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ABSTRACT: A new statistical model for non-monotone survival data is proposed with some 

of its statistical properties as an extension of power Lindley distribution. These include the 

density and hazard rate functions with their behavior, moments, moment generating function, 

skewness, kurtosis measures, and quantile function. Maximum likelihood estimation of the 

parameters and their estimated asymptotic distribution and confidence intervals are derived. 

Rényi entropy as a measure of the uncertainty in the model is derived. An application of the 

model to a real data set is presented and compared with the fit attained by other well-known 

existing distributions. 

KEYWORDS: Extended power Lindley distribution; power Lindley distribution; non-

monotone survival data 

 

INTRODUCTION 

The modeling and analysis of lifetimes is an important aspect of statistical work in a wide 

variety of scientific and technological fields, such as public health, actuarial science, 

biomedical studies, demography, and industrial reliability. The failure behavior of any system 

can be considered as a random variable due to the variations from one system to another 

resulting from the nature of the system. Therefore, it seems logical to find a statistical model 

for the failure of the system. In other applications, survival data are categorized by their hazard 

rate, e.g., the number of deaths per unit in a period of time. Survival data are categorized by 

their hazard rate which can be monotone (non-increasing and non-decreasing) or non-

monotone (bathtub and upside-down bathtub, or unimodal). For modeling of such survival data, 

many models have been proposed based on hazard rate type. Among these, Weibull distribution 

has been used extensively in survival studies, but it does not fit data with a non-monotone 

hazard rate shape. A one-parameter distribution was introduced by Lindley (1958) as an 

alternative model for data with a non-monotone hazard rate shape. This model becomes the 

well-known Lindley distribution. Properties and applications of Lindley distribution in 

reliability analysis were studied by Ghitany et al. (2008) showing that this distribution may 

provide a better fit than the exponential distribution. Some researchers have proposed new 

classes of distributions based on modifications of the Lindley distribution, including their 

properties and applications. Recently, several authors—including Zakerzadeh and Dolati 

(2009), Nadarajah et al. (2011), Elbatal et al. (2013), Ashour and Eltehiwy (2014), and Oluyede 

and Yang (2015)—proposed and generalized Lindley distribution with its mathematical 

properties and applications. A discrete version of Lindley distribution has been suggested by 

Deniz and Ojeda (2011) with applications in count data related to insurance. A new extension 

of Lindley distribution, called extended Lindley (EL) distribution, which offers a more flexible 

model for lifetime data, was introduced by Bakouch et al. (2012). Shanker et al. (2013) 

proposed a two-parameter Lindley distribution for modeling waiting and survival time data. 
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The power Lindley (PL) distribution with its inference was proposed by Ghitany et al. (2013) 

and generalized by Liyanage and Pararai (2014). Estimation of the reliability of a stress-

strength system from power Lindley distribution was discussed by Ghitany et al. (2015). The 

inverse Lindley distribution with application to head and neck cancer data was introduced by 

Sharma et al. (2015). In this paper we introduce a new type of Lindley distribution with three 

parameters as an extension to power Lindley distribution. 

The Lindley distribution has been proposed by Lindley (1958) in the context of Bayes’ theorem 

as a counter example of fiducial statistics with the following probability density function (pdf)  

2
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                              (1) 

Ghitany et al. (2008) discussed Lindley distribution and its applications extensively and 

showed that the Lindley distribution fits better than the exponential distribution based on the 

waiting time at a bank for service. 

Shanker et al. (2013) proposed two-parameter extensions of Lindley distribution with the 

following pdf  
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            (2)     

This gives better fitting than the original Lindley distribution. Another two-parameter Lindley 

distribution was introduced by Ghitany et al. (2013) named “power Lindley distribution” using 

the transformation  

1

X Y   , with pdf  

2
1( ; ) (1 ) x ; , , 0.

1

xf x x e x
  

  


   


 

where Y is a random variable having pdf (1). 

Using the transformation 
1

,X Z   where Z has the pdf (2), we introduce a more flexible 

distribution with three parameters called “extended power Lindley distribution (EPL),” which 

gives us a better performance in fitting non-monotonic survival data. 

The aim of this paper is to introduce a new Lindley distribution with its mathematical 

properties. These include the shapes of the density and hazard rate functions, the moments, 

moment generating function and some associated measures, the quantile function, and 

stochastic orderings. Maximum likelihood estimation of the model parameters and their 

asymptotic standard distribution and confidence interval are derived. Rényi entropy as a 

measure of the uncertainty in the model is derived. Finally, application of the model to a real 

data set is presented and compared to the fit attained by some other well-known Lindley 

distributions.   

 

  

http://www.eajournals.org/


European Journal of Statistics and Probability  

Vol.3, No.3, pp.19-34, September 2015 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

21 
ISSN 2055-0154(Print), ISSN 2055-0162(Online) 

 

The extended power Lindley distribution 

An extended power Lindley distribution with parameters ,  , and   is defined by its 

probability density function and cumulative distribution function according to the following 

definition. 

Definition: Let Z be a random variable having pdf (2), then the random variable 

1

X Z   is 

said to follow an EPL distribution pdf 

2
1f( ; , , ) (1 ) ; , , , 0xx x x e x

  
      

 

   


                           (3) 

and cumulative distribution function (cdf)  

F( ; , , ) 1 1 ; , , , 0.xx x e x
 

     
 

 
    
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                        (4)     

Remark: The pdf (3) can be shown as a mixture of two distributions as follows: 

1 2( ; , , ) pf ( ) (1 ) f ( )f x x p x       

where  

1 2 2 1
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We see that the EPL is a two-component mixture of Weibull distribution (with shape  and 

scale  ), and a generalized gamma distribution (with shape parameters 2,  and scale  ), 

with mixing proportion / ( )p     . 

We use ( , , )X EPL     to denote the random variable having extended power Lindley 

distribution with parameters , ,   with cdf and pdf in (3) and (4) , respectively. 

The behavior of ( )f x  at 0x   and x   , respectively, are given by 

2
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The derivative of ( )f x is obtained from (3) as 

2
2( ) ( ),  0,xf x x e x x
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where  
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2( ) ,  ,y ay by c y x        

with 

,  (2 1) ,  1.a b c             

Clearly, ( )f x and ( )y have the same sign. ( )y is decreasing quadratic function 

(unimodal with maximum value at the point 
2

b
y

a
  ) with (0)  and ( ) .c      If 

1,    i.e., the case of Lindley distribution, f(x) is decreasing (unimodal) if 1   with 
2

(0)  and f( )=0.
1

f



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
  

Fig. 1 shows the pdf of the EPL distribution for some values of ,  , and   

displaying the behavior of ( )f x .   

 

Fig. 1. Plots of the probability density function of the EPL distribution for different values of

,  , and .   
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Survival and hazard functions 

The survival and hazard rate functions of the EPL distribution are given respectively by  

( ) 1 F ( ) 1 ; , , , 0,x
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                          (5) 

and  
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The behavior of ( )h x  in (6) of the ( , , )EPL    distribution at 0 and ,x x   respectively, 

are given by 
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It can be seen that when 1,   i.e., in the case of Lindley distribution, ( )h x  is increasing 

for all     with 
2

(0)
1

h






 and ( ) .h     

Fig. 2 shows ( )h x  of the EPL distribution for some choices of ,  , and .   

  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Plots of the hazard rate function of the EPL distribution for different values of ,  , and .  
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Moments, moment generating function, and associated measures 

Theorem 1. Let X be a random variable that follows the EPL distribution with pdf as in (3), 

then the thr  row moment (about the origin) is given by 

2
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                                       (7) 

and the moment generating function (mgf) is given by  
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For ( , , )X EPL    , we have 
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Letting y x  , we have  
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The mgf of a continuous random variable ,X  when it exists, is given by 
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For ( , , )X EPL    , we have  
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Using the series expansion, 
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Using the same ideas above, we end up with  
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Therefore, the mean and the variance of the EPL distribution, respectively, are 

               1 1
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The skewness and kurtosis measures can be obtained from the expressions 
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upon substituting for the row moments in (7). 

 

Quantile function 

Theorem 2. Let X be a random variable with pdf as in (3), the quantile function, say ( )Q p  is  

1/
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where , , 0, (0,1)p      , and 1(.)W   is the negative Lambert W function. 

Proof: We have 
1( ) ( ), (0,1)Q p F p p    which implies ( ( ))F Q p p , by substitution we 
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solving this equation for ( )Q P , the proof is complete.  

 

Special cases of the EIL distribution 

The EPL distribution contains some well-known distributions as sub-models, described 

below in brief some examples. 

Lindley distribution  

The original Lindley distribution shown by Lindley (1958) is a special case of the EPL 

distribution; 1.    Using (3) and (4), the pdf and cdf are given by  
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The associated hazard rate function using (6) is given by 
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form of mgf in (8), we have the Lindley mgf,
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variance of Lindley distribution are then given, respectively, by 
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 
.                     

Two-parameter Lindley distribution  

The two-parameter Lindley distribution proposed by Shanker et al. (2013) is a special case of 

the EPL distribution; 1.   Using (3) and (4), the pdf and cdf are given by  
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The associated hazard rate function using (6) is given by 
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( ) ( )

    
 

     

  
 

 
.   

 

Power Lindley distribution 

The two-parameter Lindley distribution proposed by Ghitany et al. (2013 is a special case of 

the EPL distribution; 1.   Using (3) and (4), the pdf and cdf are given by  

2
1f( ; , ) (1 ) ; , , 0

1

xx x x e x
  

   


   


 and 

1
F( ; , ) 1 ; , , 0.

1

xx
x e x




 
   



 
  


 

The associated hazard rate function using (6) is given by 
2 1(1 )

h( ) ; 0.
1

x x
x x

x

 





 

 
 

 
 Using 

(7), the 
thr  row moment (about the origin) is given by 

2

( 1) )
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r r
r



 



  

  
 



. Substitute in 

the general form of mgf in (8), we have the Lindley mgf,

 
1 2

[ ( 1) ]
( )

( 1)
( 1)

n

X n
n

t n n
M t

n


 


  





 
 

 


 . The mean and the variance of Lindley distribution are 
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Weibull distribution  

A two-parameter Weibull distribution is a special case of the EPL distribution; 0.   Using 

(3) and (4), the pdf and cdf are given by  

1f( ; , ) ; , 0xx x e
         and F( ; , ) 1 ; , 0.xx e

       

The associated hazard rate function using (6) is given by 
1h( ) ; 0.x x x    Using (7), the 

thr  row moment (about the origin) is given by r r

r r








   . Substitute in the general form 

of mgf in (8), we have the Lindley mgf,
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1
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t n
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n









 
 

 . The mean and the 

variance of Lindley distribution are then given, respectively, by 

 

       

2

2

1 2

2

2 1
2

1 1
 and 

 


  


  

 

   .  

 

Stochastic orderings 

Stochastic orderings of positive continuous random variables is an important tool to judge the 

comparative behavior. A random variable X is said to be smaller than a random variable Y in 

the following contests: 

(i)  Stochastic order ( ) if ( ) ( ) ;st X YX Y F x F x x    

(ii)  Hazard rate order ( ) if ( ) ( ) ;hr X YX Y h x h x x    

(iii)  Mean residual life order ( ) if ( ) ( ) ;mrl X YX Y m x m x x    

(iv) Likelihood ratio order ( ) if ( ) / ( ) decreases in .lr X YX Y f x f x x   

The following implications (Shaked and Shanthikumar, 1994) are well known that 

lr hr mrl

st

X Y X Y X Y

X Y

    



 

  

The following theorem shows that the EPL distribution is ordered with respect to “likelihood 

ratio” ordering. 
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Theorem 3. Let 1 1, 1 2 2, 2PL( , ) and PL( , ).X Y       If 

1 2 1 2 1 2 1 2 and  (or if  and ), then  and hence

,  and .

lr

hr mrl st

X Y

X Y X Y X Y

           

    

Proof: for 1 2    we have 
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   Case (i) : If
 1 2 1 2 and       , then 

    
( )

log 0.
( )

X

Y

f xd

dx f x
  This means that lrX Y and hence 

 
 

,  and .hr mrl stX Y X Y X Y    

                     Case (ii) : If 1 2 1 2 and  ,     then 

( )
log 0.

( )

X

Y

f xd

dx f x
  This means that lrX Y  and hence 

,  and .hr mrl stX Y X Y X Y    

 

Estimation and inference 

Let 1,..., nX X  be a random sample, with observed values 1,..., nx x  from ( , , )EPL     

distribution. Let ( , , )     be the 3 1  parameter vector. The log likelihood function is 

given by 
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1 1 1
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Then the score function is given by  
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The maximum likelihood estimation (MLE) of  say   is obtained by solving the nonlinear 

system (x; ) 0nU   . This nonlinear system of equations does not have a closed form. For 

interval estimation and hypothesis tests on the model parameters, we require the observed 

information matrix  

 

( )n

I I I

I I I I

I I I

  

  

  

 
 

    
 
 

 

where the elements of  nI   are the second partial derivatives of ( )nU  . Under standard 

regular conditions for large sample approximation (Cox and Hinkley, 1974) that fulfilled for 

the proposed model, the distribution of  is approximately 
1

3( , ( ) ),nN J    where 

( ) E[I ( )].n nJ    Whenever the parameters are in the interior of the parameter space but not 

on the boundary, the asymptotic distribution of ( )n  is 1

3(0, ( ) ),N J  where 

1 1( ) lim ( )n
n

J n I 


   is the unit information matrix and p is the number of parameters of the 

distribution. The asymptotic multivariate normal 1

3( , ( ) )nN I    distribution of  can be used 

to approximate the confidence interval for the parameters and for the hazard rate and survival 

functions. An 100(1 )  asymptotic confidence interval for parameter i  is given by  

2 2

( , ),ii ii
i iZ I Z I       

where 
iiI  is the ( , )i i  diagonal element of 1( )nI   for 1,...,3i   and 

2

Z 
is the quantile 

1 / 2  of the standard normal distribution. 
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Rényi entropy 

Entropy is a measure of variation of the uncertainty in the distribution of any random variable. 

It provides important tools to indicate variety in distributions at particular moments in time and 

to analyze evolutionary processes over time. For a given probability distribution, Rényi (1961) 

gave an expression of the entropy function, so-called Rényi entropy, defined by 

 1
Re( ) log ( )

1
f x dx




    

where 0 and 0.    For the EPL distribution in (3), we have 
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2
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Applications  

In this section, we demonstrate the applicability of the EIL model for real data. Bader and Priest 

(1982) obtained tensile strength measurements on 1000-carbon fiber impregnated tows at four 

different gauge lengths. These carbon fiber micro-composite specimens were tested under 

tensile load until breakage, and the breaking stress was recorded (in gigapascals, GPa). At the 

gauge length of 50 mm, n ¼ 30 observed breaking stresses were recorded. The data are listed 

in Table 1. The data were recently used as an illustrative example for power Lindley 

distribution by Ghitany et al. (2013). 

Table 1: Carbon fibers tensile strength 

1.312    1.314    1.479    1.552    1.700    1.803    1.861    1.865    1.944    1.958    1.966     

1.997    2.006    2.021    2.027    2.055    2.063    2.098    2.140    2.179    2.224    2.240    

2.253    2.270    2.272    2.274    2.301    2.301    2.359    2.382    2.382    2.426    2.434   

2.435    2.478    2.490    2.511    2.514    2.535    2.554    2.566    2.570    2.586    2.629    

2.633    2.642    2.648    2.684    2.697    2.726    2.770    2.773    2.800    2.809    2.818    

2.821    2.848    2.880    2.954    3.012    3.067    3.084    3.090    3.096    3.128    3.233   

3.433    3.585    3.585 
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For this data, we fit the proposed EPL, ( , , )EPL    , as well as the sub models that were 

introduced in Section 6. 

The expectation–maximization (EM) algorithm is used to estimate the model parameters. The 

MLEs of the parameters, the Kolmogorov‒Smirnov statistics (K-S) with its respective p-value, 

the maximized log likelihood for the above distributions, as well as our proposed model are 

given in Table 2. They indicate that the EPL distribution (proposed model) fits the data better 

than the other distributions. The ( , , )EPL    takes the smallest K-S test statistic value and the 

largest value of its corresponding p-value. In addition, it takes the largest log likelihood. The 

fitted densities and the empirical distribution versus the fitted cumulative distributions of all 

models for this data are shown in Figs. 3 and 4, respectively. 

Table 2: Parameter estimates, K-S statistic, p-value, and logL of the carbon fibers tensile 

strength 

Dist.                   ̂                   ̂                ̂              K-S           p-value           log L         

( , , )EPL          0.0584       98.9          3.7313         0.0429       0.9996         -48.9         

 ( ,1, )EPL          0.0450         -              3.8678         0.0442       0.9993         -49.06        

 ( ,0, )EPL         0.0100           -             4.8175         0.1021       0.4685        -50.65       

 ( , ,1)EPL          0.8158        4504.4           -               0.3614       0.000          -105.7      

 ( ,1,1)EPL           0.6545          -                  -               0.4011      0.000          -119.2      

 

 

Fig. 3. Plot of the fitted densities of the models in Table 2. 
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Fig. 4. Plot of the fitted CDFs of the models in Table 2. 

 

CONCLUDING REMARKS  

In this paper, a new three-parameter distribution called “the extended power Lindley” 

distribution is introduced and studied in detail. This model has more flexibility than other types 

of Lindley distributions (one and two parameters) due to the shape of its density as well as its 

hazard rate functions. The density of the new distribution can be expressed as a two-component 

Weibull density functions and a generalized gamma density function. Maximum likelihood 

estimates of the parameters and its asymptotic confidence intervals for model parameters are 

shown. Application of the proposed distribution to real data shows better fit than many other 

well-known distributions, such as Lindley, two-parameter Lindley, Weibull, and power 

Lindley.    
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