 2011.

[21] R. H. R. J. J. V. Erich Gamma, Design Patterns: Elements of Reusable Object-Oriented

Software, Pearson Education, 1994.

[22] B. Bekiroglu and B. Korel, "Source Code Transformations for Improving Security of Time-

bounded K-variant Systems," Information and Software Technology (Elsevier), vol. 137,

2021.

https://www.eajournals.org/

European Journal of Computer Science and Information Technology

Vol.10, No.2, pp.1-17, 2022

Print ISSN: 2054-0957 (Print),

 Online ISSN: 2054-0965 (Online)

17

@ECRTD-UK- https://www.eajournals.org/

[23] P. Brady, "Cross-Site Scripting (XSS)," [Online]. Available:

https://phpsecurity.readthedocs.io/en/latest/Cross-Site-Scripting-(XSS).html. [Accessed 1 6

2020].

[24] "Zend\Escaper," Zend, [Online]. Available:

https://framework.zend.com/manual/2.1/en/modules/zend.escaper.introduction.html.

[Accessed 1 6 2020].

[25] U. Ladkani, "Prevent cross-site scripting attacks by encoding HTML responses," IBM, 30 7

2013. [Online]. Available: https://www.ibm.com/developerworks/library/se-prevent/.

[Accessed 1 6 2020].

[26] B. Hope, P. Hope and B. Walther, Web Security Testing Cookbook: Systematic

Techniques to Find Problems Fast, Sebastobol, CA: O'Reilly Media, 2009-05-15.

[27] B. Bekiroglu and B. Korel, "Survivability Analysis of K-Variant Architecture for Different

Memory Attacks and Defense Strategies," IEEE Transactions on Dependable and Secure

Computing, vol. 18, no. 4, pp. 1868-1881, 2021.

https://www.eajournals.org/

