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ABSTRACT: In many, if not most, econometric applications, economic data arises from time-series 

or cross-sectional studies which typically exhibit some form of autocorrelation and/or 

heteroskedasticity. If the covariance structure were known, it could be taken into account in a 

(parametric) model, but more often than not the form of autocorrelation and heteroskedasticity is 

unknown. In such cases, model parameters can typically still be estimated consistently using the usual 

estimating functions, but for valid inference in such models a consistent covariance matrix estimate is 

essential. In this study, the strength of some methods of estimating classical linear regression model 

with both negative and positive autocorrelation in the presence of heteroscedasticity were investigated. 

The Ordinary Least Square (OLS) estimator, Heteroskedasticity and Autocorrelation (HAC) 

estimators which includes Cluster-Robust Standard Errors estimators, Newey-West standard errors 

and Feasible Generalized Least Squares Estimator (FGLS) were considered in this study. Monte-Carlo 

experiments were conducted and the study further identifies the best estimator that can be used for 

prediction purpose by adopting the goodness of fit statistics of the estimators. The result revealed the 

superiority of the Newey-West standard errors over others using root mean squared error (RMSE) of 

the parameter estimates and relative efficiency (RR) as assessment criteria among others over various 

considerations for the distribution of the serial correlation and heteroskedasticity.  

KEYWORDS: ordinary least squares estimation, heteroscedasticity, autocorrelation, Panel data, 

Robust Regression. 

 

INTRODUCTION  

Linear regression model is probably the most widely used statistical technique for solving functional 

relationship problems among variables. It helps to explain observations of a dependent variable, y, 

with observed values of one or more independent variables, X1, X2,…., Xp. In an attempt to explain 

the dependent variable, prediction of its values often becomes very essential and necessary. Moreover, 

the linear regression model is formulated under some basic assumptions. Among these assumptions 

are regressors being assumed to be non-stochastic (fixed in repeated sampling) and independent. The 

error terms also assumed to be independent, have constant variance and are also independent of the 

regressors. When all these assumptions of the classical linear regression model are satisfied, the  
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Ordinary Least Square (OLS) estimator given as:        YXXX TT 1)(ˆ                                                         (1) 

is known to possess some ideal or optimum properties of an estimator which include linearity, 

unbiasedness and efficiency [1]. When the regression model does not meet the fundamental 

assumptions, the prediction and estimation of the model may become biased. Disturbances are 

heteroscedastic when they have different variances. Heteroscedasticity arises in volatile high-

frequency time-series data such as daily observations in financial markets and in cross-section data 

where the scale of the dependent variable and the explanatory power of the model tend to vary across 

observations. Microeconomic data such as expenditure surveys are typical. Economic time series also 

often display a “memory” in that variation around the regression function is not independent from one 

period to the next (autocorrelation). The seasonally adjusted price and quantity series published by 

government agencies are examples. A single atypical observation can in fact cause this estimator to 

break down. Moreover, the consistency of this estimator requires a moment condition on the error 

distribution. Data described by econometric models typically contains autocorrelation and/or 

heteroscedasticity of unknown form and for inference in such models it is essential to use covariance 

matrix estimators that can consistently estimate the covariance of the model parameters. In the 

econometric literature less attention is given to robust estimators of regression, but the concept of 

robust standard errors is well established and can be found even in introductory textbooks [2, 3]. Here 

the estimator being used is often the ordinary least squares (OLS) estimator, but its standard errors are 

estimated without relying on assumption of OLS. Failures of these assumptions can predispose output 

toward false statistical significance. Residuals, differences between the values predicted by the model 

and the real data, that are very large can seriously distort the prediction. Among typical challenges in 

numerous multiple regression models are those of heteroscedasticity and autocorrelation which have 

created undesirable consequences for ordinary least squares (OLS) estimator. Accurate inference about 

the estimated coefficients from an ordinary least squares (OLS) regression model relies crucially on a 

consistent estimator of the coefficient covariance matrix. It is widely understood that if the OLS 

residuals have heteroskedasticity and/or serial correlation, then the usual coefficient covariance matrix 

will not be consistent and if it is used to perform inference, then it will lead to erroneous conclusions. 

To overcome this, alternative covariance matrix estimators have been proposed in the literature which 

are consistent to unknown forms of heteroskedasticity (HC), [see 4,5] and/or autocorrelation (HAC), 

[6]. However, the performance of these so-called robust estimators can differ significantly in finite 

samples encountered in empirical applications.  Derivation of appropriate corrections to standard errors 

when conducting inference with autocorrelated data is a standard problem in time series econometrics.  

Classical references include [6 – 8] among many others.  It is well known that ordinary least squares 

estimation in the linear regression model is not robust to autocorrelation and heteroscedasticity. Robust 

regression analysis provides an alternative to a least squares regression model when these fundamental 

assumptions are unfulfilled by the nature of the data. Considerable attention however, has been paid in 

recent years to the estimation of covariance matrices in the presence of heteroscedasticity and 

autocorrelation of unknown form, [6, 9-15]. The standard approach to statistical inference based on 

robust regression methods is to derive the limiting distribution of the robust estimator from assumption 

OLS, and to compute the standard errors of the estimated regression coefficients from the formula for 
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the asymptotic variance matrix.  To satisfy the regression assumptions and be able to trust the results, 

the residuals should have a constant variance. This work examines the effect of heteroscedasticity and 

autocorrelation on the efficiency of the estimates of the regression coefficients in multiple regression 

modelling. This paper is about computing estimators for the covariance matrix of parameters in a linear 

panel model, of the kind commonly used in applied practice to produce ‘robust’ root mean square 

errors since standard errors for heteroskedasticity/autocorrelation can take a number of different forms 

and result from a variety of different processes. Literature has it that the variability in the errors may 

increase or decrease linearly as a function of one or more of the predictors, or variability might be 

larger for moderate values of one or more of the predictors. Given that heteroskedasticity can affect 

the validity or power of statistical tests when using OLS regression, it behooves researchers to test the 

tenability of this assumptions.  The remainder of the paper is organized as follows: In the next section, 

we introduced the general linear model based on Heteroscedastic-Autocorrelation consistent (HAC) 

covariance matrix estimator. In Section 3, we present brief overview of some estimators of 

heteroscedastic-autocorrelation consistent. Section 4 deals with the material and methods with Monte 

Carlo simulation design and how to offset it while in section 5, the results of the simulation comparing 

the OLS residuals based on HAC estimator to the other more commonly employed covariance matrix 

estimation techniques when the cross-sectional units are spatially dependent. Section 6 concludes. 

 

The Linear Model 
Consider a linear model  

                                                        𝑦 = 𝑋𝛽 + 𝑒                                           (2) 

and the OLS estimator �̂�𝑂𝐿𝑆 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

If one is interested in making inference on β, then an estimate of 𝑉𝑎𝑟(�̂�) is required. If the error terms 

  are independent and identically distributed, then the covariance matrix takes the general form of 

𝑎𝑟(�̂�) = 𝜎2(𝑋𝑇𝑋)−1, where �̂�2 is an estimate of the error variance. This case is synthetically dubbed 

spherical errors, and the relative formulation of 𝑉𝑎𝑟(�̂�𝑂𝐿𝑆) is often referred to, somewhat 

inappropriately, as “OLS covariance” [16]. In the general linear model, it is typically assumed that the 

errors have zero mean and variance 𝑎𝑟(𝜇) = Ω. Under suitable regularity conditions [ 3, 17],  the 

coefficients β can be consistently estimated by OLS giving the well-known OLS estimator �̂� with 

corresponding OLS residuals �̂�. 

�̂�𝑂𝐿𝑆 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌                                                     (3) 

𝜇 = (𝐼𝑛 = 𝐻)𝑌 = (𝐼𝑛 − 𝑋(𝑋𝑇𝑋)−1𝑋𝑇)𝑌                    (4) 

where In is the n-dimensional identity matrix and H is usually called hat matrix. The estimates �̂� are 

unbiased and asymptotically normal [17]. Their covariance matrix Ψ is usually denoted in one of the 

two following ways: 
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                                      𝜓 = 𝑉𝑎𝑟(�̂�) = (𝑋𝑇𝑋)−1𝑋𝑇ΩX(𝑋𝑇𝑋)−1                      (5) 

                                         = (
1

𝑛
𝑋𝑇𝑋)

−1 1

𝑛
𝜙 (

1

𝑛
𝑋𝑇𝑋)

−1

                                      (6) 

where 𝜙 = 𝑛−1𝑋𝑇ΩX is essentially the covariance matrix of the scores or estimating functions 𝑉𝑖(𝛽) =
𝑥𝑖(𝑦𝑖 − 𝑥𝑖

𝑇𝛽). The estimating functions evaluated at the parameter estimates 𝑉𝑖(𝛽)  iV have then sum 

zero. For inference in the linear regression model, it is essential to have a consistent estimator for Ψ. 

What kind of estimator should be used for Ψ depends on the assumptions about Ω : In the classical 

linear model independent and homoscedastic errors with variance 𝜎2 are assumed yielding Ω = 𝜎2𝐼𝑛 

and 𝜓 = 𝜎2(𝑋𝑇𝑋)−1  which can be consistently estimated by plugging in the usual OLS estimator 

�̂�2 = (𝑛 − 𝑘)−1 ∑ 𝜇𝑖
2𝑛

𝑖 . But if the independence and/or homoscedasticity assumption is violated, 

inference based on this estimator 𝜓𝑐𝑜𝑛𝑠𝑡 = 𝜎2(𝑋𝑇𝑋)−1 will be biased. HC and HAC estimators tackle 

this problem by plugging an estimate Ω̂ 𝑜𝑟 �̂� into (5) or (6) respectively which are consistent in the 

presence of heteroscedasticity and autocorrelation respectively. As a means of achieving a more 

efficient estimator the HAC literature has devoted much attention to the problem of selecting the 

optimal kernel [18], the right bandwidth (Andrews 1991 and Newey and West 1994) or whether or not 

to pre-whiten the OLS residuals beforehand [19-20]. However, only minor attention has been given to 

potential problems caused from using the OLS residuals as an estimate for the unobserved stochastic 

error term in the regression model. The problem at hand is to estimate the covariance matrix of the 

OLS estimator relaxing the assumptions of serial correlation and/or homoskedasticity without 

imposing any particular structure to the errors’ variance or interdependence. 

 

Brief Overview of Some Estimators of Models Considered  

In this section, we provide brief theoretical formulations of the four estimators of panel data models 

as considered in this study. 

 

Newey-West Errors 

Newey and West [6] propose an alternative kernel-based estimation technique to obtain 

heteroskedasticity and autocorrelation robust standard errors, known as HAC standard errors in cross-

section parlance. They extended this heteroscedastically consistent variance estimator to handle 

residual autocorrelation as well.  Newey-West standard errors are calculated using the VCV matrix (5) 

with 

             
 2 '

1 1 1 1 1

ˆ ˆ ˆ' ' 1 '
1

N T N M T

it it it it it m it it m it m it

i i i m t m

m
X X x x x x x x

M
     

     

  
      

  
  

           (7) 

where m = 1,...,M denotes the mth lag. Newey-West standard errors are regularly used in the finance 

literature [21] but since they were originally designed to address heteroskedasticity and autocorrelation 
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in a single time series, they play a minor role in other panel data applications. The most likely reason 

is that within-firm autocorrelated errors in panel data are usually assumed to have a time persistent 

component. By construction, Newey West standard error estimation assumes autocorrelation up to 

some lag M, where weights are assigned to each lag through a decreasing function in M. Hence, 

standard errors using (11) are biased if autocorrelation is induced by a constant firm-specific 

component. Therefore, it is generally preferable to use cluster-robust standard errors instead, since in 

this case standard error consistency does not hinge on the assumed functional form of autocorrelation. 

 

Cluster-Robust Standard Errors 

One-way cluster-robust VCV matrix estimation is designed to correct for both heteroskedasticity and 

within-cluster autocorrelation of any form, i.e. violation in assumption of 
  2/it iVar X 

 and 

 , / , 0it is it isCov x x  
for t s . According to White [5] a consistent estimate for the VCV matrix in 

presence of heteroskedasticity and within-group autocorrelation is 

𝜓 = 𝑉𝑎𝑟(�̂�) = (𝑋𝑇𝑋)−1�̂�(𝑋𝑇𝑋)−1 

                                                                      = (𝑋𝑇𝑋)−1 ∑ 𝑋𝑔
𝑇𝑢𝑔

𝐺
𝑔=1 𝑢𝑔

𝑇𝑋𝑔(𝑋𝑇𝑋)−1           (8) 

Where �̂� = ∑ 𝑋𝑔
𝑇𝑢𝑔

𝐺
𝑔=1 𝑢𝑔

𝑇𝑋𝑔 and G is the number of clusters. 

In panel data applications we usually set G = N such that the total number of clusters G equals the 

number of firms in our dataset. These standard errors are also known as Rogers standard errors or 

Huber-White standard errors, even though the latter term is often used for White standard errors as 

well. To avoid confusion, we only use the term cluster-robust to refer to standard errors calculated in 

the above fashion. The cluster-robust approach is a generalization of the Eicker-Huber-White-“robust” 

to the case of observations that are correlated within but not across groups. Instead of just summing 

across observations, we take the cross products of x and ˆ ν for each group m to get what looks like 

(but isn’t) a within-group correlation matrix, and sum these across all groups M. 

 

Feasible Generalized Least Squares Estimator (FGLS): 
An alternative to HAC estimators is FGLS estimators (also known as Estimated GLS, or EGLS, 

estimators), for both regression coefficients and their standard errors. These estimators make use of 

revised formulas which explicitly incorporate the innovations covariance matrix. The generalized least 

squares estimator for the model parameters is obtained from the OLS estimation of the transformed 

model as shown below: 

                            𝑦𝑖𝑡
∗ = 𝛼𝑖

∗ + 𝑋𝑖𝑡
∗𝑇𝛽 + 𝑤𝑖𝑡

∗                                    (9)  
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               for i = 1, 2, …., n and t = 1, 2, …, T  

where 𝑦𝑖𝑡
∗ = 𝑦𝑖𝑡 − 𝜆𝑖; 𝑋𝑖𝑡

∗𝑇 = 𝑋𝑖𝑡
𝑇 −  𝜆𝑖;  𝑤𝑖𝑡

∗ = 𝜆𝑖𝑎𝑛𝑑 𝛼𝑖
∗ = 1 − 𝜆  

 The term λ gives a measure of the relative sizes of the within and between unit variances. Which is 

compactly written as  𝐺𝐿𝑆 = (𝑋∗𝑇Ω−1𝑋∗)−1𝑋∗𝑇Ω−1𝑦∗         (10) 

 Since Ω is often unknown, FGLS is more frequently used rather than GLS. The difficulty of using 

FGLS estimators, in practice, is providing an accurate estimate of the covariance. Again, various 

models are employed, and estimated from the residual series, but numerical sensitivities often provide 

challenges. 

 

MATERIAL AND METHODS 

 

This work considers performance of some estimators on linear model in the presence of 

heteroscedasticity and serial autocorrelation. Heteroscedasticity was implanted into the model via the 

individual-specific error component. This is in line with the works of [22- 25]. We considered second-

order serial correlation as done by [22, 26, 27], The autocorrelated disturbances and heteroscedasticity 

focused on single exogenous variable with respect to stability while efficiency of the estimation 

methods for panel data models were examined.  

 

 

Simulation Scheme  

The datasets used for this work were simulated using Monte Carlo experiments in the environment of 

SAS version 9.0 statistical package. The series Y is a time trend plus a second-order autoregressive 

error. The model simulated is  

                                        𝑦𝑖𝑡 = 𝛽𝑜 + 𝛽𝑖𝑡 + 𝑒𝑡   

                                     𝑣𝑡 = 𝜌1𝑣𝑡−1 − 𝜌2𝑣𝑡−2 + 𝑒𝑡  

                                     𝑒𝑡~𝐼𝑁(0,4)   

For each replication, the value of the parameters 𝛽 = (𝛽0, 𝛽1,) were fixed at 10 and 0.5 while five levels 

of autocorrelation (ρ = ±1.9, ±1.6 and 0.9), were estimated for the following estimators: I. Ordinary 

Least Squares (OLS) II. Newey West Estimator (NEW) III. Feasible Generalized Least Squares 

(FGLS) and IV. Cluster-Robust Standard Errors (CRSE). Three different scenarios are considered from 

the simulation above with different level of autocorrelation structures and degree of heteroscedasticity. 

The performances of the estimators at different heteroscedastic structures, positive and negative 

autocorrelation and sample sizes were evaluated using RMSE and their relative efficiency to OLS. 

Durbin-Watson test statistic was used for level of autocorrelation with Pr<DW from SAS 9.0 for testing 

positive autocorrelation, and Pr>DW for testing negative autocorrelation while the Q-statistic was used 



 

International Journal of Mathematics and Statistics Studies 

Vol.8, No.2, pp.1-13, June 2020 

       Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                                 Online ISSN: 2053-2210 (Online) 

7 
 

for degree of heteroscedasticity. The relative efficiency of an estimator is the measure of the degree to 

which the estimator performs similar to common method (OLS). Following Afolayan, and Adeleke, 

[28], the relative efficiency of two unbiased estimators, 𝜃1 and 𝜃2, of the parameter 𝜃, is defined as: 

𝑅𝐸 =
𝑅𝑀𝑆𝐸(𝜃1)

𝑅𝑀𝑆𝐸(𝜃2)
 

where, RMSE is the Root mean square error, 𝜃1 is OLS estimator and 𝜃2 is any other estimator. If the 

relative efficiency is 1, then it means that the estimator is as efficient as the OLS if the error distribution 

of the data is normal. A relative efficiency above 1, implies that the estimator is more efficient than 

OLS estimator. Starting with the ideal case which assumes that there is strong and high level of 

autocorrelation and heteroscedasticity among the series. In this scenario, we investigate the effect of 

bias in estimates of the panel data in the presence of strong and severe autocorrelation and 

heteroscedasticity. For the next group, we relax the first scenario by allowing minor heteroscedasticity 

with severe autocorrelation. And in the last group, interchange the degree of severity to minimal 

autocorrelation and high heteroscedasticity. This to enable us capture which of the estimators perform 

best in each case. Each of the combinations was iterated 1000 times and the assessments of the various 

estimators considered in this work were based on the absolute bias, variance and RMSE of parameter 

estimates.  

 

RESULTS AND DISCUSSION  

 

The results of the performances of the estimators considered at various levels of autocorrelation and 

heteroscedasticity considered in this work are presented and discussed here. To compare the efficiency 

of each estimator the OLS, NEW, FGLS and CRSE models we comparatively studied their error mean 

squares as shown in tables 1,2 and 3 based on each of the criteria stated in section 4 above. Those 

parameter estimates that have smaller root mean squares are deemed to be more efficient. This is due 

to their small deviance from the true mean.  

 

Case 1: HAC estimator under strong (positive) autocorrelation and high degree of 

Heteroscedasticity 

This scenario assumes strong and high positive autocorrelation and high heteroscedasticity among the 

panel data. As shown in table 1, the coefficients and standard errors of the performance estimators at 

different samples with Q-stat to capture the degree of heteroscedasticity and Durbin Watson statistic 

for autocorrelation where Pr < DW is the p-value for testing positive autocorrelation, and Pr > DW is 

the p-value for testing negative autocorrelation. A close look at the table reveals that CRSE appears to 

show better estimator in terms of standard error since it relaxes the assumption that the error terms are 

independent of each other. However, it is important to note that using standard error to determine the 

robust estimator might lead to wrong estimation since the estimates of the standard errors of the 

coefficients in any econometric model are biased downward if the residuals are positively 

autocorrelated. Based on this, we shall consider RMSE and RR criteria for robust estimator. Table 2 
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reveals that NEW are fairly consistent in terms of having smallest RMSE on the original data and is 

relatively more efficient than any other estimator all through the samples. This is followed by FGLS. 

Meanwhile the performances of CRSE estimator are equivalent with that of OLS. All through the 

samples using RMSE criterion, NEW is consistently performed better than FGLS and CRSE 

estimators. 

Table 1: Summary Estimate under strong (positive) Autocorrelation and High Heteroscedasticity 
 

 

N 

 OLS NEW FGLS CRSE 

 

P> Qsata 

 

DW 

 

P < DW 

True 

value 

Coef. SE Coef. SE Coef. SE Coef. SE 

 

20 

 

0.0003 

 

0.18 

 

< 0.001 

β0 = 10 -22.36 0.99 -22.36 1.70 -22.31 1.09 -22.36 1.04 

β1 =0.5 -1.64 0.08 -1.64 0.12 -1.64 0.08 -1.64 0.07 

 

50 

 

< 0.0001 

 

0.05 

 

<0.001 

β0 = 10 -28.66 1.97 -28.66 3.28 -29.43 1.98 -28.66 1.82 

β1 =0.5 -1.23 0.07 -1.23 0.16 -1.19 0.10 -1.23 0.09 

 

100 

 

< 0.0001 

 

0.03 

 

<0.001 

β0 = 10 -30.65 2.80 -30.65 3.61 -30.64 2.17 -30.65 1.72 

β1 =0.5 -0.97 0.05 -0.97 0.08 -0.97 0.05 -0.97 0.04 

 

200 

 

< 0.0001 

 

0.004 

 

<0.001 

β0 = 10 -82.70 6.69 -82.70 12.97 -82.69 8.49 -82.70 6.04 

β1 =0.5 -0.05 0.06 -0.05 0.159 -0.055 0.10 -0.05 0.07 

 

500 

 

< 0.0001 

 

0.001 

 

<0.001 

β0 = 10 -114.96 6.16 -114.96 12.56 -114.96 7.47 -114.96 5.68 

β1 =0.5 0.61 0.02 0.61 0.04 0.61 0.02 0.61 0.02 

 

1000 

 

< 0.0001 

 

0.001 

 

<0.001 

β0 = 10 -49.88 4.26 -49.88 11.23 -50.03 8.49 -49.88 5.03 

β1 =0.5 0.29 0.01 0.29 0.02 0.29 0.01 0.29 0.01 

 

Table 2 also showed that NEW estimator under strong positive autocorrelation accompanied by high 

degree of heteroscedasticity, an efficiency gains of 5% (i.e. 1.0541) over OLS followed by FGLS 

which has a gain of over 2% (RE = 1.0268) when the sample size is small (n = 20). 

 

 

Table 2: RMSE and RR of the selected estimators for high degree of Autocorrelation and 

Heteroscedasticity  
 

Sample size 

OLS NEW FGLS CRSE 

RMSE RMSE RE RMSE RE RMSE RE 

20 2.1469 2.0367 1.0541 2.0908 1.0268 2.1469 1.0000 

50 6.8736 6.7348 1.0206 6.8239 1.0073 6.8736 1.0000 

100 13.8988 13.7570 1.0103 13.8263 1.0052 13.8966 1.0002 

200 47.1289 46.8927 1.0050 47.0103 1.0025 47.1289 1.0000 

500 68.7183 68.5807 1.0020 68.6494 1.0010 68.7183 1.0000 

1000 67.3815 67.3141 1.0010 67.3478 1.0005 67.3815 1.0000 
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Case 2: Estimate under strong (negative) Autocorrelation with High degree of Heteroscedasticity 

In this case, we considered strong negative autocorrelation high degree of heteroscedasticity among 

the panel data. Table 3 shows similar picture as Table 1 since here the standard errors are biased upward 

if the residuals are negatively autocorrelated. Table 4 results further showed the superiority of NEW 

estimator over the other estimators. Interestingly, NEW estimator consistently maintained minimum 

RMSE even as the sample increased with efficiency gain of 5% (RE=1.05) over OLS estimator when 

the sample size is small (n = 20) and gain of 2% (RE = 1.02) when the sample size is large (n =50). A 

close examination of the table showed that FGLS closely followed NEW and even outperformed NEW 

as the sample increased to 500 with efficiency gain above 2% (RE = 1.028) over OLS. Meanwhile the 

performances of CRSE estimator are equivalent with that of OLS.  

 

Table 3: Summary Estimate under strong (negative) Autocorrelation and High Heteroscedasticity 
 

 

n 

 OLS NEW FGLS CRSE 

 

P > Qstat 

 

DW 

 

P > DW 

True 

value 

Coef. SE Coef. SE Coef. SE Coef. SE 

 

20 

 

0.0004 

 

3.72 

 

0.0004 

β0 = 10 8.89 5.24 8.89 1.40 9.12 1.61 8.89 3.44 

β1 =0.5 0.65 0.44 0.65 0.19 0.61 0.18 0.65 0.46 

 

50 

 

< 0.0001 

 

3.84 

 

<0.001 

β0 = 10 8.87 7.29 8.87 2.22 9.18 3.11 8.87 5.12 

β1 =0.5 0.56 0.25 0.56 0.12 0.54 0.17 0.56 0.29 

 

100 

 

< 0.0001 

 

3.94 

 

<0.001 

β0 = 10 10.67 8.80 10.67 2.27 10.69 2.37 10.67 5.19 

β1 =0.5 0.48 0.15 0.48 0.06 0.48 0.06 0.48 0.13 

 

200 

 

< 0.0001 

 

3.966 

 

<0.001 

β0 = 10 10.78 13.27 10.78 3.93 10.64 2.37 10.78 8.86 

β1 =0.5 0.49 0.11 0.49 0.06 0.49 0.03 0.49 0.13 

 

500 

 

< 0.0001 

 

3.994 

 

<0.001 

β0 = 10 10.37 13.41 10.37 3.88 10.37 0.70 10.37 8.71 

β1 =0.5 0.49 0.05 0.49 0.02 0.49 0.003 0.50 0.04 

 

1000 

 

< 0.0001 

 

3.999 

 

<0.001 

β0 = 10 10.08 10.70 10.08 3.58 10.08 0.10 10.08 8.01 

β1 =0.5 0.49 0.02 0.49 0.006 0.49 0.0003 0.49 0.01 
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Table 4: RMSE and RR of the selected estimators for high degree of (negative) Autocorrelation and 

Heteroscedasticity  

 

Sample size 

OLS NEW FGLS CRSE 

RMSE RMSE RE RMSE RE RMSE RE 

20 11.2889 10.7096 1.0541 10.9906 1.0271 11.2889 1.0000 

50 25.3839 24.8710 1.0206 25.1259 1.0103 25.3839 1.0000 

100 43.6524 43.2137 1.0101 43.4314 1.0051 43.6524 1.0000 

200 93.5002 93.0316 1.0050 93.2651 1.0025 93.5002 1.0000 

500 149.7272 149.400 1.0022 145.600 1.0283 149.730 0.9999 

1000 169.1199 169.000 1.0007 169.000 1.0007 169.120 1.0000 

 

Case 3: Estimate under high Heteroscedasticity but minimal Autocorrelation 

This is a scenario where there is high Heteroscedasticity among the series accompanied by minimal 

autocorrelation. When the model has high level of non- constant variance accompanied by minimum 

autocorrelation, New estimator provided good estimates of the regression parameters than any other 

estimators considered as shown in Table 5. The result in table 5 reveals that the standard error of NEW 

estimator was lower than all the other estimators and converge to their true value as the sample sizes 

become large (i.e. 20 to 1000).  

 

Table 5: Summary Estimate under high Heteroscedasticity but minimal Autocorrelation 
n OLS NEW FGLS CRSE 

  

DW 

 

P >Q 

True 

value 

Coef. SE Coef. SE Coef. SE Coef. SE 

 

20 

 

1.58 

 

0.008 

β0 = 10 10.26 1.37 10.26 0.57 10.26 1.27 10.25 1.39 

β1 =0.5 0.46 0.11 0.46 0.05 0.46 0.09 0.46 0.10 

 

50 

 

1.49 

 

0.000 

β0 = 10 9.82 1.51 9.82 0.33 9.88 0.99 9.82 1.34 

β1 =0.5 0.50 0.05 0.50 0.01 0.50 0.03 0.50 0.04 

 

100 

 

1.77 

 

0.01 

β0 = 10 9.85 0.31 9.85 0.16 9.85 0.19 9.86 0.19 

β1 =0.5 0.50 0.005 0.50 0.003 0.50 0.004 0.50 0.004 

 

200 

 

1.03 

 

0.01 

β0 = 10 9.69 0.35 9.69 0.23 9.69 0.34 9.69 0.29 

β1 =0.5 0.50 0.003 0.50 0.002 0.50 0.002 0.50 0.02 

 

500 

 

1.47 

 

0.004 

β0 = 10 10.03 0.1057 10.00 0.1112 10.00 0.1177 10.00 0.1151 

β1 =0.5 0.49 0.0003 0.49 0.0003 0.49 0.0003 0.49 0.0003 

 

1000 

 

1.69 

 

0.00 

β0 = 10 9.98 0.0675 9.98 0.0745 9.98 0.0758 9.98 0.0746 

β1 =0.5 0.50 0.0001 0.49 0.0001 0.49 0.0001 0.49 0.0001 
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Table 6 further confirmed the superiority of NEW estimator with least RMSE with high RR over other 

selected estimators. This indicates the relative consistency of NEW estimator compared to other 

estimators considered in the study. This is followed by FGLS estimator which also showed a lower 

RMSE than CRSE and OLS estimators 

 

 

Table 6: RMSE and RR of the selected estimators for high Heteroscedasticity but minimal 

Autocorrelation 

 

Sample size 

OLS NEW FGLS CRSE 

RMSE RMSE RE RMSE RE RMSE RE 

20 2.95526 2.8036 1.0541 2.8764 1.0274 2.9553 1.0000 

50 5.25136 5.1453 1.0206 5.1976 1.0103 2.2514 2.3325 

100 1.53379 1.5184 1.0101 1.5261 1.0050 1.5338 1.0000 

200 2.45000 2.4341 1.0065 2.4402 1.0040 2.4464 1.0015 

500 1.17972 1.1774 1.0020 1.1785 1.0010 1.1797 1.0000 

1000 1.06574 1.0647 1.0010 1.0652 1.0005 1.0657 1.0000 

 

CONCLUSION  

 

Various results obtained in this work generally showed that the behaviors of the four estimators 

investigated for modeling various panel data vary as the violations are varied. Failure of the 

orthogonality assumption makes the OLS estimators to be biased and imprecise. For OLS to be 

accurately used in estimating the parameters of panel data models, errors have to be independent and 

homoscedastic. These conditions are so atypical and mostly unrealistic in many real-life situations that 

would have warranted the use of OLS for modeling panel data efficiently. The efficiency of the three 

methods of estimating panel data models with violations of homoscedasticity and no autocorrelation 

(both positive and negative) were considered. Our findings from Monte Carlo experiments for several 

combinations of violations such as heteroscedasticity and (negative and positive) autocorrelation, 

revealed the superiority of the Newey-West standard errors (NEW) over FGLS and CRSE estimators 

using root mean squared error (RMSE) of the parameter estimates and relative efficiency (RR) as 

assessment criteria for the distribution of the serial correlation and heteroskedasticity. The 

performances of CRSE estimator are equivalent with that of OLS. For small samples, NEW estimator 

accounted for an average efficiency gain of 5% over OLS in all the three cases considered.  
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