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ABSTRACT: This paper deals with the effect of crack oblique and its location on the stress 

intensity factor mode I (KI) and II (KII) for a finite plate subjected to uniaxial tension stress. 

The problem is solved numerically using finite element software ANSYS R15 and theoretically 

using mathematically equations. A good agreement is observed between the theoretical and 

numerical solutions in all studied cases. We show that increasing the crack angle β leads to 

decreasing the value of KI and the maximum value of KII occurs at β=45o. Furthermore, KII 

equal to zero at β = 0o and 90o while KI equal to zero at β = 90o. However, there is no sensitive 

effect to the crack location while there is a considerable effect of the crack oblique. 
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INTRODUCTION 

Fracture can be defined as the process of fragmentation of a solid into two or more parts under 

the stresses action. Fracture analysis deals with the computation of parameters that help to 

design a structure within the limits of catastrophic failure. It assumes the presence of a crack 

in the structure. The study of crack behavior in a plate is a considerable importance in the 

design to avoid the failure the Stress intensity factor involved in fracture mechanics to describe 

the elastic stress field surrounding a crack tip.  

Hasebe and Inohara [1] analyzed the relations between the stress intensity factors and the angle 

of the oblique edge crack for a semi-infinite plate. Theocaris and Papadopoulos [2] used the 

experimental method of reflected caustics to study the influence of the geometry of an edge-

cracked plate on stress intensity factors KI and KII. Kim and Lee [3] studied KI and KII for an 

oblique crack under normal and shear traction and remote extension loads using ABAQUS 

software and analytical approach a semi-infinite plane with an oblique  edge crack and an 

internal  crack acted  on by a pair  of  concentrated  forces  at  arbitrary  position  is  studied by 

Qian  and Hasebe [4]. Kimura and Sato [5] calculated KI and KII of the oblique crack initiated 

under fretting fatigue conditions. Fett and Rizzi [6] described the stress intensity factors under 

various crack surface tractions using an oblique crack in a semi-infinite body. Choi [7] studied 

the effect of crack orientation angle for various material and geometric combinations of the 

coating/substrate system with the graded interfacial zone. Gokul et al [8] calculated the stress 

intensity factor of multiple straight and oblique cracks in a rivet hole. Khelil et al [9] evaluated 

KI numerically using line strain method and theoretically. Recentllty, Mohsin [10 and11] 

studied theoretically and numerically the stress intensity factors mode I for center ,single edge 

and double edge cracked finite plate subjected to tension stress . 

Patr ́ıci and Mattheij [12] mentioned that, we can distinguish several manners in which a force 

may be applied to the plate which might enable the crack to propagate. Irwin proposed a 
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classification corresponding to the three situations represented in Figure 1. Accordingly, we 

consider three distinct modes: mode I, mode II and mode III. In the mode I, or opening mode, 

the body is loaded by tensile forces, such that the crack surfaces are pulled apart in the y 

direction. The mode II , or sliding mode, the body is loaded by shear forces parallel to the crack 

surfaces, which slide over each other in the x direction. Finally, in the mode III , or tearing 

mode, the body is loaded by shear forces parallel to the crack front the crack surfaces, and the 

crack surfaces slide over each other in the z direction,  

 

Figure 1: Three standard loading modes of a crack [12]. 

The stress fields ahead of a crack tip (Figure 2) for mode I and mode II in a linear elastic, 

isotropic material are as in the follow, Anderson [13] 
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Figure 2: Definition of the coordinate axis ahead of a crack tip [13] 
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In many situations, a crack is subject to a combination of the three different modes of loading, 

I, II and III. A simple example is a crack located at an angle other than 90º to a tensile load: the 

tensile load σo, is resolved into two component perpendicular to the crack, mode I, and parallel 

to the crack, mode II as shown in Figure 3. The stress intensity at the tip can then be assessed 

for each mode using the appropriate equations, Rae [14]. 

 

Figure 3: Crack subjected to a combination of two modes of loading I and II [14]. 

Stress intensity solutions are given in a variety of forms, K can always be related to the through 

crack through the appropriate correction factor, Anderson [13] 

K(I, II, III) = Yσ√πa ,     ……….……….(7) 

where σ: characteristic stress, a: characteristic crack dimension and Y: dimensionless constant 

that depends on the geometry and the mode of loading. 

We can generalize the angled through-thickness crack of Figure 4 to any planar crack 

oriented 90° − β from the applied normal stress. For uniaxial loading, the stress intensity factors 

for mode I and mode II are given by 

KI = KI0 . cos2β  ……………….(8) 

KII =  KI0. cosβ. sinβ , …………..(9) 

where KI0 is the mode I stress intensity when β = 0. The crack-tip stress fields (in polar 

coordinates) for the mode I portion of the loading are given by 

 

Figure 4:  Through crack in an infinite plate for the general case where the 

principal stress is not perpendicular to the crack plane[13]. 
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MATERIALS AND METHODS  

Based on the assumptions of Linear Elastic Fracture Mechanics LEFM and plane strain 

problem, KI and KII to a finite cracked plate for different angles and locations under uniaxial 

tension stresses are studied numerically and theoretically. 

Specimens Material  

The plate specimen material is Steel (structural) with modulus of elasticity 2.07E5 Mpa and 

poison’s ratio 0.29, Young and Budynas [15]. The models of plate specimens with dimensions 

are shown in Figure 5.   

 

Figure 5: Cracked plate specimens.    

Theoretical Solution  

Values of KI and KII are theoretically calculated based on the following procedure  

a) Determination of the KIo (KI when β = 0) based on (7), where (Tada et al [16 ])  

𝑌 = [√sec (
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b)  Calculating KI and KII to any planer crack oriented (β) from the applied normal stress                 

using (8) and (9). 

Numerical Solution 

KI and KII are calculated numerically using finite element software ANSYS R15 with 

PLANE183 element as a discretization element. ANSYS models at β=0o are shown in Figure 

6 with the mesh, elements and boundary conditions. 
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Figure 6: ANSYS models with mesh, elements and boundary conditions. 

PLANE183 Description  

PLANE183 is used in this paper as a discretization element with quadrilateral shape, plane 

strain behavior and pure displacement formulation. PLANE183 element type is defined by 8 

nodes ( I, J, K, L, M, N, O, P  ) or 6 nodes ( I, J, K, L, M, N) for quadrilateral and triangle 

element, respectively having two degrees of freedom (Ux , Uy) at each node (translations in 

the nodal X and Y directions) [17]. The geometry, node locations, and the coordinate system 

for this element are shown in Figure 7.  
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Figure 7: The geometry, node locations, and the coordinate system for element 

PLANE183 [17]. 

The Studied Cases 

To explain the effect of crack oblique and its location on the KI and KII, many cases (reported 

in Table 1) are studied theoretically and numerically.  

Table 1: The cases studied with the solution types, models and parameters. 
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RESULTS AND DISCUSSIONS 

KI and KII values are theoretically calculated by (7 - 10) and numerically using ANSYS R15 

with three cases as shown in Table 1. 

Case Study I   

Figures 8a, b, c, d, e, f, g, h and i explain the numerical and theoretical variations of KI and KII 

with different values of a/b ratio when β = 0o, 15o, 30o, 40o, 45o, 50o, 60o, 70o and 75o, 

respectively. From these figures, it is too easy to see that the KI > KII when β < 45o while KI 

< KII when β > 45o               and KI ≈ KII at β = 45o. 
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Figure 8: Variation of KI Num., KI Th., KII Num. and KII Th. with the variation of a / 

b and β for model e . 

Case Study II 

A compression between KI and KII values for different crack locations (models b, e and h) at 

β=30o, 45o and 60o with variations of a/b ratio are shown in Figures 9a, b, c, d, e, f, g, h and i. 

From these figures, it is clear that the crack angle has a considerable effect on the KI and KII 

values but the effect of crack location is insignificant.  
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Figure 9: Variation of KI Num., KI Th., KII Num. and KII Th. with the variation of a / 

b for b, e and h model at β = 30, 45 and 60. 

Case Study III 

Figures 10a, b, c and d explain the variations of KI and KII with the crack angle β = 0o, 15o, 

30o, 45o, 60o, 75o and 90o for models b, e and h. From these figures, we show that the maximum 

KI and KII values appear at β=0o and β=45o, respectively. Furthermore, KII equal to zero at β 

= 0o and β = 90o. Generally, the maximum values of the normal and shear stresses occur on 

surfaces where the β=0o and β=45o, respectively. 
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Figure 10: Variation of KI and KII with the crack angle: a and b) for model b, e, h and 

theoretical. c and d) for model d, e, f and theoretical. 

From all figures, it can be seen that there is no significant difference between the theoretical 

and numerical solutions. 

Furthermore, Figures 11 and 12 are graphically illustrated Von-Mises stresses countor plots 

with the variation of location and angle of the crack, respectively. From these figures, it is 

clear that the effect of crack angle and the effect of crack location are incomparable.  
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Figure 11: Countor plots of Von-Mises stress with the variation of crack location 

at β = 45o.  
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Figure 12: Countor plots of Von-Mises stress with the variation of crack angle at 

specific location. 

CONCLUSIONS 

1) A good agreement is observed between the theoretical and numerical solutions in all 

studied cases. 
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2) Increasing the crack angle β leads to decrease the value of KI and the maximum value of 

KII          occurs at β=45. 

3) KII vanished at β = 0o and 90o while KI vanished at β = 90o.  

4) There is no obvious effect to the crack location but there is a considerable effect of the 

crack oblique. 
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