
International Journal of Mathematics and Statistics Studies 

Vol.7, No.1, pp.42-55, January 2019 

      ___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

42 
Print ISSN: 2053-2229 (Print), Online ISSN: 2053-2210 (Online) 
 

HETEROSCEDASTICITY IN ONE WAY MULTIVARIATE ANALYSIS OF 

VARIANCE 

 

G. M. Oyeyemi1 , P. O. Adebayo2 and B. L. Adeleke3 

Department of Statistics, University of Ilorin, Ilorin, Nigeria. 

 

ABSTRACT: This work aimed at developing an alternative procedure to MANOVA test when 

there is problem of heteroscedasticity of dispersion matrices and compared the procedure with an 

existing multivariate test for vector of means (by Johanson). The alternative procedure was 

developed by adopting Satterthwaite’s approach of univariate test for unequal variances. The 

approach made use of approximate degree of freedom method in one way MANOVA when the 

dispersion matrices are not equal and unknown but positive definite. The new procedure was 

compared with Johanson (1980) procedure using simulated data when it is Multivariate normal, 

Multivariate Gamma and real life data by Krishnamoorthy (2010). The new procedure performed 

better in terms of power of the test and type I error rate when compared with Johanson procedure.   
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INTRODUCTION 

 

Multivariate Analysis of Variance (MANOVA) can be viewed as a direct extension of the 

univariate (ANOVA) general linear model that is most appropriate for examining differences 

between groups of means on several variables simultaneously Hair et al [13], Olejnik [23] .In 

ANOVA, differences among various group means on a single-response variable are studied. In 

MANOVA, the number of response variables is increased to two or more variables. MANOVA 

has three basic assumptions that are fundamental to the statistical theory: (i) independent, (ii) 

multivariate normality and (iii) equality of variance-covariance matrices. A statistical test 

procedure is said to be robust or insensitive if departures from these assumptions do not greatly 

affect the significance level or power of the test. The violations in assumptions of multivariate 

normality and homogeneity of covariances may affect the power of the test and type I error rate of 

multivariate analysis of variance test. Johnson and Wichern,[18], Finch[9,10] and Fouladi, and 

Yockey[11]. 

 

The problem of comparing the mean vectors that are more than two multivariate normal 

populations is called Multivariate Analysis of Variance (MANOVA). If the variance - covariance 

matrices of the populations are assumed to be equal, then there are some accepted tests available 

to test the equality of the normal mean vectors, which are: Roy’s [27] largest root, the Lawley-

Hotelling trace [15,23], Wilks’ [29] likelihood ratio, and the Pillai–Bartlett trace [1,24]. Contrary 

to popular belief, they are not competing methods, but are complementary to one another. However 

when the assumption of equality of variance – covariance matrix failed or violated it means that 

none of the aforementioned test statistic is appropriate for the analysis otherwise the result will be 

prejudiced.  This predicament is known as the multivariate Behrens - Fisher problem which deal 
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with testing the equality of normal mean vector under heteroscedasticity of dispersion matrices. If 

the covariance matrices are unknown and arbitrary, then the problem of testing equality of the 

mean vectors is more complex, and only approximate solutions are available.Johansen [17], 

Gamage et al [12] and Krishnamoorthy and Fei [20] proposed multivariate tests for the situationin 

which the covariance matrices could be unequal. In this study, an approximate degree of freedom 

used by Satterthwaite [28] for comparing k normal mean vectors when the population variance - 

covariance matrices are unknown is proposed and compared with an existing procedure (by 

Johanson) when the groups (k) and random variables (p) are three respectively. 

. 

METHODOLOGY 

 

Let 𝑥𝑖𝑗 . . . 𝑥𝑖𝑛 be a sample from a p – variate normal distribution with mean vector 𝜇𝑖 and 

covariance matrix Σi, i =1 , . . . k, assuming that all the samples are independent. Let sample mean 

and sample covariance matrix be  �̅�𝑖 and 𝑠𝑖 respectively based on the 𝑖𝑡ℎ sample. 

�̅�𝑖 =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛

𝑗=1

 

And  

𝑠𝑖 =
1

𝑛𝑖
∑(𝑥𝑖𝑗 − �̅�𝑖)

𝑛𝑖

𝑗=1

(𝑥𝑖𝑗 − �̅�𝑖)
′
. 𝑖 = 1 , .  .  . 𝑘.                                    (1) 

 

Define Σ̃𝑖 =
Σ𝑖

𝑛𝑖
 and s̃𝑖 =

s𝑖

𝑛𝑖
 . we note that �̅�𝑖′𝑠 and �̅�𝑖′𝑠 are mutually independent with 

�̅�𝑖  ~ 𝑁𝑝 (𝜇𝑖,
Σi

𝑛𝑖
)  and �̃�𝑖 ~ 𝑊𝑝 (𝑛𝑖 − 1,

Σ̃𝑖

𝑛𝑖−1
) , 𝑖 = 1, … 𝑘                  (2) 

Where 𝑊𝑝(𝑟, Σ)   denotes the p – dimensional Wishart distribution with degrees of freedom (df 

= r) and scale parameter matrix Σ. 

The problem of interest here is to test 

𝐻0: 𝜇1 =  𝜇2 = .  .  . = 𝜇𝑘   𝑣𝑠  𝐻0: 𝜇𝑖  ≠   𝜇𝑗  for some 𝑖 ≠ 𝑗.            (3) 

Letting 𝑤𝑖 = 𝑠𝑖
−1, 𝑖 = 1, .  .  . , 𝑘 and 

𝑤 = ∑ 𝑤𝑖

𝑘

𝑖=1

 

�̂�0
∗       =  𝑤−1 ∑ 𝑤𝑖�̅�𝑖

𝑘

𝑖=1
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𝑇(�̅�𝑖;  �̅�𝑖) = ∑(�̅�𝑖 − �̂�0
∗)′𝑤𝑖

𝑘

𝑖=1

(�̅�𝑖 − �̂�0
∗) 

            𝑇(�̅�𝑖;  �̅�𝑖) = 𝑇(�̅�𝑖,   .  .  .  �̅�𝑘;  �̃�,   .  .  .  �̃�𝑘)                                           (4) 

          Johanson’s test [17] 

             𝐽𝑂𝐻 =
𝑇(�̅�𝑖,   .  .  .  �̅�𝑘; �̃�,   .  .  .  �̃�𝑘)

𝑐
                                                                 (5) 

              Where 

             𝑐 = 𝑝(𝑘 − 1) + 2𝐴 −  
6𝐴

𝑝(𝑘−1)+2
                                                        (6) 

             and 

𝐴 = ∑
𝑡𝑟(𝐼 − 𝑤−1𝑤𝑖)

2 + [𝑡𝑟(𝐼 − 𝑤−1𝑤𝑖)]2

2(𝑛𝑖 − 1)

𝑘

𝑖=1

                                 (7) 

        Johanson showed that, under  𝐻0 ,  𝐽𝑂𝐻 is approximately distributed as  

         𝐹𝑓1, 𝑓2,
 random variable, where the 𝑓1 = 𝑝(𝑘 − 1) and 

 𝑓2 =
𝑝(𝑘−1)[𝑝(𝑘−1)+2]

3𝐴
. Thus, the Johanson test rejects the null hypothesis in                

equation (3)   whenever 𝐽𝑂𝐻  > 𝐹𝑓1,𝑓2,1− 𝛼   

PROPOSED METHOD 

The entire aforementioned scholars worked on the degree of freedom by using various methods to 

get approximate degree of freedom to the test statistic, which the proposed procedure intended to, 

by extending Satterthwaite’s procedure (two moment solution to the behrens-fisher problem) in 

univariate to a multivariate Behrens-Fisher problem. In Satterthwaite[28] proposed a method to 

estimate the distribution of a linear combination of independent chi – square random variables 

with a chi – square distribution. . Let 𝐿 = ∑ 𝑎𝑖𝑈𝑖     where 𝑎𝑖 are known constants, and 𝑈𝑖 are 

independent random variables such that 

 𝑈𝑖 =
(𝑛𝑖−1)𝑆𝑖

2

𝜎𝑖
2  ~ 𝜒(𝑛𝑖−1)

2  𝑎𝑛𝑑 𝑎𝑖 =
𝑐𝑖

2𝜎𝑖
2

𝑛𝑖(𝑛𝑖−1)
, for 𝑖 = 1, 2.      (8) 
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Since linear combination of random variable does not, in general, possess a chi – square 

distribution. Satterthwaite [28] suggested the use of a chi – square distribution, Say 𝜒(𝑓)
2  as an 

approximation to the distribution of 
𝑓.𝐿

𝐸[𝐿]
 . This notion is compactly written as 

 
𝑓.𝐿

𝐸[𝐿]
 ~̇ 𝜒(𝑓)

2            (9) 

Where “ ~̇ “ is taken to mean “ is approximately distributed as.” From an intuitive standpoint, the 

distribution of   
𝑓.𝐿

𝐸[𝐿]
  should have characteristics similar to some member of the chi – square family 

of densities.  But recall that if a chi – square distribution has degrees of freedom (𝑛𝑖 − 1), then its 

mean is (𝑛𝑖 − 1) and variance is 2(𝑛𝑖 − 1). 

. Symbolically, this requires that, the first moment of the statistic is  

 𝐸 [
𝑓.𝐿

𝐸[𝐿]
] = 𝑓           (10)  

This implies that a chi – square with 𝑓 degrees of freedom. Should be used 

Let consider the second moment. The variance of the statistic is 

        𝑉𝑎𝑟 [
𝑓.𝐿

𝐸[𝐿]
]   = 2𝑓         (11) 

The first two central moments of L are obtained 

We shall consider the test statistic 𝑦′𝑆−1𝑦 and use Univariate Satterthwaite approximation  of 

degrees of freedom method to suggest multivariate generalization based on the T2 – distribution. 

Let 

𝑆 =  ∑ 𝑆𝑖
𝑘
𝑖=1   and  𝑦 =  �̅�𝑖 −  �̅�0

∗   where 𝑖 = 1, 2, .  .  . 𝑘 

𝑦 ~ 𝑁(0, Σ)                                                                                     

If S were a Wishart matrix (𝑛𝑖 − 1)𝑆  ~ 𝑤𝑖𝑠ℎ𝑎𝑟𝑡(𝑛𝑖 − 1, Σ) 

then for an arbitrary constant vector b we should have  

𝑏′𝑦 ~ 𝑁(0, 𝑏′Σ𝑏)    

(𝑛𝑖 − 1)(𝑏′S𝑏) ~ (𝑏′Σ𝑏)𝜒(𝑛𝑖−1)
2   
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That is 𝑚𝑖  =  
(𝑛𝑖−1)𝑏′𝑆𝑖𝑏

𝑏′Σi𝑏
  ~ 𝜒(𝑛𝑖−1)

2  and 𝑟𝑖 =
𝑑′𝑖𝑑𝑖𝑏′Σi𝑏

𝑛𝑖(𝑛𝑖−1)
                                               (12) 

Equation (12) is the multivariate version of equation (8) given by Satterthwaite                                                     

A linear combination of p (random) variables ℎ = 𝑟1𝑚1 + 𝑟2𝑚2+ .   .   . +𝑟𝑘𝑚𝑘    

𝐸[ℎ] = 𝐸[𝑟1𝑚1 + 𝑟2𝑚2 + .  .  . + 𝑟𝑘𝑚𝑘]       (13)  

Substitute equation (12) into equation (13) 

𝐸[ℎ] = 𝐸 [
𝑑′1𝑑1𝑏′Σ1𝑏

𝑛1(𝑛1−1)
.

(𝑛1−1)𝑏′𝑆1𝑏

𝑏′Σ1𝑏
+

𝑑′2𝑑2𝑏′Σ2𝑏

𝑛2(𝑛2−1)
.

(𝑛2−1)𝑏′𝑆2𝑏

𝑏′Σ2𝑏
+  .  .  . +

𝑑′𝑘𝑑𝑘𝑏′Σk𝑏

𝑛𝑘(𝑛𝑘−1)
.

(𝑛𝑘−1)𝑏′𝑆𝑘𝑏

𝑏′Σk𝑏
]   

Note that 𝐸 (
(𝑛𝑖−1)𝑏′𝑆𝑖𝑏

𝑏′Σi𝑏
) = (𝑛𝑖 − 1) 

𝐸[ℎ] =
𝑑′1𝑑1𝑏′Σ1𝑏

𝑛1(𝑛1−1)
. (𝑛1 − 1) +

𝑑′2𝑑2𝑏′Σ2𝑏

𝑛2(𝑛2−1)
. (𝑛2 − 1)+ .  .  . +

𝑑′𝑘𝑑𝑘𝑏′Σk𝑏

𝑛𝑘(𝑛𝑘−1)
. (𝑛𝑘 − 1)  

𝐸[ℎ] =
𝑑′1𝑑1𝑏′Σ1𝑏

𝑛1
+

𝑑′2𝑑2𝑏′Σ2𝑏

𝑛2
+.  .   . +

𝑑′𝑘𝑑𝑘𝑏′Σk𝑏

𝑛𝑘
              (14) 

𝑉𝑎𝑟[ℎ] = 𝑣𝑎𝑟[𝑟1𝑚1 +  𝑟2𝑚2+.   .   . +𝑟𝑘𝑚𝑘]                                                                         (15) 

Substitute equation (12)  into equation (15) 

𝑉𝑎𝑟[ℎ] = 𝑉𝑎𝑟 [
𝑑′1𝑑1𝑏′Σ1𝑏

𝑛1(𝑛1−1)
.

(𝑛1−1)𝑏′𝑆1𝑏

𝑏′Σ1𝑏
+

𝑑′2𝑑2𝑏′Σ2𝑏

𝑛2(𝑛2−1)
.

(𝑛2−1)𝑏′𝑆2𝑏

𝑏′Σ2𝑏
+ .   .   .  +

𝑑′𝑘𝑑𝑘𝑏′Σk𝑏

𝑛𝑘(𝑛𝑘−1)
.

(𝑛𝑘−1)𝑏′𝑆𝑘𝑏

𝑏′Σk𝑏
]  

Note that 𝑉𝑎𝑟 (
(𝑛𝑖−1)𝑏′𝑆𝑖𝑏

𝑏′Σi𝑏
) = 2(𝑛𝑖 − 1) 

𝑉𝑎𝑟[ℎ] =
2(𝑑′1𝑑1)2(𝑏′Σ1𝑏)2

𝑛1
2(𝑛1−1)

+
2(𝑑′2𝑑2)2(𝑏′Σ2𝑏)2

𝑛2
2(𝑛2−1)

+.   .   . +
2(𝑑′𝑘𝑑𝑘)2(𝑏′Σk𝑏)2

𝑛𝑘
2(𝑛𝑘−1)

    (16)  

Substitute equation (14) and (16) into equation (11) 

2𝑓 =
𝑓2.2[

(𝑑′1𝑑1)2(𝑏′Σ1𝑏)2

𝑛1
2(𝑛1−1)

 + 
(𝑑′2𝑑2)2(𝑏′Σ2𝑏)2

𝑛2
2(𝑛2−1)

 +  .   .  .  +
(𝑑′𝑘𝑑𝑘)

2
(𝑏′Σk𝑏)

2

𝑛𝑘
2(𝑛𝑘−1)

]

[
𝑑′1𝑑1𝑏′Σ1𝑏

𝑛1
 + 

𝑑′2𝑑2𝑏′Σ2𝑏

𝑛2
 +   .    .    .+

𝑑′𝑘𝑘𝑏′Σk𝑏

𝑛𝑘
]

2   

𝑓 =
[

𝑑′1𝑑1𝑏′Σ1𝑏

𝑛1
 + 

𝑑′2𝑑2𝑏′Σ2𝑏

𝑛2
 +  .   .    .+

𝑑′𝑘𝑑𝑘𝑏′Σk𝑏

𝑛2
]

2

[
(𝑑′1𝑑1)2(𝑏′Σ1𝑏)2

𝑛1
2(𝑛1−1)

 + 
(𝑑′2𝑑2)2(𝑏′Σ2𝑏)2

𝑛2
2(𝑛2−1)

 +  .   .   .+
(𝑑′𝑘𝑑𝑘)

2
(𝑏′Σk𝑏)

2

𝑛𝑘
2(𝑛𝑘−1)

]

             (17)  
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Yao[31]showed that  𝑤𝑏 =
(𝑏′𝑦)2

(𝑏′𝑆𝑏)
 ~ 𝑡(𝑛−1)

2  

And also it was shown by Bush & Olkin,[3] that 

𝑠𝑢𝑝(𝑤𝑏) = 𝑤𝑏∗ =
(𝑏∗′𝑦)

2

(𝑏∗′𝑆𝑏∗)
= 𝑦′𝑆−1𝑦, 

Where the maximizing 𝑏∗ =  𝑆−1𝑦 and  𝑑′𝑖𝑑𝑖 = 1, then equation (17) becomes 

𝑓 =  
(∑

1

𝑛𝑖
(𝑦𝑆−1𝑆𝑖𝑆−1𝑦))

2

∑
1

𝑛𝑖
2(𝑛𝑖−1)

(𝑦𝑆−1𝑆𝑖𝑆−1𝑦)2
          (18) 

When  𝑦 =  �̅�𝑖 −  �̅�0
∗    equation (18) becomes  

𝑓 =  
(∑

1
𝑛𝑖

((�̅�1 − �̅�0
∗)𝑆−1𝑆𝑖𝑆

−1(�̅�1 − �̅�0
∗)))

2

∑
1

𝑛𝑖
2(𝑛𝑖 − 1)

((�̅�1 − �̅�0
∗)𝑆−1𝑆𝑖𝑆−1(�̅�1 − �̅�0

∗))
2
 

Therefore 𝑇(�̅�𝑖;  �̅�𝑖) ~ 
𝑓𝑝

𝑓−𝑝+1
 𝐹𝑝 ,𝑓−𝑝+1 approximately 

Where  

𝑇(�̅�𝑖;  �̅�𝑖) = ∑(�̅�𝑖 − �̂�0
∗)′𝑤𝑖

𝑘

𝑖=1

(�̅�𝑖 − �̂�0
∗) 

Data simulation 

Data was simulated in R environment to estimate power of the test and Type I error rate when the 

alternative hypothesis is true (that is when the mean vectors are not equal). 

Data Analysis 

Simulated and real life data sets from Krishnamoorthy [20] were used to compare the 

proposed/alternative procedure with the existing one (Johanson). For the simulated data, three 

factors were varied namely;  number of groups (k), the number of variables (p) and significant 

levels (α). 

In each of the 1000 replications and for each of the factor combination, an 𝑛𝑖  × 𝑝 (where 𝑖 =
1,.  .  .  ,4) data matrix Xi were generated using an R package for Multivariate Normal. The 

programme also performs the Box-M test for equality of covariance matrices using the test 

statistic: 

   𝑀 = 𝑐 ∑ (𝑛𝑖 − 1) log|𝑆𝑖
−1𝑆𝑝|𝑘

𝑖=1  ,  
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   Where 

𝑆𝑝 =
∑ (𝑛𝑖 − 1)𝑆𝑖

𝑘
𝑖=1

𝑛 − 𝑘
 

   and 

𝑐 = 1 −
2𝑝2 + 3𝑝 − 1

6(𝑘 − 1)(𝑝 + 1)
[∑

1

𝑛𝑗 − 1
−

1

𝑛 − 𝑘

𝑘

𝑗=1

] 

𝑋𝐵
2 = (1 − 𝐶)𝑀 

And 𝑆𝑖and 𝑆𝑝 are the 𝑖𝑡ℎ unbiased covariance estimator and the pooled covariance matrix 

respectively. Box’s M has an asymptotic chi-square distribution with 
1

2
(𝑝 + 1)(𝑘 − 1) degree of 

freedom. Box’s approximation seems to be good if each 𝑛𝑖 exceeds 20 and if k and p do not exceed 

5 [11] 

Ho is rejected at the significance level α if 𝑋𝐵
2 > 𝜒𝛼(𝑣)

2  where 𝑣 =
1

2
(𝑝 + 1)(𝑘 − 1)  

RESULT  

Table 1 

 

 

 

Multivariate Normal Distribution(For balanced design) 

                                             Power of the test 

Correction (x1= 0.94, x2 = 0.81 and x3 = 0.96) 

 Sample size                   0.01                  0.05 

Johanson Propose Johanson Propose 

P = 2 

& 

k = 3 

5,5,5 0.0381 0.0391 0.1386 0.1522 

10,10,10 0.0651 0.0803 0.1904 0.2607 

50,50,50 0.3732 0.4589 0.5895 0.9039 

100,100,100 0.7304 0.9109 0.8752 0.9320 

200,200,200 0.9744 0.9901 0.9933 0.9992 

                                            Type I error rate 

 

 Sample size                   0.01                  0.05 

Johanson Propose Johanson Propose 

P = 2 

& 

k = 3 

5,5,5 0.952 0.875 0.830 0.645 

10,10,10 0.843 0.662 0.636 0.375 

50,50,50 0.025 0.003 0.004 0.001 

100,100,100 0.000 0.000 0.000 0.000 

200,200,200 0.000 0.000 0.000 0.000 
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. 

Table 1 shows that irrespective of the sample size and significant level α, the propose procedure 

has the higher power of the test and less type I error rate compared to Johanson when the alternative 

hypothesis is true.  The two only have the same type I error rate when the sample sizes are large 

(100’s and 200’s), but then the powers of the test are not the same throughout the sample sizes 

considered (5’s, 10’s, 50’s, 100’s and 200’s). 

Table 2 

Multivariate Normal Distribution(For unbalanced design) 

 

                                             Power of the test 

Correction (x1= 0.94, x2 = 0.81 and x3 = 0.96) 

 Sample size                   0.01                  0.05 

Johanson Propose Johanson Propose 

P = 2 

& 

k = 3 

5,10,15 0.0624 0.0469 0.1866 0.5790 

20,25,30 0.1546 0.0761 0.3366 0.3586 

50,70,90 0.4994 0.5626 0.7132 0.8750 

100,150,200 0.8848 0.9620 0.9587 0.9792 

                                            Type I error rate 

 

 Sample size                   0.01                  0.05 

Johanson Propose Johanson Propose 

P = 2 

& 

k = 3 

5,10,15 0. 863 0. 626 0.633 0. 334 

20,25,30 0.408 0. 172 0.177 0.050 

50,70,90 0.005 0.001 0.000 0.000 

100,150,200 0.000 0.000 0.000 0.000 

From table 2, when the sample size are not equal and very small [(5,10, 15) and (20,25,30)], 

Johanson procedure perceived to be better than the propose procedure in terms of power of the test 

but poor in type I error rate at significant level α = 0.01, but when sample sizes increases to (50, 

70, 90) and (100, 150, 200) the propose procedure performed better at the two significant level (α 

=0.01 and 0.05) 

Table 3 

  Multivariate Gamma Distribution (For balanced design) 

                                             Power of the test 

Correction (x1= 0.94, x2 = 0.81 and x3 = 0.96) 

 Sample size                   0.01                  0.05 

Johanson Propose Johanson Propose 

P = 2 

& 

k = 3 

5,5,5 0.0334 0.0296 0.1299 0.2229 

10,10,10 0.0631 0.0561 0.1941 0.2086 

50,50,50 0.4786 0.6008 0.7069 0.8179 
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100,100,100 0.8601 0.9115 0.9527 0.9550 

200,200,200 0.9966 0.9990 0.9994 0.9997 

                                            Type I error rate 

Correction (x1= 0.94, x2 = 0.81 and x3 = 0.96) 

 Sample size               α =   0.01               α  =  0.05 

Johanson Propose Johanson Propose 

P = 2 

& 

k = 3 

5,5,5 0.977 0.952 0.896 0.730 

10,10,10 0.894 0.651 0.587 0.225 

50,50,50 0.002 0.000 0.001 0.000 

100,100,100 0.000 0.000 0.000 0.000 

200,200,200 0.000 0.000 0.000 0.000 

 

Table 3, when the sample sizes are small [(5, 5, 5) and (10, 10, 10)] and equal in all the groups, 

Johanson performed better at significant level α = 0.01in terms of power of the test while propose 

procedure are better in terms of type I error rate in all the scenario, but when sample sizes are (100, 

100, 100) and (200, 200, 200) they both perform the same. 

Table 3 

  Multivariate Gamma Distribution (For Unbalanced design) 

                                             Power of the test 

Correction (x1= 0.94, x2 = 0.81 and x3 = 0.96) 

 Sample size                   0.01                  0.05 

Johanson Propose Johanson Propose 

P = 2 

& 

k = 3 

5,10,15 0.0730 0.0860 0.2163 0.2221 

20,25,30 0.2105 0.2149 0.4319 0.4559 

50,70,90 0.6827 0.8976 0.8516 0.9753 

100,150,200 0.9719 0.9873 0.9933 0.9991 

                                            Type I error rate 

Correction (x1= 0.94, x2 = 0.81 and x3 = 0.96) 

 Sample size                   0.01                  0.05 

Johanson Propose Johanson Propose 

P = 2 

& 

k = 3 

5,10,15 0.831 0.543 0.475 0.167 

20,25,30 0.147 0.043 0.041 0.000 

50,70,90 0.000 0.000 0.000 0.000 

100,150,200 0.000 0.000 0.000 0.000 

 

From Table 4, when the stimulated data are multivariate gamma and unbalance, the propose 

procedure are better than Johanson procedure in the entire scenario both in terms of power of the 

test and type I error rate. 
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 Illustrative example 

The real life data used by Krishnamoorthy [20] was used to compare propose procedure with 

Johanson procedure so as to understand the behavior of these two tests as described early on, for 

comparing several groups. There are five samples of 30 skulls from each of the early predynastic 

period (circa 4000 BC), the late predynastic period (circa 200 BC), and the Roman period (circa 

AD 150). Four measurements are available on each skull, namely. X1 = maximum breadth, X2 = 

borborygmatic height, X3 = dentoalveolar length, and X4 = nasal height ( all in mm). And n1 = .  .  

.  = n4 = 15, the number of groups is k = 4, while the number of variables is p = 4. The null 

hypothesis of interest is whether the mean vectors for the four variables are the same across the 

four periods. The hypothesis may be written as 

𝐻0 : (

𝜇11

⋮
𝜇1𝑝

) =  (

𝜇21

⋮
𝜇2𝑝

) = (

𝜇31

⋮
𝜇3𝑝

) = (

𝜇41

⋮
𝜇4𝑝

)             vs              𝐻1  :  not 𝐻0. 

The summary statistics for the four groups are given below 

(�̅�1, �̅�2, �̅�3,  �̅�4) = (

131.40
134.07
  97.73
  50.27

    

133.07
134.00
   99.13
    49.93

    

134.27
135.47
   96.60
   49.67

   

136.33
132.47
  94.87
  51.87

)  

The matrices 

𝑊1 = (

0.862
−
−
−

   

−0.173
   0.604

−
−

   

−0.210
   0.138
   0.493

−

   

−1.174
   0.076
   0.308
    3.508

) 

𝑊2 = (

0.573
−
−
−

   

0.205
0.953

−
−

   

−0.327
−0.146
   2.223

−

   

−0.110
−0.922
−0.868
    2.717

) 

𝑊3 = (

0.925
−
−
−

   

0.091
0.610

−
−

   

0.070
0.025
0.625

−

   

   0.015
−0.193
−0.227
   1.587

) 

𝑊4 = (

1.409
−
−
−

   

0.085
0.964

−
−

   

    0.121
−0.095
    0.640

−

   

−0.430
−0.666
−0.362
   2.174

) 
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𝑊−1 = (

0.294
−
−
−

    

0.013
0.355

−
−

    

0.042
0.027
0.268

−

    

0.057
0.066
0.043
0.126

) 

                                              𝑆𝑖 = 𝑤𝑖
−1      where     𝑊𝑖 = 𝑆𝑖

−1     and  𝑆 = ∑ 𝑆𝑖
𝑘
𝑖=1  

    𝑆1 = (

2.380   0.494     0.407    0.750
−
−
−

         1.872
           −
            −

 
− 0.414
    2.356

−

  0.161
−0.062
   0.538

) 

    𝑆2 = (

2.051   −0.325   0.308 0.071
−
−
−

             1.902
           −
            −

 
 0.370
 0.655

−

0.751
0.347
0.737

) 

    𝑆3 = (

1.110   −0.176   −0.136   −0.051
−
−
−

             1.733
           −
            −

 
    0.029
   1.704

−

      0.217
      0.249
      0.693

) 

    𝑆4 = (

0.758      0.032   −0.053   0.151
−
−
−

             1.457
           −
            −

 
  0.515
   1.912

−

   0.539
   0.466
   0.732

) 

 

    𝑆−1 = (

0.169    0.015  −0.005    −0.065
−
−
−

             0.170
           −
            −

 
    0.003
    0.160

−

   −0.111
   −0.059
       0.483

) 

Using all the above matrices, we have 

�̂�0
∗ = 𝑊−1 ∑ 𝑊𝑖�̅�𝑖 = (

134.09
134.10
 98.349
50.832

)

𝑘

𝑖=1

 

All the above matrices are computed using R package. Then we have 

𝑇(�̅�𝑖;  𝑆�̅�) = ∑(�̅�𝑖 − �̂�0
∗)′𝑤𝑖

𝑘

𝑖=1

(�̅�𝑖 − �̂�0
∗) =  33.08102 

Table 4 
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𝛼                     Johanson              Propose Procedure 

 Critical 

value 

Test 

statistic 

Power P-value Critical 

value 

Test 

statistic 

Power P-value 

0.05 2.0443 2.2751 0.1040 0.0294 2.6138 7.6763 0.5268 0.0001 

0.025 2.3451 2.2751 0.0579 0.0294 3.1377 7.6763 0.4059 0.0001 

0.01 2.7464 2.2751 0.0263 0.0294 3.8459 7.6763 0.2745 0.0001 

 

From the table above, when significant level 𝛼 is 0.05 Johanson and propose procedure rejected 

null hypothesis because test statistic is greater than critical value that is 2.275 is greater than 2.0443 

and 7.6763 is greater than 2.6138, also p-values of Johanson is 0.0294 which is less than 0.05 and 

that of propose procedure is  0.0001 which is less than 0.05, but when significant level 𝛼 are 0.025 

and 0.01, Johanson accepted the null hypothesis because 2.275 is less than 2.3451 and 2.7464 with 

p-value greater than  α , while propose procedure rejected null hypothesis since 7.6763 is greater 

than 3.1377 and 3.8459 with p-value less than α. 

 Remark  

From the simulated data, it is obvious that the propose procedure performed better than Johanson 

procedure because its (propose procedure) power of the test are higher than that of Johanson 

procedure in the entire scenario that is, when sample size differs, when significant level α varies, 

when the design are balance and unbalance. Also from the illustrative example, it is observed that 

propose procedure performed than Johanson procedure because propose procedure has the higher 

power of the test than Johanson. 
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