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ABSTRACT: An analysis of radiative heat and mass transfer on the onset chemical reactive 

rotating fluid on a stratified steady state in a porous medium has been carried out .In 

addition the influence on rotation, radiative heat transfer and chemical reaction where 

investigated by imposes a time dependent perturbation on concentration, temperature and 

velocity. Their involvements are assumed to be large so that heat radiation, chemical 

reaction and heat transfer is significant. This renders the problem inhomogeneous even on 

assumption of differential approximation for the radiative flux with the chemical reaction. 

When the perturbation is small, the transient flow is tackled by laplace transform technique 

with the involvement of modified Bessel function of first and modified second order given 

solution for stable steady state, temperature solute concentration and velocity. Consequence 

of the stable steady state Analysis and numerical solution where obtained by the use of the 

ratio of marginal state and asymptotic state on the concentration and temperature are 

presented graphically display. Their profile on the chemical reaction parameters, 

concentration decreases due to the variations of the chemical reaction parameter, causing a 

corresponding asymptotic change in the porous medium. Concentration profile on the 

Schmidt number, concentration decreases as a result of the variation of the Schmidt number 

parameter causing a corresponding asymptotic change in the porous medium. Temperature 

profiles on the radiation parameter, temperature decrease due to the variation of radiation 

parameter resulting to a corresponding asymptotic change in the porous medium. 

Temperature profiles on the Prandtl number, temperature decrease following the variation of 

the Prandtl number, resulting to a corresponding asymptotic change in the porous medium. 

KEYWORDS: Radiative Heat, Mass Transfer, Chemical Reactive Rotating Fluid,  

Porous Medium. 

 

INTRODUCTION 

The problem of influence on radiative heat and mass transfer in chemical reactive rotating 

fluid on stratified stable steady state in a porous medium are prevalent through everyday life 

and the study of such fluid flow is gaining increasing application in the study of meteorology, 

Geophysics Engineering, Global Climate, and Astrophysics (William and John ,1999), more 
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so the atmosphere and the weather are in porous medium that are governed by the dynamic of 

fluids  

In 1916 Lord Raleigh investigated the instability of Bernard cells by considering the 

buoyancy-driven instability in a homogenous medium. His study shows that the parameter 

that determines the instability is the product of the Prandtl and Grashof numbers (i.e. ratio of 

buoyancy forces to viscous dissipation). Presently the product is called Raleigh number )(R . 

The buoyancy-driven instability has also been studied by other workers based on the theory 

of infinitesimal disturbances. Among these are Likhovskii and Ludovich (1963), Eckhaus 

(1965), Chandrasekhar (1961), Matkowisk (1970) and Sattinger (1973). Also, Bestman (1983) 

studied the case of instability due to mass concentration gradient in a porous medium. He 

established that as the permeability of the porous medium decreases, the Raleigh number for 

the onset of instability rises linearly over a wide range of values of the permeability. Thus 

although porosity increases stability, the critical Raleigh number )( eR  which determine the 

onset of instability was found to be 920 for the value of porosity .6 Consequently, 

turbulence is likely to form the low value of .eR  

The study of thermal stability analysis in compressible fluid flow through a porous medium 

abound in nature, engineering and in scientific applications. A number of workers have 

studied such flow problems; Ahmadi and Manvi (1971) have derived an equation of motion 

for fluid flow. Bestman [(1989), (1990)], Varshney (1979) and  Raptis and Perdikis (1988), 

also studied the steady state problem associated with flow in the porous media. Similarly, 

unsteady flow has engaged the attention of other workers such as Gulab and Mishra (1977) 

who investigated the unsteady hydrodynamic flow in a porous medium. Kumar et al (1985) 

studied the unsteady magneto hydrodynamic flow through a porous medium in a channel, 

while Singh and Soundalgekar (1990) considered the transient free convection of water at 

C04  past an infinite vertical porous plate with time-dependent suction. Thermal stability of 

an incompressible fluid in a porous medium generally considers fluid in a basic state of 

steady motion when a small disturbance is made in the fluid, possibly controlled or 

uncontrolled possibilities occurs. The first is that, the disturbance may generate waves in the 

fluid which propagate through it but do not pick up energy from the basic state; an example is 

a wave seen on the surface of water. However, the buoyancy-driven thermal stability of a 

radiating non-grey gas between two infinitely long vertical plates has been studied by Arpaci 

and Bayazitoglu (1973). In their study, the instability of natural convection in a slot involving 

two infinitely long vertical plates at different isothermal temperatures appears in two regimes 

(the Conduction and Convection regimes) which are distinguished by the temperature of the 

initial state; the initial temperature of the conduction regime is independent of and that of the 

convection regime depends linearly on the vertical direction. In this study, each regime is 

unstable, setting in form of stationary cells or travelling waves.  

In the past decades, several papers dealing with this problem have been published [Opara et 

al ,(2001)]. Similarly, the study of the effect of combined thermal and mass concentration 

gradient on the stability of a chemically reacting fluid in a porous medium has been studied 

by Opara et al (1996). Their study revealed that in the absence of chemical reaction, 

instability sets in a stationary convection at the critical Raleigh number 500eR  with the 

corresponding wave number .3.0ca  Although, the extension of the problem of thermal 

stability of a incompressible fluid in a porous medium including the effect of rotation or that 
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of non-Newtonian behaviour have recently been considered, Opara et al (1997), the combined 

influence on radiative heat and mass transfer in chemical reactive rotating fluid has 

apparently been left untreated especially areas on stratified steady state  is the concern of this 

study. Key word steady state, porous medium, asymptotic state, marginal state. 

 

MATHEMATICAL ANALYSIS 

We consider a fluid rotating in YX  plane about the y-axis in a porous medium with 

combined effects of radiation, chemical reaction, temperature and concentration gradient 

respectively. In this consideration, the flow pattern in the plane is the same as that in all other 

parallel plane with the fluid and the fluid medium bounded by a horizontal free surface with 

constant pressure, density and velocity. The geometrical description of the model and the co-

ordinates of the fluid is rectilinear Cartesian system ),,( ZYX rotating steadily with angular 

velocity with the y-axis being vertical upward in the positive direction and the ZX , axis 

mutually perpendicular to Y to allow a columnof the fluid flow compresses a horizontal layer 

of fluid of thickness .12 drr  Batchelor (2000). 

 

 

 

 

 

 

 

 

 

The above flow description is bounded by plane 0y and drry  12

' with temperature 

0T and 1T and concentration 0C and 1C respectively. Here the fluid is assumed to be at 

temperature 0T and concentration 0C at the lower plane and temperature 1T and concentration 

1C  rotating at the upper plane. Rotation,  and angular velocity,   about y-axis is sustained 

mainly by the action of a fictitious body force per unit mass of the fluid lying in the 

ZX , plane with components 

         uFFvF yzx  2  ,0  ,2         (2.0.1) 

In consideration of the above fluid, the entire layer is acted upon by a uniform gravitational 

field and heated from below such that a uniform temperature gradient 
dy

dT
T  and 
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Figure 1: The physical model and coordinate system 

http://www.eajournals.org/


International Journal of Energy and Environmental Research 

Vol.3, No.3, pp.32-74, December 2015 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

35 
ISSN 2055-0197(Print), ISSN 2055-0200(Online 

concentration gradient 
dy

dC
C   are maintained across it. The lower plane is assumed to be 

in a state represented by the velocity, 

  y
d

v
U               (2.0.2) 

Where v  is the characteristic velocity and d the unit length; the velocity component wvu ,,  

are in Cartesian co-ordinate system with axis .,, ZYX   

Generally the porous medium considered is one whose structure is statistically isotropic so 

that pressure gradient applied in different directions produce the same flux and is given by, 

  


v
p                (2.0.3) 

Where  is the permeability,  is the viscosity, v  is the characteristic velocity, p is pressure 

and  is the laplace equation.  

In this research, the problem of the Reynolds parameter is small which is being ignored. 

Unfortunately, high temperature phenomena bound in the medium and assume the medium as 

optically thin body that can transfer radiative heat and chemical reaction into the medium. A 

primary difficulty in thermal radiative heat and chemical reaction study stems from the fact 

that the radiative flux and chemical reaction is governed by an integral expression and one 

has to handle a non-linear integro-differential equation. However, under fairly realistic 

assumption, the integral expression is replaced by a differential approximation for radiation 

and chemical reaction respectively. Thus in one space, co-ordinate y, the flux q  satisfy the 

non-linear differential equation as state by ,Bestman et al ,(1988);Alabraba et al,(2007). 

Pekene and Ekpe,(2015) 

  0163 32
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           (2.0.4) 

Where T , the temperature of heat transferred,  is the Stefan-Boltzmann constant and  is 

the absorption coefficient which will be assumed constant in the model. Take into account the 

medium permit finite transparent for diffusing particle 1 and equation 2.0.4 is 

approximated by, 

   444 



TT

y

q
             (2.0.5) 

In which subscript “ ” will be used to denote condition in the undisturbed porous medium. 

Mathematical Formulation 

The system incorporates a steady motion with the following designed conditions: an 

incompressible viscous fluid flowing in a porous medium, heated below in a horizontal plane 

and generating a sufficient thermal flux with combined radiation, chemical reaction with 

angular rotation through a layer of diffusing particle with concomitant variation in 
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temperature and solute concentration. In the resulting motion, the fluid layer column assumes 

a uniform horizontal velocity v  rotating about y-axis with angular velocity  (See figure 1 

above); thus the fluid layer is maintained at transient temperature  )(1 tfTT    and 

transient concentration  )(1 tfCC    in which )(1),(1 tfCtfT   and in which an 

arbitrary function of time and  are parameters. The temperature is high enough to sustain an 

adverse temperature and concentration gradient in the fluid for radiative heat transfer. C  is 

the concentration undisturbed constant; )(tf  is an arbitrary function relating to time in the 

continuum but for this problem )(tf  will be approximated to the Heavy side unit function. 

However, we have neglected all effects of electromagnetic potential and we assumed that the 

hydrodynamic state is influenced entirely by adverse temperature gradient. This generate 

radiative heat flux which spreads free convection, in addition, concentration gradient 

generates molecular migration and chemical reaction that interact in the flow. On the above 

conditions, the resulting system admits the Boussenessq approximation for the thermal fluid 

with finite transparency of the porous medium with the governing equations of particle 

motion of horizontal momentum transfer as follows: Following the argument of Opara et al 

(1990), we employed equations 2.0.1, 2.0.3 and 2.0.5 the governing equation for transparency 

medium was modelled.  

      
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The above equation is a two-dimensional form in horizontal motion in a rotating plane that is 

specified in terms of two components along u with radial adverse temperature and 

concentration variation along v  with transverse component   in the porosity. Medium 

permeability was introduced followed Brinkman (1947) in Darcy laws (1956). 
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Equation (2.1.02) above establish the energy equation in a horizontal motion rotating frame 

in terms of two components along v with permeability of the medium (Transverse component) 

along v under rotational symmetry with swirl. 
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Equation 2.1.03 is the distribution of adverse temperature under the action of radiative heat 

flux and concentration with effective diffusion which migrate on the action of the radiative 

flux and mass diffusion due to the time independent temperature variation. 
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Equation 2.1.04 gives account of chemical reaction to varying strength, arbitrary during the 

process of chemical reaction with convectional mass diffusion induced by an applied 

concentration gradient over the average temperature variation. 
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Equations 2.1.01-2.1.04 is subject to the boundary conditions. 

Non-Dimensional Variable 
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Under suitable non-dimensional, equations 2.1.01-2.1.04 Where subjected to the Boussinessq 

approximation were after modification, reduced to the equations below: 
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The boundary conditions to be imposed are: 
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Use is made of the following non-dimensional equation in the above non-dimensional 

procedure. 
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Where 
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 )0,,0( The whole configuration rotates about the y-axis with angular velocity. 

The statement of the problem therefore is to solve equation 2.1.06-2.1.08 based on the 

boundary conditions of equation 2.1.09 (a,b). Following Opara et al (1994), Equation 2.1.06-

2.1.08 are solved by invoking to equation 2.1.09 (a,b) with out loss of generality which 

involves step by step numerical integration by using the explicit finite differential scheme. 

However, in order to analyse the solution, it could be possible to adopt regular perturbation 

scheme for the independent variable of the type and this is the problem of this research; and 

to solve this we follow the example of Opara et al (1997) for which,  
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Where, 
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Substituting equation 2.1.11 (a,b,c) into equations 2.1.06-2.1.08 respectively, the above 

equations reduce the problem into a set of zero order equations as shown in equations 2.1.12-

2.1.14, which are characterized by unsteady state flow with eigen values  peculiar with 

boundary conditions presented in equation 2.1.15 (a,b) below, 
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In another development, we substitute equation 2.1.11 (a,b,c) into equations 2.1.06-2.1.08 to 

obtained first order equation characteristics of unsteady state. 
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The boundary conditions for equation 2.1.16-2.1.18 are as follows: 
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0for   0,,,0,0

  2.1.19 (a,b) 

 However, in this research work we shall assume the chemical reaction is greater than zero 

(homogenous mixture). Similarly, the medium in this research is porous and both the 

radiation and chemical reaction are in combination. Hence, equations 2.1.13 and 2.1.14 were 

modified, transformed and reduce to 2.1.20 and 2.1.21 below. 
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                      2.1.20 
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C
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

 
           2.1.21 

 On rearranging we substitute equation 2.1.20 into 2.1.13 to obtain equation 2.1.22 below. 
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We substitute equation 2.1.21 into equation 2.1.14 to get  
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
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In general, the complete statement of the problem is a solution of equations 2.1.12, 2.1.13, 

2.1.14, 2.1.17, 2.1.18, 2.1.20, 2.1.21, 2.1.22, and 2.1.23 respectively, without great loss in 

generality and subject to boundary conditions presented in equations 2.1.15 (a,b) and 2.1.19 

(a,b). 

 

Nevertheless, this study shall be restricted to the following: temperature field, concentration 

field and velocity field; the ratio of marginal solution to the asymptotic solution will be 

employed to solve annalistically the steady state for the temperature and concentration. 

Numerical analysis will be used graphically to obtain the result of Prandtl )( rP , Schmidt 

),( CS Chemical reaction )(K and Radiative flux, R  through the rotating medium. 
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METHOD OF SOLUTIONS 

To determine the thermal stability state components of temperature profile , concentration 

profile ,C Schmidt profile CS  and Prandtl profile rP on the effect of chemical reaction, 

radiative heat flux combined with rotation of the fluid in a porous medium, equations 2.1.13, 

2.1.14, 2.1.22, 2.1.23 and 2.1.07, 2.1.08 where rearranged to obtain the following equations: 

  1
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  1
1

4 3)0(

2

2













 C

DS

Sk

dy

Cd

Ct

Cr        3.1.01(d) 

Equations 3.1.01 (a,b,c,d) are non-linear and non-homogenous. Generally, it involves a 

heuristic approach by using numerical integration of the explicit differential scheme. It is 

assumed that the above equations are integrated together and are operating in the same 

medium; they are not operating independently as the fluid rotates. 

Equations 3.1.01 (a) and 3.1.01 (c) are multiplied by
dy

d
, while equations 3.1.01 (b) and 

3.1.01 (d) are multiplied by 
dy

dC
on both sides and expand without loss of generality. 

Furthermore, we employ another integration scheme in equation 3.1.01 (a,b,c,d) with respect 

to y from 0 to  and CC   to0 respectively. In order to find the function which satisfy the 

given differential equation and particular condition, equation 2.1.19 (a,b) was subjected to the 

differential and integral scheme and equation 3.1.01 (a,b,c,d) was reduced to the following: 
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Without any loss of generality, equations 3.1.02 and 3.1.03 are the same; similarly, equations 

3.1.04 and 3.1.05 are the same and are in the same medium. We further assumed tS and 

CD are constant; equations 3.1.02, 3.1.03, 3.1.04 and 3.1.05 are reduced to obtain the 

following equations: 

  

 






















0 2
1

5

2
1

452

5 d

RP
y

r

         3.1.06 

  

 

















C

C
Cr

d

Sk
y

0 2
1

5

2
1

452

5




         3.1.07 

  

 






















0 2
1

5

2
1

152

1 d

RP
y

r

         3.1.08 

  

 

















C

C
Cr

d

Sk
y

0 2
1

5

2
1

152

1




         3.1.09 

Equation 2.1.20, 2.1.21 were solved without any loss of generality 

  21

)0( AASC t                    3.1.10(a) 

  21

)0( BBCDC C         3.1.10(b) 

Where equations 3.1.10a and 3.1.10b reduce to  

  
 

1

0

A

SCSC WtWt  
        3.1.11(a) 

 

1

0

B

CDCD WCWC 



               3.1.11(b) 

Equations 3.1.11a, 3.1.11b are satisfied if and only if 0 ,0 11  BA  respectively. The 

following equations were obtained: 

   WtWt SCSC   )0()0(        3.1.12(a) 

   WCWC CDCD   )0()0(                3.1.12(b) 

Substituting equations 3.1.12(a,b) into equation 2.1.12 respectively, we get a non-

homogenous second order differential equation in 0q . 
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The homogenous equation is, 
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   qiD  222             3.1.16 

The complementary function Cq  is, 
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Consequently, upon bounded equation 3.1.18(b) above, we obtained, 
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From equations 3.1.06, 3.1.07, 3.1.08 and 3.1.09 the particular integral 0

pq  is given as follows: 
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Adding equations 3.1.07, 3.1.09 to 3.1.19, 3.1.20, 3.1.21, 3.1.22 and 3.1.23 respectively we 

obtain the following: 
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   3.1.25 

In order to solve equations 2.1.16, 2.1.17 and 2.1.18, we employ a function that will satisfy 

the given particular differential equation and the particular boundary conditions in equation 

2.1.19(a,b). We obtain the laplace transform with respect to time and denoting the 

transformed variable by  , placing the tilde over the transformed function the equation 

satisfied by )1()1()1( ,),( Cq  , in equations 2.1.16, 2.1.17 and 2.1.18 reduce to, 
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With the boundary conditions, substituting equation 2.1.19(a,b) into 3.1.27 and 3.1.28 we get 

the solutions for )(' and )('C as follows: 
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Employing the shifting theorem and taking the inverse laplace transform on equations 3.1.29 

and 3.1.30 we obtain the following equations: 
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When we consider  ,, WW C  and  arbitrary, and approximate 0 and )0(C by, 
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From equations 3.1.33 and 3.1.34 the solution for )('  and )('C were obtain and are reduced to 

get the marginal state solution. 
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      3.1.36 

Equations 3.1.35 and 3.1.36 are the marginal state solution of the temperature and 

concentration respectively, were  ,14 3)0(   rRP  14 3)0( CSk Cr   and    xIxJ nn ,  are the 

Bessel and modified Bessel function of the first kind. Equations 3.1.35 and 3.1.36 have 

simple pole at 0 and another at rRP4 and Cr Sk4 . However, without any lose of 

generality equation 3.1.35 and 3.1.36 could be inverted by using the Bromwich contour with 

a suitable branch cut and the result obtain as follows: 
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Equations 3.1.37 and 3.1.38 are highly complex is expedient to take limiting value with, 
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With the condition that  in the form of equation 3.1.29 and 3.1.30 we obtain the 

following: 
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                         3.1.43 

When rRP4 is large and of order 0.1, Cr Sk  is also large and of order 0.1, then 
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Also, as 0  

 )()()( 00 xnKxIxIn  ,  
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Where )(0 xK is the modified Bessel function of the second kind of order zero, we obtain 
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Inverting equation 3.1.46 we get 
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Which on inverting equation 3.1.48, we obtain 
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      3.1.49 

Equations 3.147 and 3.1.49 are the asymptotic state of the solution. 

For the velocity profile, )('q  in equation 2.1.16 when solved by putting  i222  , we 

obtain  

  








0

)
)1( )(

2

1
(

dyy
e

Kq

yy






     

Applying Laplace transform of inverse, we have  
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Employing convolution theorem on equation 3.1.50 we obtain, 
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Where, )(*)()()( 21

'
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ddgxxfgf ,:

2

1
*  

This is the completion of the solution. 

 

CONSEQUENCE OF THE STEADY STATE. 

If we recall, equations 3.1.35 and 3.1.36 are the marginal state solution for the temperature 

and concentration. Similarly, equations 3.1.47 and 3.1.49 are the asymptotic state solution for 

the temperature and concentration respectively. 

Where, 

 14  WrRP     

 14  WCr CSk  

  xJ n Bessel function of the first kind  

  xI n Modified Bessel function for the first kind 

  xK0 The modified Bessel function of the second kind 

Taking the ratio of equation 3.1.35 to 3.1.47 as 
W

 1

and the ratio of equation 3.1.36 to 3.1.49 

as 
WC

C1

, we establish the stable steady state conditions which states that if the ratio of the 

marginal state of the solution to the ratio of the asymptotic state solution for the temperature 

and concentration is less than or equal to one (1) then the system is assumed stable either 

with respect to temperature profile or with respect to the concentration profile. Rainville E.D. 

(1960). 

Equation 3.1.35 divided by equation 3.1.47  

  1
47.1.3

35.1.3
              3.2.01 

Similarly, equation 3.1.36 divided by equation 3.1.49 

  1
49.1.3

36.1.3
             3.2.02 

Solving equation 3.2.01 we obtain the value of 0 as follows: 
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 rRP           3.2.03 

In a similar approach, we solve for equation 3.2.02 and have 0C as follows: 

     
14

1 1
2

1

0 





CKSC           3.2.04 

The results of equations 3.2.03 and 3.2.04 above confirm the stable steady state of the system 

if ,1 i.e. 5.0 for the radiation and chemical reaction. 

This is the complete solution of the problem of the stable steady state analysis in a porous 

medium on the influence of rotation, radiation and chemical reaction. From assumption, 

rotation may likely alter the condition of stable steady state.  

 

 

RESULT AND DISCUSSIONS. 

The formulation of the problem of two-dimensional stable steady state analysis in an 

incompressible fluid flow in a porous medium with the combined effects of rotation, radiation 

and chemical reaction were presented. By invoking the differential approximation for the 

chemical reaction, radiation and rotation in optically thin medium, the non-linear problem 

was tackled by asymptotic approximation resulting to a stable steady state  on which is 

superimposed a first order and zero order transient flow. 

To comprehend the totality on the effect of the dependent parameter on the flow state 

parameter, use is made of the following numerical computation for concentration 0C for 

various values of chemical reaction parameter .20.1,8.0,2.0K   ,1,24.0 0  CSC for 

concentration for various values of  CS Schmidt, .20.0,60.0,40.0,24.0  KSC For 

temperature, 0 for the various values of the radiation parameter, ,20.1,8.0,20.0R  Prandtl 

  24.0rP and for the temperature ,10  for various values of Prandtl number , 

.20.0,60.0,40.0,24.0  RPr Following the evaluation of the marginal state solution on the 

ratio of the asymptotic state solution on the temperature and concentration profile 

respectively, equations 3.2.03, 3.2.04 and equation 2.1.11(a,b,c) gives the solution for the 

temperature and concentration field where evaluated by numerical integration. 

 Fig.  2, 3, 4 and 5 below shows the graphical display representation of the solution on 

equation , 3.2 01,3.2.02, 3.2 03, 3.2.04 respectively the problems. 
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The concentration profile, 0C shows the plot of the effect of chemical reaction parameter, rk . 

The graph shows that the concentration, 0C  decreases as the chemical reaction parameter 

increases. 
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Fig.2: Concentration profile for various values of the chemical reaction 

parameter rk  
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The concentration profile 0C showing the effect of Schmidt number in the medium has been 

plotted in figure 3 above; the graph shows that the concentration 0C decreases as the Schmidt 

number increases. 

 

 

 

 

 

0C  

Fig. 3: Concentration profile for various values of the Schmidt number CS  

 

y  

20.0

 0.60, 0.40, ,24.0





K

SC  

0C  

http://www.eajournals.org/


International Journal of Energy and Environmental Research 

Vol.3, No.3, pp.32-74, December 2015 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

52 
ISSN 2055-0197(Print), ISSN 2055-0200(Online 

 

 

 

The temperature profile, 0  have been plotted for various values of radiation parameter, R  in 

figure 4 and the graph shows that the temperature, 0 decreases as the radiation parameter, 

R increases. 

 

 

 

 

 

Fig. 4: Temperature profile for various values of radiation parameters .R  
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The temperature, 0  showing the effect of the Prandtl number,  rP  is plotted in figure 5; it is 

observed that the temperature 0 decreases as the Prandtl parameter, rP  increases. 
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APPENDIX 1 

Integrate Equation 2.0.4 
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Multiply the equation above by 
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Similarly for the zero order in the 3rd equation 
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From 1st order 
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Since the integrals are infinite the conditions will be satisfied only were  
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Substituting the value 10   
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Similarly, for the first order in equation 5 
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Equations 3.1.02, 3.1.03, 3.1.04, 3.1.05 respectively reduce equation 3.1.06, 3.1.07, 3.1.08 and 

3.1.09. I assumed Ct DS ,  are constants. The equation for )0(q  therefore becomes, 
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This is satisfied when 01 B  
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The homogenous equation is  
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APPENDIX 2 
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Where  itpp n  called the modified Bessel function of the first kind and denoted by  ln . 

They are given by  
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Bessel function of the 2nd kind 
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Where the double integrals is taken over the finite region in the first quadrant lying between the 

line 0y and ty  . Changing the order of integration, the above equation becomes, 
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Shifting Rule 
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Stability Analysis 
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Where  

   114    rr RPRP  

   114   CSkCSk CrCr  

  nI Modified Bessel function of the first kind 

 xK0 Modified Bessel function of the second kind 

Compare with equations 3.1.35, 3.1.47, 3.1.36 and 3.1.49 

For 


 '

and 
C

C '

respectively 

The problem of stability analysis 

The stability condition 

If the ratio of the marginal solution to the asymptotic solution is less than or equal to 1 then I 

claim that the system is stable either with respect to temperature or with respect to 

concentration. That is, 
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We see that the system is thermally stable iff 1  

Similarly, the system is chemically stable if  
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And so the system will be chemically stable iff 1  

 

CONDITIONS FOR THERMAL STABILITY AND ASYMPTOTIC EXPANSIONS OF 

FUNCTIONS ABOUT THE ORIGIN. 

 

Let  za j and  zb j be functions admitting the asymptotic expansions as: 
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Now let  zU be functions of  za j  and  zb j symmetric about the origin (i.e. the equilibrium 

position or value) the two neighbouring values of  zU  about the origin can be expressed in 

cluster terms as: 
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  and  
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Thus an auxiliary value of  zU  between  zU 0 and  zU1 is given by, 
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So that the functions      zUzUzU 10 or , are asymptotically stable if and only if: 
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Hence, under this conditions each of    zUzU 10 or can be expanded as: 
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Also, their sum and product can be expressed as: 
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