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ABSTRACT: An analysis of radiative heat and mass transfer on the onset chemical reactive
rotating fluid on a stratified steady state in a porous medium has been carried out .In
addition the influence on rotation, radiative heat transfer and chemical reaction where
investigated by imposes a time dependent perturbation on concentration, temperature and
velocity. Their involvements are assumed to be large so that heat radiation, chemical
reaction and heat transfer is significant. This renders the problem inhomogeneous even on
assumption of differential approximation for the radiative flux with the chemical reaction.
When the perturbation is small, the transient flow is tackled by laplace transform technique
with the involvement of modified Bessel function of first and modified second order given
solution for stable steady state, temperature solute concentration and velocity. Consequence
of the stable steady state Analysis and numerical solution where obtained by the use of the
ratio of marginal state and asymptotic state on the concentration and temperature are
presented graphically display. Their profile on the chemical reaction parameters,
concentration decreases due to the variations of the chemical reaction parameter, causing a
corresponding asymptotic change in the porous medium. Concentration profile on the
Schmidt number, concentration decreases as a result of the variation of the Schmidt number
parameter causing a corresponding asymptotic change in the porous medium. Temperature
profiles on the radiation parameter, temperature decrease due to the variation of radiation
parameter resulting to a corresponding asymptotic change in the porous medium.
Temperature profiles on the Prandtl number, temperature decrease following the variation of
the Prandtl number, resulting to a corresponding asymptotic change in the porous medium.

KEYWORDS: Radiative Heat, Mass Transfer, Chemical Reactive Rotating Fluid,
Porous Medium.

INTRODUCTION

The problem of influence on radiative heat and mass transfer in chemical reactive rotating
fluid on stratified stable steady state in a porous medium are prevalent through everyday life
and the study of such fluid flow is gaining increasing application in the study of meteorology,
Geophysics Engineering, Global Climate, and Astrophysics (William and John ,1999), more
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so the atmosphere and the weather are in porous medium that are governed by the dynamic of
fluids

In 1916 Lord Raleigh investigated the instability of Bernard cells by considering the
buoyancy-driven instability in a homogenous medium. His study shows that the parameter
that determines the instability is the product of the Prandtl and Grashof numbers (i.e. ratio of
buoyancy forces to viscous dissipation). Presently the product is called Raleigh number (R).

The buoyancy-driven instability has also been studied by other workers based on the theory
of infinitesimal disturbances. Among these are Likhovskii and Ludovich (1963), Eckhaus
(1965), Chandrasekhar (1961), Matkowisk (1970) and Sattinger (1973). Also, Bestman (1983)
studied the case of instability due to mass concentration gradient in a porous medium. He
established that as the permeability of the porous medium decreases, the Raleigh number for
the onset of instability rises linearly over a wide range of values of the permeability. Thus
although porosity increases stability, the critical Raleigh number (R,) which determine the

onset of instability was found to be 920 for the value of porosity y = 6. Consequently,
turbulence is likely to form the low value of R..

The study of thermal stability analysis in compressible fluid flow through a porous medium
abound in nature, engineering and in scientific applications. A number of workers have
studied such flow problems; Ahmadi and Manvi (1971) have derived an equation of motion
for fluid flow. Bestman [(1989), (1990)], Varshney (1979) and Raptis and Perdikis (1988),
also studied the steady state problem associated with flow in the porous media. Similarly,
unsteady flow has engaged the attention of other workers such as Gulab and Mishra (1977)
who investigated the unsteady hydrodynamic flow in a porous medium. Kumar et al (1985)
studied the unsteady magneto hydrodynamic flow through a porous medium in a channel,
while Singh and Soundalgekar (1990) considered the transient free convection of water at
4°C past an infinite vertical porous plate with time-dependent suction. Thermal stability of
an incompressible fluid in a porous medium generally considers fluid in a basic state of
steady motion when a small disturbance is made in the fluid, possibly controlled or
uncontrolled possibilities occurs. The first is that, the disturbance may generate waves in the
fluid which propagate through it but do not pick up energy from the basic state; an example is
a wave seen on the surface of water. However, the buoyancy-driven thermal stability of a
radiating non-grey gas between two infinitely long vertical plates has been studied by Arpaci
and Bayazitoglu (1973). In their study, the instability of natural convection in a slot involving
two infinitely long vertical plates at different isothermal temperatures appears in two regimes
(the Conduction and Convection regimes) which are distinguished by the temperature of the
initial state; the initial temperature of the conduction regime is independent of and that of the
convection regime depends linearly on the vertical direction. In this study, each regime is
unstable, setting in form of stationary cells or travelling waves.

In the past decades, several papers dealing with this problem have been published [Opara et
al ,(2001)]. Similarly, the study of the effect of combined thermal and mass concentration
gradient on the stability of a chemically reacting fluid in a porous medium has been studied
by Opara et al (1996). Their study revealed that in the absence of chemical reaction,
instability sets in a stationary convection at the critical Raleigh number R, =500 with the

corresponding wave number a, =0.3. Although, the extension of the problem of thermal
stability of a incompressible fluid in a porous medium including the effect of rotation or that
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of non-Newtonian behaviour have recently been considered, Opara et al (1997), the combined
influence on radiative heat and mass transfer in chemical reactive rotating fluid has
apparently been left untreated especially areas on stratified steady state is the concern of this
study. Key word steady state, porous medium, asymptotic state, marginal state.

MATHEMATICAL ANALYSIS

We consider a fluid rotating in X —Y plane about the y-axis in a porous medium with
combined effects of radiation, chemical reaction, temperature and concentration gradient
respectively. In this consideration, the flow pattern in the plane is the same as that in all other
parallel plane with the fluid and the fluid medium bounded by a horizontal free surface with
constant pressure, density and velocity. The geometrical description of the model and the co-
ordinates of the fluid is rectilinear Cartesian system (X,Y,Z) rotating steadily with angular

velocity with the y-axis being vertical upward in the positive direction and the X,Z axis
mutually perpendicular to Y to allow a columnof the fluid flow compresses a horizontal layer
of fluid of thickness ‘rz — r1| = d. Batchelor (2000).

F = 2Qv+ %y o =0 Y
Fl=-2Qu+Q

7

Figure 1: The physical model and coordinate system

The above flow description is bounded by plane y=0and y = |r2 — r1| = d with temperature
T,and T, and concentration C, and C, respectively. Here the fluid is assumed to be at
temperature T,and concentration C,at the lower plane and temperature T, and concentration

C, rotating at the upper plane. Rotation, (2and angular velocity, @ about y-axis is sustained

mainly by the action of a fictitious body force per unit mass of the fluid lying in the
X, Z plane with components

F, =20v, F, =0, F, =2Qu (2.0.1)

In consideration of the above fluid, the entire layer is acted upon by a uniform gravitational

field and heated from below such that a uniform temperature gradient o; = sl and

dy
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concentration gradient ¢ = (:Ij_C
y
in a state represented by the velocity,

are maintained across it. The lower plane is assumed to be

U= % y (2.0.2)

Where v is the characteristic velocity and d the unit length; the velocity component u,v,w
are in Cartesian co-ordinate system with axis X,Y,Z.

Generally the porous medium considered is one whose structure is statistically isotropic so
that pressure gradient applied in different directions produce the same flux and is given by,

vp=-* (2.0.3)

Where ¢ is the permeability, u is the viscosity, v is the characteristic velocity, pis pressure
and Vs the laplace equation.

In this research, the problem of the Reynolds parameter is small which is being ignored.
Unfortunately, high temperature phenomena bound in the medium and assume the medium as
optically thin body that can transfer radiative heat and chemical reaction into the medium. A
primary difficulty in thermal radiative heat and chemical reaction study stems from the fact
that the radiative flux and chemical reaction is governed by an integral expression and one
has to handle a non-linear integro-differential equation. However, under fairly realistic
assumption, the integral expression is replaced by a differential approximation for radiation
and chemical reaction respectively. Thus in one space, co-ordinate y, the flux g satisfy the

non-linear differential equation as state by ,Bestman et al ,(1988);Alabraba et al,(2007).
Pekene and Ekpe,(2015)

2
Zy—‘j—sazq—moaﬂ

Where T, the temperature of heat transferred, o is the Stefan-Boltzmann constant and « is
the absorption coefficient which will be assumed constant in the model. Take into account the
medium permit finite transparent for diffusing particle « <<1 and equation 2.0.4 is
approximated by,

T (2.0.4)

o0

%=4aa(T4—T4) (2.0.5)

In which subscript “co” will be used to denote condition in the undisturbed porous medium.
Mathematical Formulation

The system incorporates a steady motion with the following designed conditions: an
incompressible viscous fluid flowing in a porous medium, heated below in a horizontal plane
and generating a sufficient thermal flux with combined radiation, chemical reaction with
angular rotation through a layer of diffusing particle with concomitant variation in
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temperature and solute concentration. In the resulting motion, the fluid layer column assumes
a uniform horizontal velocity v rotating about y-axis with angular velocity Q (See figure 1
above); thus the fluid layer is maintained at transient temperature T :Tw(l—af(t)) and

transient concentration C =C, (1—&f (t)) in which T, >>1f(t),C_ >>1f(t)and in which an

arbitrary function of time and X are parameters. The temperature is high enough to sustain an
adverse temperature and concentration gradient in the fluid for radiative heat transfer. C_ is

the concentration undisturbed constant; f (t) is an arbitrary function relating to time in the
continuum but for this problem f (t) will be approximated to the Heavy side unit function.

However, we have neglected all effects of electromagnetic potential and we assumed that the
hydrodynamic state is influenced entirely by adverse temperature gradient. This generate
radiative heat flux which spreads free convection, in addition, concentration gradient
generates molecular migration and chemical reaction that interact in the flow. On the above
conditions, the resulting system admits the Boussenessq approximation for the thermal fluid
with finite transparency of the porous medium with the governing equations of particle
motion of horizontal momentum transfer as follows: Following the argument of Opara et al
(1990), we employed equations 2.0.1, 2.0.3 and 2.0.5 the governing equation for transparency
medium was modelled.

ou’ . vou
R —%ﬂ;ﬂT(T ~T,)+gi.(C-C,) (2.1.01)

The above equation is a two-dimensional form in horizontal motion in a rotating plane that is
specified in terms of two components along u with radial adverse temperature and
concentration variation along v with transverse component & in the porosity. Medium

permeability was introduced followed Brinkman (1947) in Darcy laws (1956).
2

N a0V

ot - ¢

Equation (2.1.02) above establish the energy equation in a horizontal motion rotating frame
in terms of two components along v with permeability of the medium (Transverse component)
along v under rotational symmetry with swirl.

(2.1.02)

oT . o°T D, kdC
k o =

pC ~ K -
e oy*? &Croy*
Equation 2.1.03 is the distribution of adverse temperature under the action of radiative heat

flux and concentration with effective diffusion which migrate on the action of the radiative
flux and mass diffusion due to the time independent temperature variation.

4o (T*-T})

0

(2.1.03)

D k. o°T
&y’
Equation 2.1.04 gives account of chemical reaction to varying strength, arbitrary during the

process of chemical reaction with convectional mass diffusion induced by an applied
concentration gradient over the average temperature variation.

aC _D,o*C

Xy —k,T4ou(C*—C*)+

(2.1.04)
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Equations 2.1.01-2.1.04 is subject to the boundary conditions.

Non-Dimensional Variable

2
c,C, IC, = tUTO,(u,v): (u,v)/u,
V(uv,w)(6,6,)6, =TT )1,,(T,7,)=T,(06.6,)
(c,c,)=c,(c,c,)
t =izr,(u',v'):uw(u',v'), y =V—y,q =u+iv,i=+-1
uO u0
Theboundary conditions governing the problemare;

T=T,0+(t),C=C,[L+&f (t) wheny=0,v=0
U=U,,u=v=0T=T,,y—>xC—>0C=C,

, (2.1.05)

Under suitable non-dimensional, equations 2.1.01-2.1.04 Where subjected to the Boussinessq
approximation were after modification, reduced to the equations below:

2
Zt—q-i-Ziéq =Zy—?—;(2q +G,(0-1)+G,(C-1)
0%C
ay2

2
p 0 _00_

"or oy’

2
s %C_o%C_
or

P.R(6* —1)+ D,

P k,Sc(C*-1)+s,

The boundary conditions to be imposed are:

u=u,T=T,[+e®)]C=C,l+f ()] y=0

u=0v=0T=T,C=C_, >y—>0q=0g=1,C=1C =C,

q =T +6.clo=1,0->0

(2.1.06)

(2.1.07)

(2.1.08)

(2.1.09)(a,b)

Use is made of the following non-dimensional equation in the above non-dimensional

procedure.

U\V)=(u,v)t=(tu,)T,T, =TT, /T,
0=0,1+(t)C=C,[l+&(t)u=0v=0,C=1
aq ou .ov Uy mu
&

g=u+iv,—=—+i—,y=Yy =y°Q,i=
oy oy \%
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Where

E= w2 = Rotational parameter
uO

S¢c = Di = Schmidt number

m

2 _ MU ;
= — =Prosity parameter
0
Tv
G, = Q"LS = Grashof number due temperature
uO
ATV .
G; = 9 <— = Grashof parameter due to concentration
u0
pﬁp = P. =Prandtl number
dvokiv® -
= # =Radiation parameter
PKU“C,
D,k C2 e .
. = ———= =Diffusion due to concentration
kTooch’
K;T.D e
S, = ——=—" =Diffusion due to temperature
D,,cu
k4C’av® : :
K= kac. v =Chemical reaction
u0

Q =(0,9,0) =The whole configuration rotates about the y-axis with angular velocity.

The statement of the problem therefore is to solve equation 2.1.06-2.1.08 based on the
boundary conditions of equation 2.1.09 (a,b). Following Opara et al (1994), Equation 2.1.06-
2.1.08 are solved by invoking to equation 2.1.09 (a,b) with out loss of generality which
involves step by step numerical integration by using the explicit finite differential scheme.

However, in order to analyse the solution, it could be possible to adopt regular perturbation
scheme for the independent variable of the type and this is the problem of this research; and
to solve this we follow the example of Opara et al (1997) for which,
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e 0
0,, =0, +a0, +..
C, =Cp+eC{ +... 2.1.11(ab,c)

. .
Ay, =0y +aq§?t +...

Where,

q§ = Velocity field steady state component

49;’ =Temperature field steady state component

CS = Concentration field steady state component
q =Velocity field unsteady state component

6% =Temperature field unsteady state component
C Y =Concentration field unsteady state component

Substituting equation 2.1.11 (a,b,c) into equations 2.1.06-2.1.08 respectively, the above
equations reduce the problem into a set of zero order equations as shown in equations 2.1.12-
2.1.14, which are characterized by unsteady state flow with eigen values peculiar with
boundary conditions presented in equation 2.1.15 (a,b) below,

0 240
—agt +(2iE+ 2% )° = aayqz +G,(0° -1)+G4(c° -1) 2.1.12
2 00 2~ (0)
0 92 ~P.R(0®* ~1)+ D, % -0 2.1.13
2~0 21(0)
9C s (9<0)4 _1)+5 00" _ g 2.1.14
ayz r~c t 2

Boundary conditions:

qQ°=1,0=0,1+sH )], q=6,.,C°=C,.q° =1,y >0

0°+6=0,l+eH ()] 0° =1,C° =1,q® =0as y — o

C’+C=C,il+eH(®)]C=C,1+H(1)]0°, &,<<1, Signifying low
speedincompressible flow

2.1.15 (a,b)

In another development, we substitute equation 2.1.11 (a,b,c) into equations 2.1.06-2.1.08 to
obtained first order equation characteristics of unsteady state.

(Y] 2@
A7 2iEq0 =997 20 1609 1 G,C¥ 2.1.16
ayz r C

o*cY

2

Z;—f ~4P.R(6™* ~1)+ D,

2.1.17
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2 2 7@
OC aksc(cor-1)rs, 20 2.1.18
2 r~vc t ayz

The boundary conditions for equation 2.1.16-2.1.18 are as follows:

0>0,y>06"=4,,C'=C,,q" =0 fory >0

y=0,q, =P8 +S.CY,6 =0,C' =0,q=0asy > ooy 2.1.19(ab)

q, =G,0+G.C
However, in this research work we shall assume the chemical reaction is greater than zero
(homogenous mixture). Similarly, the medium in this research is porous and both the

radiation and chemical reaction are in combination. Hence, equations 2.1.13 and 2.1.14 were
modified, transformed and reduce to 2.1.20 and 2.1.21 below.

2 2
oC_g 70 2120
oy oy

2 2
90 _p 2¢ 2.1.21
oy oy

On rearranging we substitute equation 2.1.20 into 2.1.13 to obtain equation 2.1.22 below.

2 2
7 b5, 2% pRlg™-1) 2.1.22
ayz C*™t 2 r
We substitute equation 2.1.21 into equation 2.1.14 to get
2 2
9C b5, %C ks.(c™-1) 2.1.23
ayZ C*™t 2 r~Yc

In general, the complete statement of the problem is a solution of equations 2.1.12, 2.1.13,
2.1.14, 2.1.17, 2.1.18, 2.1.20, 2.1.21, 2.1.22, and 2.1.23 respectively, without great loss in
generality and subject to boundary conditions presented in equations 2.1.15 (a,b) and 2.1.19
(a,b).

Nevertheless, this study shall be restricted to the following: temperature field, concentration
field and velocity field; the ratio of marginal solution to the asymptotic solution will be
employed to solve annalistically the steady state for the temperature and concentration.
Numerical analysis will be used graphically to obtain the result of Prandtl (P,), Schmidt

(S¢), Chemical reaction (K)and Radiative flux, R through the rotating medium.
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METHOD OF SOLUTIONS

To determine the thermal stability state components of temperature profile &, concentration
profile C, Schmidt profile S. and Prandtl profile P, on the effect of chemical reaction,

radiative heat flux combined with rotation of the fluid in a porous medium, equations 2.1.13,
2.1.14,2.1.22,2.1.23 and 2.1.07, 2.1.08 where rearranged to obtain the following equations:

2
d°0 _(_RR |yoe_4 3.1.01(a)
dy? (1-S,D.
d*C _ K Sc CcO4_q 3.1.01(b)
dy? |1-S,D,
d’e _[_4RP O3 _1 3.1.01(c)
dy2 1- StDC
d?C _ 4Kk, S¢ cO: _q 3.1.01(d)
dy? |1-S,D,

Equations 3.1.01 (a,b,c,d) are non-linear and non-homogenous. Generally, it involves a
heuristic approach by using numerical integration of the explicit differential scheme. It is
assumed that the above equations are integrated together and are operating in the same
medium; they are not operating independently as the fluid rotates.

Equations 3.1.01 (a) and 3.1.01 (c) are multiplied by(;—e, while equations 3.1.01 (b) and
y

3.1.01 (d) are multiplied by Z—C on both sides and expand without loss of generality.
y

Furthermore, we employ another integration scheme in equation 3.1.01 (a,b,c,d) with respect
to yfrom g,to €, and C, toC_ respectively. In order to find the function which satisfy the

given differential equation and particular condition, equation 2.1.19 (a,b) was subjected to the
differential and integral scheme and equation 3.1.01 (a,b,c,d) was reduced to the following:

s 1—StDCj 0, dé&

y= |2 3.1.02
2\ RP, L (&° -5z+4)>

_ 3 1=5Dc e d¢ 3.1.03

"2l ks L (&° -52+4)?
1(1-SD, \p.  dé

y=|* 3.1.04
2( RP, A (&5 -5 +1)7
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_ [A{1=SDc |- d¢ 3.1.05
’ 2( k. Sc JL (&° -5z+1)7

Without any loss of generality, equations 3.1.02 and 3.1.03 are the same; similarly, equations
3.1.04 and 3.1.05 are the same and are in the same medium. We further assumed S, and

D. are constant; equations 3.1.02, 3.1.03, 3.1.04 and 3.1.05 are reduced to obtain the
following equations:

%
y= (LJ [ 3.1.06
2RP, ) ¥ (5 _5g 4 a)?
%
y:( > J [ dg 3.1.07
2K, Sc ) " (e5 5z a)?
%
y(L )% 108
2R ) % (25 5z 11)?
%
y=| 1 J [ d¢ 3.1.09
2krSC Co (fs —55 +1)%

Equation 2.1.20, 2.1.21 were solved without any loss of generality
CO=-S56+A+A, 3.1.10(a)
C®=-D.C+B,+B, 3.1.10(b)

Where equations 3.1.10a and 3.1.10b reduce to

0 —
L _C'+s80 (Cy +S.6y) 31113
A
0 —
L _0°+DC é0W+DCCW) 3.1.11(h)
1

Equations 3.1.11a, 3.1.11b are satisfied if and only if A =0,B, =0 respectively. The
following equations were obtained:

CO = 5,09 + (G, +5,0,) 3.112(a)
6% = D.CO + (g, + D.Cy) 3.112(b)

Substituting equations 3.1.12(a,b) into equation 2.1.12 respectively, we get a non-
homogenous second order differential equation in q°.
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2
d’g (32 +2iE)g° -G, (- D.C + (6, +D.Cy )-1)

dy? 3.1.13
+Ge(-5,6° +(Cy +5.64)-1)
The homogenous equation is,
2
99_ (42 +2iE)° =0 3.1.14
dy
D? —(4? +2iE}g=0 3.1.15
D? =(4? +2iE)g 3.1.16
The complementary function g is,
D° = (42 +2iE)? = a 3.1.17
0 =De™ +D,e ™
o =5 2 3.1.18(a,b)
dy, =D,e” +D,e™
Consequently, upon bounded equation 3.1.18(b) above, we obtained,
g =e™ =exp (;(2 + 2iE)% y 3.1.19

From equations 3.1.06, 3.1.07, 3.1.08 and 3.1.09 the particular integral qg is given as follows:

V!
= | T sl 2 by, s Xedloe 520

%
q(Op) =( > j Efsmh(ﬂfz + 2iE)% [y(CO)_ y(ég)I(Gc _GrDc Xég_l)]dét 3.1.21

2k, S,
1 % 0. . PR 4
Ay = ﬁj LO sinh( +2'E)Z[Y(9)—y(§)][((3r—Gcst)(e‘—l)]df 3.1.22
1 % C, . .
U =| 2 SJ [ sinh(x* +2iE) 2[y(C)- y(£)[(G -G, D N -s 3123

Adding equations 3.1.07, 3.1.09 to 3.1.19, 3.1.20, 3.1.21, 3.1.22 and 3.1.23 respectively we
obtain the following:
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q(oy):exp[(—;(z+2iE)%y} (ZRP] LO LO (ZkSS J%sinh(;(2+2iE)

[y(6.c°)- y(£)f ~1)as
(&5 -5¢+4)

0, :exp[(—;(2+2iE)%Y} (ZRPJ . (Zk S

[y(6,°)- y(&)l -1

(&5 -5 +1)7

In order to solve equations 2.1.16, 2.1.17 and 2.1.18, we employ a function that will satisfy
the given particular differential equation and the particular boundary conditions in equation
2.1.19(a,b). We obtain the laplace transform with respect to time and denoting the
transformed variable by &, placing the tilde over the transformed function the equation

satisfied by (q®),0%,C®, in equations 2.1.16, 2.1.17 and 2.1.18 reduce to,

3.1.24

be!
J 2 sinh(z2 + 2iE)
¢ 3.1.25

L
(jj (i —(;cz +2iE+§)q(') =-G,0% +G,C? 3.1.26
y
d2

oz —(4RP,0©* 1 £)p0 =0 3.1.27
y
d*c® )3 0

& —(4k,5.C@° +£)c0 =0 3.1.28

With the boundary conditions, substituting equation 2.1.19(a,b) into 3.1.27 and 3.1.28 we get
the solutions for 8%and C as follows:

(_ 4'RF)r + g)% y
<

3.1.29

6 =exp

(_ 4krSC + é:)% y
4

Employing the shifting theorem and taking the inverse laplace transform on equations 3.1.29
and 3.1.30 we obtain the following equations:

CO =exp 3.1.30

) e’(“RP')%y,Byerfc (2:()% —(4RP1)”
00 == - - 3.1.31
2
eV g erfc ( Y)y +(4RP.1)%2
2t)2
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e 4%ty erfe Y (aks, )"
o _ (2t)2

+e(4"'sc)%;/yerfc Y +(4k,S.t)”
(2t)2

-

3.1.32

N

When we consider 8,,,C,,, 8 and y arbitrary, and approximate 6°and C by,
09" = (0, -1 +1 3.1.33
co =(c, @ —1p % +1 3.1.34

From equations 3.1.33 and 3.1.34 the solution for 89 and C“ were obtain and are reduced to
get the marginal state solution.

6° _3,(4RP, +&)%[ine ) 1,(RP, + &) (e ) 3.1.35

O &,(4RP, +&)2in &,(RP, +&)n)

€0 3,k S +&)line™) 1,k Sc + &)l ) 3.1.36

CW g‘]n(4krsc +§)%m éjln(krsc +§)% (77)

Equations 3.1.35 and 3.1.36 are the marginal state solution of the temperature and
concentration respectively, were 7 = 4RP, (9% ~1), 4k, S, (C®* —1) and J,(x),1,(x) are the
Bessel and modified Bessel function of the first kind. Equations 3.1.35 and 3.1.36 have
simple pole at £ =0and another at £=4RP, and 4k,S. . However, without any lose of

generality equation 3.1.35 and 3.1.36 could be inverted by using the Bromwich contour with
a suitable branch cut and the result obtain as follows:

& 1(4RP,.)2(y)

3.1.37
e—4RP,t 0 e—X I iX (ﬂe_ﬁy ) * e—iX I iX (neﬂy )
- —j dy
27 || GoraRP () G 4R, )
co _ I(4k,Sc)%(77e_”>+
Co  1(4k,Sc)%(n)
3.1.38

L e*X|ix(77e7”) N efixlix(neyy) q
o Io (X+4kr5c)|(ix)y2(77) IO (x+4k, S ), () y
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Equations 3.1.37 and 3.1.38 are highly complex is expedient to take limiting value with,

1 e’
J, (X) = (27”7)% [%J ,N— 0 3.1.39
_ b
Q_Ozexpl: £, (4RP, +£) } 3.1.40
O 4

co 7, (4k,S¢ + &)
c, ® £

3.141

With the condition that & — oo in the form of equation 3.1.29 and 3.1.30 we obtain the

following:

0
LA Py (4RP.1)%2 ||+ e P erf Py +(4RP 1)
Ov 2 (2t)%2 (2t)”

C, 2 (2t)”

When 4RP. is large and of order 0.1, k,S.. is also large and of order 0.1, then

i ~ erfc by
W (2'[ )%

0
¢ ~ erfc Yy ast — o
W (2t)%

Also,as >0

|n(X)= Io(x)_)nKo(X)'

ISSN 2055-0197(Print), ISSN 2055-0200(Online

|

3.1.42

0
(A l{e”“‘s@% erfc{y—y —(4k, S 1) }} et erfc{% +(4 KSCt)%}
2t)2

3.1.43

3.1.44

3.1.45
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Where K, (x) is the modified Bessel function of the second kind of order zero, we obtain

g NG)

Inverting equation 3.1.46 we get

‘Z_Oz | 1 ){|0(77eﬁy).i{MKo(n)—Ko(ne"v ):|(§+4RPr)%} 3.1.46
W o\n7

o 1 |1l e o -]

O 1o(n) .e4RP’[1+(4RPF)%.e4RP'terfc(4RPr)%}
T

ast — oo 3.1.47

cY 1 oy 1 [ eme™) —r %
=~ = )=+ L LK () - K, e 4KS_. )2 3.1.48
Cu lo(n){"( )f{ Io(77) o (1) O( )}(ﬁ c) }

Which on inverting equation 3.1.48, we obtain

co g [l oot Ko )]

Cu  lo(n) | e E+(4krsc)%.e-“Kscterfc(4krsc)}/2 }

ast - o 3.1.49

Equations 3.147 and 3.1.49 are the asymptotic state of the solution.

For the velocity profile, q® in equation 2.1.16 when solved by puttingc? = ¢ + y? + 2iE, we
obtain

,s‘(yf;)

q(1) :%KJ:OG
)

o(y)dy
Applying Laplace transform of inverse, we have

) _ 1 (Crie ts
LIF(s) = f(t)_z—ﬂjjco__ F(S)e®ds

Joo

e lyer _h -
Lo e sy _p-(Pe2int gl o : (y-vy) _
s 2%
3.1.50

o-tame 1 _e—(y—g’)
('

Employing convolution theorem on equation 3.1.50 we obtain,

1
(27)

¢t 1 . 242iE)r n __
q® = ondyjof—%e (42 e%.[&m (t—r)dr+CP(t-7)dr| 3151
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Where, L[ [ROf - x)dx} —F,(s)*F,(s)

frg=—[ [ flx-&:x-plolé s

This is the completion of the solution.

CONSEQUENCE OF THE STEADY STATE.

If we recall, equations 3.1.35 and 3.1.36 are the marginal state solution for the temperature
and concentration. Similarly, equations 3.1.47 and 3.1.49 are the asymptotic state solution for
the temperature and concentration respectively.

Where,

n=49,(6, 1)

¢ =4k Sc(Cy -1)
J,(x) = Bessel function of the first kind
I, (x) =Modified Bessel function for the first kind

K,(x)=The modified Bessel function of the second kind

1
Taking the ratio of equation 3.1.35 to 3.1.47 as e—and the ratio of equation 3.1.36 to 3.1.49

w
1

as (C;:_ we establish the stable steady state conditions which states that if the ratio of the
W

marginal state of the solution to the ratio of the asymptotic state solution for the temperature
and concentration is less than or equal to one (1) then the system is assumed stable either
with respect to temperature profile or with respect to the concentration profile. Rainville E.D.
(1960).

Equation 3.1.35 divided by equation 3.1.47

3.1.35 <1 3201
3.1.47

Similarly, equation 3.1.36 divided by equation 3.1.49
3.1.36 <1 32,02
3.1.49

Solving equation 3.2.01 we obtain the value of 6, as follows:

48
ISSN 2055-0197(Print), ISSN 2055-0200(Online


http://www.eajournals.org/

International Journal of Energy and Environmental Research
Vol.3, No.3, pp.32-74, December 2015
Published by European Centre for Research Training and Development UK (www.eajournals.org)

0, = §(4RPr + eV <1 3.2.03

In a similar approach, we solve for equation 3.2.02 and have C, as follows:

C, = %(4}(3C + &Y <1 3.2.04

The results of equations 3.2.03 and 3.2.04 above confirm the stable steady state of the system
if 7 <1 i.e. n=0.5for the radiation and chemical reaction.

This is the complete solution of the problem of the stable steady state analysis in a porous
medium on the influence of rotation, radiation and chemical reaction. From assumption,
rotation may likely alter the condition of stable steady state.

RESULT AND DISCUSSIONS.

The formulation of the problem of two-dimensional stable steady state analysis in an
incompressible fluid flow in a porous medium with the combined effects of rotation, radiation
and chemical reaction were presented. By invoking the differential approximation for the
chemical reaction, radiation and rotation in optically thin medium, the non-linear problem
was tackled by asymptotic approximation resulting to a stable steady state on which is
superimposed a first order and zero order transient flow.

To comprehend the totality on the effect of the dependent parameter on the flow state
parameter, use is made of the following numerical computation for concentration C, for

various values of chemical reaction parameter K =0.2,0.81.20. S. =0.24,C, =1, for
concentration for various values of (S.) Schmidt, S. =0.24,0.40,0.60,K =0.20. For
temperature, 6, for the various values of the radiation parameter, R =0.20,0.8,1.20, Prandtl
(P.)=0.24 and for the temperature 6, =1, for various values of Prandtl number ,

P. =0.24,0.40,0.60, R = 0.20. Following the evaluation of the marginal state solution on the

ratio of the asymptotic state solution on the temperature and concentration profile
respectively, equations 3.2.03, 3.2.04 and equation 2.1.11(a,b,c) gives the solution for the
temperature and concentration field where evaluated by numerical integration.

Fig. 2, 3, 4 and 5 below shows the graphical display representation of the solution on
equation , 3.2 01,3.2.02, 3.2 03, 3.2.04 respectively the problems.
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CO

10 15 20
Fig.2: Concentration profile for Val’iOliIS values of the chemical reaction

parameter k,

k, =0.20,0.80,1.20
S. =0.24

The concentration profile, C,shows the plot of the effect of chemical reaction parameter, k., .

The graph shows that the concentration, C, decreases as the chemical reaction parameter
increases.
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Fig. 3: Concentration profile for various values of the Schmidt number S,

S =0.24,0.40, 0.60,
K=0.20

The concentration profile C,showing the effect of Schmidt number in the medium has been

plotted in figure 3 above; the graph shows that the concentration C, decreases as the Schmidt
number increases.
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Fig. 4: Temperature profile for various values of radiation parameters R.

R =0.20, 0.80,1.20,
P =024

The temperature profile, 6, have been plotted for various values of radiation parameter, R in

figure 4 and the graph shows that the temperature, 6, decreases as the radiation parameter,
R increases.
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Fig.5: Temperature profile for various values of Prandtl number P.

P. =0.24,0.40, 0.60,
R=0.20

The temperature, 6, showing the effect of the Prandtl number, (Pr) is plotted in figure 5; it is
observed that the temperature 6, decreases as the Prandtl parameter, P, increases.
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APPENDIX 1
Integrate Equation 2.0.4
2
99 342q-16007° I =0 2.0.4
oy’ dy
or o <<<1 for a thin transparent layer
2
Reduce 8—q =3a%q—160 T3d—T
oy’?
N 45Tt -T) 2,05
oy
ou’ vo’u
E_ZQ v —?+g,8t(T—Tw)+g/1C(C—Cw) 1.0

Use non-dimensional variable (6,6, )=(T,T,)T, -C,C, =C,C_[C,

2
c.c. cwf:wjoz(u,u):(u,u U,

T -T!=(p-6,)c*-C’ =(c*-1)

(r*1.)=T.(0.6,)(c.c.)=c.(c.c.) 2.0

t:%r(u',u'):uw(u',u'),y':U—y
u Ug
Equation 1
N _Uo Mgy = Mo OU My s 1T (9-1)
v or viooy? &
u§ ug

+gACC_(C-1)+gA.CC, (C-1)

us éu u> o’u
FE_ZU QU ?F_ §°u o + 94,7, (0-1)+9g4.C, (C-1) 3.0

3
Divide through by Yo \we obtain
19

u 20Q % uw gﬂcTu(e )+ g;tc
3

— = °(c-1) 4.0
. & a? us Ug
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0°
q_ou .ov o'g_2y .
&y oy oy ¥ ay

q=u-+iv,

The complex number system is therefore a natural extension of the real number system (i)* = -1
u =Primary axial
iv =Secondary axial

2
%ugu:uﬂ—ﬂ 5.0

ot &
By putting the non-dimensional variable I have

v 2Quu_ 0°u  uw

9 - - 6.0
o vyt g
Combining equations 4 and 6 by putting g =u+iv
Multiplying equation through 6 by i I have
OV oV 20£3|u . 0°u _ Mo 70
or Uy ay a’®
Adding equations 4 and 7 | obtained
8‘[ Uo éguo uo Uo
aq 0%q
+i2e0=— — +G,(0-1)+G.(C-1 2.1.06
PRRL v ’q+G,(0-1)+G.(C-1)
Energy equation: a_ dorr (T ! —TO“)
oy
oT _ko’T _dq , D,K.C, 0°C
pCP q L — A2
oy &L oy
2 2
PO or _ka T +4cu(T* T;)+—DmKth % 2.1.03
Co Oy

Using non-dimensional analysis equation above
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pCeT, 36 kT, %0

D K 2 2
d =S e 88 4onT (0" —1)+—n Cq 2 0°C
v oOr v° oy

2 0 2
v oy
bl bl c. 2
i AT
2 2 2
- pCF’ZT“ w290 _ —ka;f uZ %—4@11;‘(94 —1)+—DmKth oc f
Uy ar o oy v oy
&oCp U2
0

2

Divide through by =

02
pCo0 860 _0°0  4ouT}v? (0 -1)+ D,kC2 6°C
k or o> ki kT, &C, oy?

2 3,.2 2 2
P 00 _0 429_ 4O‘C¥T;OU (94 _1)+ D, kC’ o CZI
ot oy kug kT, &C, oy
4ooT v° pCpv B 4ooT v pCou _PR
ku;  pCoo pCpus  k r

P 20 _ 0
or
060 0%0

v P.R(6* —1)+ D, o°c

2

2 2
99 _pRe*-1)+ D, 2C 2.1.07
8y2 r C 2
Concentration equation
2 2
% _p,%C KkTou(ct-c?)Dk I 2.1.04
ot oy oy
Non-dimensional
2 2
C_;O@: DmIZDOo 0 (2:_V4kroz'aTw Ci(C" _1)+ Dmkerw 8_?
vior v oy v v
U U U U
2 2 2 4.2 2 2 2
N ngo oc _ Dmczwu0 0 C23_4k,aToszu0 1) Dmkr}u0 B ;9 vt
v° 0Ot v oy v v oy® |¢D,C u
2
uO
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2

Multiply the equation above by

2
m~o™0

4 2 2,,2 2
v oC _d°C 4kaTCUU(C _1)+DmktTwuu 2%0

D, 0t &° D,ulC.0’ D,C,ul &y’
kT,
c, >
2
L ac kscclct-1)+s, 29 2.1.08
or oy

ay.7)=a"(y)+&a'(v.7)
o(y,7)=0°(y,t)+£0 (v.7) 8
C(y,7)=C°(y,t)+ & (v, 7)
The above perturbation is used to substitute into equation 2.1.06

2
A 4 i2kq+ 22q=2946,(0-1)+ G, (C-1) 2.1.07
ot oy

q(q +Cq )+|2E(q +5q)+;( (q) & =

2

%(qo +.sq')+ Gr(e(’ +a0 —1)+GC(C° +eC —1)

aq 62 0

+(B+x2)g° =20 46, (0°-1)+ G, (C-1)

a;t' (i2E+ 22 ) _ay 346,60 +G.C

Using the above equation and substituting into equations 2.1.07, 2.1.08

2
99 _pR(e™ -1)+ D, il oc 2.1.08
oy
0°C 0’0

~ K, Sc(C* 1)+, o

2

2

T o veo)-p {(@‘) +£0)'~1)+ D %(C‘) +§C')}

58
ISSN 2055-0197(Print), ISSN 2055-0200(Online


http://www.eajournals.org/

International Journal of Energy and Environmental Research

Vol.3, No.3, pp.32-74, December 2015

Published by European Centre for Research Training and Development UK (www.eajournals.org)
o°C®

2

‘2;—? ~P.R(*-1)+ D,

If we substitute equation 2.1.07 — 2.1.09 and expand q,8,C in the power of ¢ the Eckert

number under the assumption ¢ <<1. This justified in the lower speed of incompressible
flow. If we substitute in respective equation 2.1.07-2.1.09 and equate the coefficient of
different powers of &and neglect those of &,C%,0%.

2

P §{9°y +EO (y,1))= %{HW +EO (y,1))

P,R{[@O 4 59'(y,t)—1]{+ D, ;—2}c°y+§c'(y,t)}

0°(y)+£09 (y,t)e* = 6% + 4500 +6£20'90" + 45°00 006" + £6%*
= 0% +4£0%0"
So equation 2.1.07, 2.1.08 becomes

%{0“’) +£0% = ;y—zz {0° + 20 |- PRI + 42020 ~1}+ D, aay_zz {c@+ v}

Similarly, equation 2.1.08

2 2
%{c“’) +§c<l>}=%{c° + &0}k, S {0 +aLc®CO —1)+ s, %{9“” + &0V}
Zero order
d’q 2}0
& +(2E+ 22 )° =G, (6-1)+ G (C-1)
d20 d2c®
&7 P (6*-1)+ D, v 2.1.22
d2c® d20
d—yz—krsc(c04 ~1)+5, & 2.1.23
1% order

2.
g_q +2iEqY = _ddq2 - 7’9" +G,0+G.C"
y y
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(@) 2 2
: 4o~ _d 20—4R.Pr<9‘°)30' + D, d—f
dt dy dy
@ 2~ 2
c dgt = ddCZ: —4krSCC(0)3C' +S. d (29
y

From the zero order

d*c® d?e®
2 =S, 2
dy dy

Substitute above equation into the zero order

—RP,(6* -1)- DS da’0

2

d?6°
= 2

dy dy

0

210
0=(1- DcSt)dd—ez ~RP.{p" -1
y

d?6° R.P, R.P.
7 "1D.S {004—1}Where D5 =P,
y c ot c ot
2
d_f - |:>1{9(0)4 _1}d_‘9
dy dy
d0° d°0° _ ,d0° i, 4O
dy dy? dy " dy
1d(do) _Rdo™ _ do
2 dy| dy 5 dy *dy
d(do) _2Rde™ . do
dy \ dy 5 dy dy
2
(3—6'} :§P10°5—2P0°+A1
y
do

2
— = [=PO” -2P#° +
dy \/5 ! A

dé

dy =
\/g PO% —2PO° + A
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2.1.17

2.1.18

3.1.01(a,b,c,d)
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de°

y=|
\/§P19°5—2P9°+A1+A2

y=0,60°=6,Als0 y >0,0°=1;6=0+A,=A, =0

dé

-
|

c PO% -2P0° + A

Since the integral is infinite this condition will be satisfied only when

éplef’s ~2P0°+A =0

Substitute the value of 8© =1

%Pﬁos ~2P6°+A =0
2P, 1 4 8P,

=2P -—L1=2P|1-=|=2P,— =%

A1 1 5 1( 5} 1 5 5
_ %
y = E(ﬂ] [ de 3.1.02-3.1.05
2 RP 0 (fs_5§+4)%
Similarly for the zero order in the 3" equation
d?e d’C
——5 =Dc ——
dy dy
If we substitute into the 3" equation and solve as above we have
_ bt
y = E[ﬂ] r{” dg 3.1.03
2\ kSc ) 0 (£ 51 a)

From 1% order

RP._ _p,
1- DS,

2 2
90 _4rp. (0™ -1)-D,5, 92
dy dy
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2 2
3—;— D.S, ‘;Tf —4RP, (6% -1)
d’e

(L-D,S,)=4RP. (6% -1)

2

d%0 :[4RP, (6% —1)j

dy? 1-D.S,

2 03
d 429: 4R.P.O _4RP
dy® 1-D.S,

d’9de 4RPO™ d6 4RP, d6

dy? dy 1-D.S, dy 1—D.S, dy

2 - r 4 I:)r
dy” dy dy dy

2
1dido =§Pr6?°4 ~8P.6°
2dy{ dy 4

d*0do _,, do™ ., do®

2
a6 =§Pr0°4—8Pr6?°+Al
dy 4

a6 _ \/§ PO™-8PO°+A
dy 4

dé

dy =
\/j PO -8P0° + A

dé

dy =
J2P.6% —2P.0° + A

dv = [* dé
v= J2P.6% —2P.6° + A + A,

Since the integrals are infinite the conditions will be satisfied only were

%Pﬁo“ —2P6°+ A =0

Substituting the value 6° =1
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A =2P —2P. :2Pr(1—3,A=O

%
y= 1(1_D°S‘J [ — 3.1.04
2( RP, © (&5 —5s+1)?

Similarly, for the first order in equation 5

d’0  _ d’C

dy?  © dy?

If we substitute the above equation into 3" equation in the 1% order equation and solve similarly
above we arrived at

_ 1(ﬂf [ 3105

2\ k.S¢ © JES-BE+1

Equations 3.1.02, 3.1.03, 3.1.04, 3.1.05 respectively reduce equation 3.1.06, 3.1.07, 3.1.08 and
3.1.09. l assumed S,, D, are constants. The equation for q© therefore becomes,

qu(O)

& ~(¢2+2iE)° +G, (6 -1)+ G, (c® -1)

0=

From the relationship

d’c©® d2e©
2 =S, 2
dy dy

3.1.10(a,b)

C®=-569+By+B,
When y=0,c® =C,,,08° =6,
Cy =-S.6, +B,

B, =C,, +S,6,

When y —» o

[c©+s0°-(c, +5.6,))
Bl

o0 = {C(O) + Ste(O) _(CW + St‘gw )}
Bl

This is satisfied when B, =0
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C®=-569+(C, +S,6,)

Similarly from the relationship

d2e® d2c®
2 —Dc 2
dy dy

0® =-D.C? +B,y+B,
When y=0,C© =C,,,6° =4,
6, =-D.C,, +B,

B, =6, + D.C,

When y — o

y = {9(0) + DCC(O) _(ew +D:Cy )}
B,

0 — {0(0) + DCC(O) _(9w +D:Cy )}
B,

This is satisfied when B, =0
0° =-D.C® +(8, +D.C, )

Therefore the equation for q® becomes

3;9 ~(z* +2iER® +G,(0-1)+G.(C -1)
dzq_( 2+2iE)q(0)+G (—D C'40. +D.6 —l)
dyz X r c W cOw 51133110

+Ge(-5,6° +(Cy +S.6, )-1)
The homogenous equation is

d2q(0)

R (v +2EQ® =0

D’ —(3* +2iEQ® =0

M? — (3% +2iE[g® =0
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M, = (;(2 + 2iE)% =ta

q® =De™ +D,e ™™

q® =De” +D,e™

Subject to boundary condition
y=0,q® =11=D, + D,

y—>0:q® =0

The term D,e® is unbounded and so | neglected it, i.e. D=0,and D, =1

q® =0 and exp{— X? +2iE}}/2 y
Expression for C,,

Assuming 6, =10

When y=0,09 =¢,,,C? =C,
Since C,, =-S,0° +C,, +S,6,

| have C,, =-S,6,, +C,, +S,6,
Cw =Cy

When y —«,0° =1,C° =1
1=-§,+C,, +10S, =1-9S, =C_
Cy, =1-9S,

Similarly, expression for 6,
Assuming C,, =10

When y=0,0°=4,,,C® =C,
6, =-Db.C,, +6, +C,

| have

6, =-D.C,, +6, +D.C,
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y—>0,0°=1C, =1

1=-D, +6, +10D,
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APPENDIX 2

t? Cclitlo+t(;iJ (t>+n?)p=0

Where p = p,(it) called the modified Bessel function of the first kind and denoted by In(&).
They are given by

_nJ i(é:/ )21+n

In(&)=

When nis a non integer In(¢&) and 1-nare independent solution of the modified Bessel equation.
When nis an integer In(&)=1-n(&). The modified Bessel function of the second kind k(&)
are defined by

7[1-n(£)-In(¢)

2| sinnz

k(&)=

Bessel function of the 1% kind
1, () =173, (e ™" 3,(x)
1,(z)= e_%V”Jv(ze%m), [— r<argz< %7[)

0% 14 Lz

lzIn +1(z):e_””%Jn(ze”%J —zw<argz L
212 2 2

e ™1, (x).e*1,,(ix),e K, (ix), ek, (ix)

1 1 . 1 .
}/V[ZBZszeZ( ! Iv(z)—(gje 2 Kv(z)(—ﬂ<argzs%7z]
T
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Bessel function of the 2" kind

003 % n#0123,..
K, (x)=tim? I_Pg)i(r)l_pl;()()

(k)= 3 CH 0™ =6

S 2*VKT(V+k+i
0 X 2k+v

2% VKT(V+k +i)

(0=

L—l _e—kthZé‘meﬁmz J0(5_r)
J,(i5)2 JoOn

1

fl 1
I (k2 +m)2r —e"‘zt,L‘lﬁ@—e‘kz
2

m-k2r
1
| 52r 2
-1 —k“r
L |°_ T |=e
0 52
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av—|o<y>+Jv+Io<y>=§av(y>,av—Io<y>—av+uo<y>=zao(y>

erfc:y—yj'cwe“zdt,erf() 1—erf(x e de

L[
)= 200,00+ 1, =m0

3.1.43-3.1.50
erfc——j e dé, erfc (x

+k erf(k \/_)

i5nJo(5nr): 1{1 (i/__Z Lk erf(k \/’):Ie kr2+n )t-r)d

. 1 C+Coo0
LR(S)- 10 L [ R (s -

C+Coo St — a\/_

27Z1 CCoo S

=>" Reduces of e*F(S)at all poles of F(S)

~s3(y-y)
2 —e (;{ +|2ET 1 y y)l dt

4| €
Lo —
: 2

S

’(S’a)t ©

fle=}= [[eedt=["eCdt= eS —

0

. Provides S —a > 0thatis S >a
4
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te-a)-
-

a o e
—a)=J'0e St0dt+_|.0 eS'dt =0+ S

ut-a)

L{ ult

L[fl(t) =

L{(

Lwnuﬁz

I [l

Where the double integrals is taken over the finite region in the first quadrant lying between the
line y=0and y =t. Changing the order of integration, the above equation becomes,

Jy [ty

= [ e tyy[ et 1, (y —y)y
0
=[e™ fl(y)dyj.oae’Sy f,(y)dy
| [e o )RSy = [ L)y | (6)R(6)
LH‘l_e‘ s(y-vy) q= lj'ye—s(y—y)dydy

L s 0

"

SSU=Y) et 1 sk
Lot e —2 — = ( ZEE%e " g
52

—-as

© _ifsso
S

t<a so that

<a

-St |

0

t—x)dx} (5)1,(6)
rﬁ f,(t—x )t

(t—x)dx = J'an“" J.; f,(x)f,(t—

, (t—x)dxdt

t+y dtdy
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Shifting Rule

1 1
2 2 2 2 ,
Ll(k +mj :Ll(k2+mj e
m K +m k2

1 e
L™ (m?:' = = Fi/E +krerfc(kr\/f)

il {e Ko +krerfc(kr\/f) +

: )J': 1- e\;;r + krerfc(kr\/f) g-{ +on e-r)ar

Stability Analysis

0 _1,(4RP, + &) (e ) 1,(RP, + &)z (e )

; . : 3.1.35
«  A,(4RP, +¢&)2n a,(RP, +&)on

C_‘ — In(4krSC + 5)%(”7e_7y) — In(krsc +§)%(77e—7y) 3136

Co o a,(akSc+&)en a,(k,Sc +&)en

Where

n=4RP.(6, -1)=RP.(6, -1)

&=4k.S.(C, -1)=k,S.(C, -1)

I, (7) =Modified Bessel function of the first kind
K, (x)Modified Bessel function of the second kind

Compare with equations 3.1.35, 3.1.47, 3.1.36 and 3.1.49

For e—and C—respectively
0 C

The problem of stability analysis
The stability condition

If the ratio of the marginal solution to the asymptotic solution is less than or equal to 1 then |

claim that the system is stable either with respect to temperature or with respect to
concentration. That is,
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(f? /6, )Marginal S_olutlorl <1 3201
(0® /6, ) AsymptoticSolution
3135 <1 3.2.01
3.1.47
And,

((1: /C., )Marginal S.olutlo.n <1 3902
(c®/c, )AsymptoticSolution
3.1.36 <1 3.2.02
3.1.49

Taking 3.1.35 <1
3.1.47

. (4RP. +§)%(77e*ﬂy)
0° A,(4RP, +&)en <1 atK=0,t—w

az 1 IO(Ue_w)JF[KO("e_ﬁy)_ Ko(ne_ﬁy)]
1,(7) | e |:+ 1 (4RP, )2 e *erfe(RP, )2 }
T
1,(4RP, +&)%2(ine ™)
0 _ a,(4RP, +&)2n 1
0. I - 1 & —4RPt IA
l| 7™ + = (4RP.)| e *™erfc(4RP t)"
|0(77) 4

1, (4RP, + &) (e )1, () oSt s o
A (4RP, + &) {lo(ne-ﬂy )+ L (4RP, )2 e ™ erfc(4RP, )2 }
T

1,1, (7 Y4RP, + &)2 (e ) <1
A, (4RP, +£)2(1, (e ™))

_ 1o don(4RP, + &) (e )
A (4RP. + &V 1, e

(4R, +£)'
E(4RP, + )"

<1

0, =

ISSN 2055-0197(Print), ISSN 2055-0200(Online

72


http://www.eajournals.org/

International Journal of Energy and Environmental Research
Vol.3, No.3, pp.32-74, December 2015

Published by European Centre for Research Training and Development UK (www.eajournals.orq)

(4RP, +£)" (4RR, + £ _

’ ¢
- (4RP, + &) 72" 1
4
0, = §(4RPr +e) < 3.2.03

We see that the system is thermally stable iff 7 >1

Similarly, the system is chemically stable if

CO — (4krSC +§)% Sl
§(4krsc + f)%q
C, = %(4krsC + &Y <1 3.2.04

And so the system will be chemically stable iff 7 >1

CONDITIONS FOR THERMAL STABILITY AND ASYMPTOTIC EXPANSIONS OF
FUNCTIONS ABOUT THE ORIGIN.

Let a;(z)and b, (z)be functions admitting the asymptotic expansions as:

j=0

Now let U(z)be functions of a,(z) and b;(z)symmetric about the origin (i.e. the equilibrium

position or value) the two neighbouring values of U(z) about the origin can be expressed in
cluster terms as:

Uy(2) =3 a, (2)e

n=0

and
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1(2) = ian (z)e*i(wltfklx)

n=0

Thus an auxiliary value of U(z) between U,(z)and U, (z)is given by,

U 0 (Z) i a, (Z) ei(wltfklx)ei(wotfkox)

ch (@15 Jt+(k—ko )]

J.a8nN —>oo
@, > w, and k; >k,

SO s qand L K L 51
a)o Ko

U,(z)
U(2)

Or Ul(z)zUO(Z)

Hence

So that the functions U(z),U,(z)orU, (z)are asymptotically stable if and only if:

Uy(2) _
Uie) <7

Hence, under this conditions each of U,(z)orU,(z)can be expanded as:

U,y(2)=3 a, (2"

And U,(z)= ibn (z)p!* )

Were o =wm, =w,and k =k, =k;

Also, their sum and product can be expressed as:

And UO(Z)_Ul(z); iiarbn_re—i(ax—kx)
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