EVALUATION OF FLORA SPECIES DIVERSITY IN URBAN FORMATIONS OF CALABAR, CROSS RIVER STATE, NIGERIA

Inyang, I. N., Digha, O. N & Ikono, E. C.

Department Of Geography and Environmental Science Faculty of Environmental Sciences University Of Calabar Calabar P.M.B. 1115 Calabar

ABSTRACT: Species diversity represents the species richness or number of species found in an ecological community, including the abundance (number of individuals per species), and the distribution or evenness of species. It has contributed to the awareness of the loss of natural vegetation which is an on-going global issue. Therefore, the research work aimed at examining the flora diversity of Calabar Metropolis Cross River State, Nigeria. However, the objectives for these studies are to identify and delineate areas of species abundant in urban formation of Calabar Metropolis. The methodology of Atu, & Bisong (2013) was adopted in delineating the urban area for the study. A four kilometer buffer zone was delineated from the CBD (Watt market) and labeled as highly built area, a second 3 kilometer was created from the limit of the first buffer zone as the moderately built up area and a two kilometer zone was taken from the edge of the second as the sparsely built up area. Furthermore, a buffer of 2 kilometers from the edge of the sparsely built up area was classified as non-built-up zone to another 3 kilometers. Thereafter the purposive sampling technique was used to select samples zones in each of the delineated areas (highly built up, moderately built up, sparsely built up and non-built up areas). Based on this classification Ekorinim, Satellite Town, Johnathan by-pass, Ikot Omin and Abayong community where the sampled zones. At each of the zones two sample plots were randomly selected. The trees were enumerated via transect walk lane of 1000m x 50m interval on site identification by the researcher. The analysis of the research findings shows a total of 72 species in the built and non built-up area of the study, 36 Trees, 17 shrubs and 19 herbs as shown in table 1.1 and 1.2 respectively. Some of the species of trees enumerated were: Alstonia conggensis, Mittragyna stepolusa, Musanga cecropioides. Mussaenda erythrophylla Anacardium occidentalis, Ipomoza Involucrata are some examples of the shrubs identified and Clerodendrum splendens, Calopogonium mucunoides, Aspilic africana. In the same vein, the result of hypothesis which states that: there is no significant difference in flora species diversity among the various built-up areas was rejected while the alternate upheld. It was concluded based on the results that there is a significant difference in flora species diversity of the study area. Therefore, it is recommended that the ecological flora survey should be carried out periodically in the study area to ascertain the affected flora species.

KEYWORD: flora vegetation, species diversity and urban formations.

INTRODUCTION

Diversity of species represents the species richness or number of species found in an ecological community, including the abundance (number of individuals per species), and the distribution or evenness of species. It is one of the most important indices used for evaluating the sustainability of forest communities which can be determine through patterns and processes. It has contributed to the awareness of the loss of natural vegetation which is an on-going global issue. Most of these issues has not only results in the extinction of flora species but had also threatens the ecosystem services. Flora are plant life occurring in a particular region or time, they constitute varieties of plant species in which the variation is expressed among trees, shrubs and herbs within a given ecosystem. They can be native or exotic species or a combination of both depending on the nature of the ecosystem (natural or man managed ecosystem). Flora are significant to man in providing habitat for fauna species, thus contributing to wildlife sustainability, absorbing of pollutants and dust through shading and evaporative cooling. Other benefits include the provision of profitable by-products to man such as, firewood, compost, timbers and also the adding of nutrient to the soil. The change in vegetation not only brings about changes in vegetation composition and structure, but also has implications on the soil (Offiong, Iwara & Ekpe 2016).

Globally, the adoption of various measures such as legal protection of economic trees, the use of protected areas, and agro-environmental schemes have been used to safeguard species and habitats. Currently the global disappearance and declined in flora species presents the entire world with one of its greatest conservation challenges. For instance in Europe, native plants have been declining on daily. A decline in the extent and condition of flora may precede the loss of its species and provide an indicator of the health of other elements of the environment. Flora species are therefore of great significance to man and nature. In spite of the roles played by flora species, evidence still suggests that severe threat from diverse sources such as deforestation, inadequate farming practices, invasive alien species, urbanization, oil and gas exploration and developmental activities affect flora species diversity (Phil-Eze and Okoro, 2008).

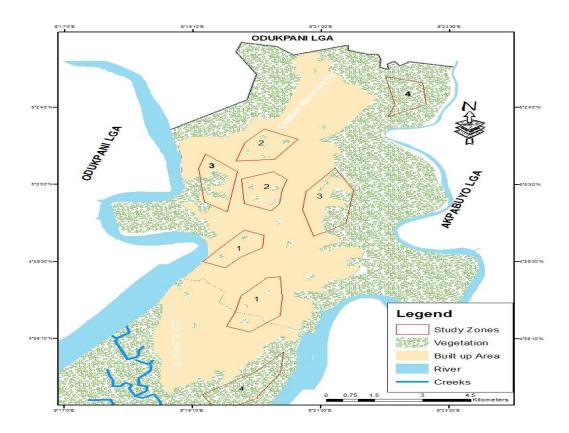
However, inventory to investigate plant diversity and floristic composition in an ecosystem is important to the level of adaptation to the environment and their ecological significance, and is absolutely essential understanding the natural ecosystem dynamics ((Reddy, Shilpa, Amarnath & Pattanik 2008 & 2011). This plays an important role in the management of biodiversity as essential bio-resources and in the management of conservation of species and natural ecosystem (Malouin, Larocque, Doyle, Bell, Dacosta & Liss K. 2015; Lukácz, Sramkó, Molnár 2013; Meng, Lu & Liu 2011; Nurfadilah 2015; You et al. 2016; Huang et al. 2016).

In Nigeria, the flora vegetation varies from humid tropical forests in the south to savannah, while to the north is occupied by grasslands. But today a great percentage of this luxurious vegetation has been removed in the course of various human activities such as residential development, road transportation network and building of markets. At present Cross River State has lost about 19% of its tropical high forests due to human activities like agriculture, settlement (e.g., construction of buildings, fences), resource extraction (e.g., mining, timber harvesting), and industrial development (e.g. the construction of roads), others causes include natural Causes like geological

forces such as climate change (e.g., changes in rainfall, sea level rise), high level of poverty among the urban dwellers, increase in population and immigration of people into urban settlement (REDD+ status, 2012). In the same vein, the city of Calabar enjoys an agglomeration of economic, industrial and educational activities, plus commercial ventures such as markets, eateries and shopping malls.

However, the concentration of these activities attracts people from the rural communities and other parts of Nigeria and the world to the cities which have necessitated the expansion of the city to its peripheries involving natural vegetation degradation and loss. Therefore, adequate management and restoration of degraded ecosystems, biodiversity and forest conservation, analysis of the flora diversity and composition, and combined understanding of ecology and environmental factors that influence the diversity flora species is important. Based on the aforementioned, the research paper seeks to evaluate flora species diversity in built-up and non built-up areas of Calabar urban Cross River State, Nigeria.Further, it was hypothesized that:

 $HO_{1:}$ There is no significant variation in flora species diversity between the zones built-up and non-built-up areas of Calabar.


MATERIALS AND METHODS

Study area: Calabar lies between latitude, 4°28'N and 5°15'N of equator and longitude, 8°13'E and 8°37'E Greenwich meridian. Calabar is bounded by Odukpani Local Government Area in the north, Akpabuyo Local Government Area to the south by Calabar South and west by Calabar River. It has an area of 98.712 square kilometers. Under the Koppen's climate classification, the metropolis features a tropical monsoon climate with a lengthy wet season spanning 8-9 months and a short dry season covering the remaining 3-4 months with an average annual rainfall of 2750mm (Climate-ata.org, 2016).The harmattan which significantly influences weather in West Africa is noticeably less pronounced in the city. Temperatures are relatively constant throughout the year, with average high temperatures usually ranging from 25 to 28 degrees Celsius. The predominant vegetation type within the study area is mangrove. The mangrove flora consists of trees and shrubs of varying species. The common genus is Rhizophora with three species, R Eaemos, R. Harisonii and R. Managle. There are also plants, prodococcus, bateri, ancistrophyllum, and the gregarious and aggressive Nypa Fruituzan. The vegetation is known to be part of the most complex vegetation which is of the mangrove growth in the Cross River estuary. The complex plant community of wetland origin formed an ecological niche for reptile.

Method: the methodology of Atu, & Bisong (2013) was adopted in delimiting the urban area for the study. A four kilometer buffer zone was delineated from the CBD (Watt market) and labeled as highly built area, a second 3 kilometer was created from the limit of the first buffer zone as the moderately built up area and a two kilometer zone was taken from the edge of the second as the sparsely built up area. Furthermore, a buffer of 2 kilometers from the edge of the sparsely built up area was classified as non-built-up zone to another 3 kilometers.

British Journal of Environmental Sciences Vol.9, No.2, pp. 32-47, 2021 ISSN 2054-6351 (print), ISSN 2054-636X (online)

Sampling technique: purposive sampling technique was used to select samples zones in each of the delineated area (highly built up, moderately built up, sparsely built up and non-built up areas). Based on this classification Ekorinim, Satellite Town, Johnathan by-pass, Ikot Omin and Abayong community where the sampled zones. At each of the zones two sample plots were randomly selected. Where the random sample plot does not contain vegetation the next sample plot was adopted. The trees were enumerated via transect walk lane of 1000m X 50m interval on site identification by the researcher, a botanist from the Department of Botany in the University of Calabar and a forest guide from the CRS Ministry of Forestry. Where a tree could not be identified onsite, a scrap of the back of the tree & the leaf were collected, preserved & transported to the Department of Botany in the University of Calabar for proper identification.

Delineated areas of flora diversity in Calabar FIG. 1: Calabar showing the study location **Source: Cross River Geographic Information System (CRGIS)**

RESULT

TABLE 1.1Identify Flora species diversity in built-up area of Calabar

S/N	Common Name	Botanical Name	Family Name	Occurrence	Specie Type	Eco	logica	l Stat	us
				Total	Life form	А	С	0	R
1.	Neem tree	Azadirachta indica	Meliaceae	8	Tree		x		
2.	flame of the forest	Delonie regia	Caesalpinaceae	9	Tree			Х	
3.	Fan palm	Borassus flabellifer	Palmae	18	Tree	х			
4.	Managasta almond	Terminalia montalv	Combretaceae	17	Tree	х			
5.	Custard apple	Greenwayodendro h synonmys	Annonaceae	8	Tree			х	
6.	Indian almond	Terminalia catapa	Combretaceae	2	Tree				x
7.	Odan tree	Ficus thoningii	Moraceae	5	Tree				х
8.	Avocado pear	Persea amercana	Lauraceae	5	Tree				x
9.	Mango tree	Mangifera indica	A nacardiaceae	10	Tree			х	
10.	Palm tree	Elaeis guinensis	Palmae	3	Tree				х
11.	Thunder tree	Croton zambesicus	Euphorbiaceae	4	Tree				х
12.	Drumstick northern b	Moringa oleifera	Moringaceae	4	Tree				x
13.	Comb teak	Gmelina arborea	Verbanaceae	5	Tree				х
14.	Stool wood	Alstona boonci	Apocynaceae	3	Tree				х
15.	Cashew nut tree	Anacardium occidentalis	Anacardiaceae	11	Tree			х	
16.	Native pear	Dacryodes edulis	Bursaraceae	5	Tree				x
17.	cassod tree	Cassia siamea	Caesalpinaceae	5	Tree				х
18.	Spanish shawl	Dissolis roiundifolia	Melastomatacea e	5	Herb				x
19	Arabica seed	Urena cobata	Malvaceae	3	Herb				х
20	Burkil	Pandiaka involucrate	Amaranthaceae	5	Herb				х
21	Morning glory	Ipomoza	Convolvucea	17	Herbs				
22	Broom weed	Sida acuta	Malvacea	32	Herbs				
23	Common ginger liliy	Costa afer	Zingiberacea	20	Herbs				
24.	Teak	Teclona grundis	Verbenceae	4	Tree				х
25.	Guava	Psidium guajava	Mvrtaceae	5	Tree				х
26.	Asthma weed	Erigeron florib unda	Asteraceae	2	Herb				x
27	Camwood	Baphia nitida	Fabaceae	16	Tree			х	

Vol.9, No.2, pp. 32-47, 2021

ISSN 2054-6351 (print),

ISSN 2054-636X (online)

28	Ringworm plant	Cassia alata	Caesalpiniacea e	10	Shrub	x	_
29	Cattle stick	Carpolobia lutea	Polygalaceae	5	Shrub	Х	-
30	Water lily	Nymphaea lotus (L)	Nymphaceceae	15	Herb	х	
Total				248			

Source: authors Field analysis (2019)

TABLE 1.2Flora species in non built-up of Calabar

S/N	Common Name	Botanical Name	Family Name	Occurrence	Specie Type	Ecological Status			
				Total	Life form	А	С	0	R
1.	Stool wood	Alstonia conggensis	Apocyanceae	18	Tree	х			
2.	Abura	Mittragyna stepolusa	Rubiaceae	9	Tree		х		
3.	Umbrella tree	Musanga cecropioides	Moracaea	25	Tree	х			
4.	Blood tree	Harimgana madagariensis	Hypericacaea	19	Tree	х			
5.	Forest bamboo	Bambusa vulgaris	Bambusae	14	Tree		Х		
6.	Christmas bush	Alchohea cordifolia	Euphorbiacaea	23	Shrub	х			
7.	Kola	Kola nitida	Sterculianceae	4	Tree				х
8.	Zuni sweeten	Lasiathera africanum	Icacinacaea	4	Shrub	х			
9.	Siam weed	Chromolaena odorata	Asteracaea	35	Herb	х			
10.	Common ginger lily	Costas afer	Zingiberacaea	20	Herb				х
11.	Palm tree	Elaeis guinensis	Palmae	20	Tree	х			
12.	African mango	Irvingia gabouensis	Irvingiacaea	9	Herbs			X	
13.	Holarrhena	Holarrhena floribunda	Apolynacaea	5	Tree				х
14.	Velvet sun fruit	'netisferruginea	Connaracaea	3	Shrub				Х
15.	Ant- plant	Barteria nigriliana	Passifloracaea	5	Tree				х
16.	Sulamun melonganel	Dioscoreophy- llumcumminsii	Menispermaceae	8	Shrubs				х
17.	Raffia palm	Raphia Afriana oledo	Arecaceae	24	Tree	х			
18.	Camwood	Baphia nitida	Fabaceae	2	Shrubs				х
19	Wild cherry	Antidesma vogelinanum	Euphorbiaceae	6	Herbs			x	
20	Sword fern	Nephrolepis biserrata	Daralliaceae	24	Herbs	Х			
21	Hog plum	Spondias mombin	Anacanridaceae	12	Herbs		х		
22	Bush willow	Combretum racemosum	Combrelaceae	19	Tree	х			
23	Wild African rubber	Funtumia elastic	Apocyanceae	17	Tree	х			
24	Screw pin	Pandamis demtdatits	Pandanaceae	9	Tree			х	
25	Apado	Anthonotha macrophylla	Fabaceae	11	Tree		х		
26	Ofu	Cleistopholus osun	Fabaceae	17	Tree		х		
27	Miraculous plant	Thoumatococcus danillii	Morantaceae	8	Herbs			х	

British Journal of Environmental Sciences

Vol.9, No.2, pp. 32-47, 2021

ISSN 2054-6351 (print),

ISSN 2054-636X (online)

28	Ficus	Ficus spp	Moraceae	1	Tree		_	X
29	Holarrhena	Holarrhena floribunda	Apolynacaea	3	Tree			х
30	Egg woman	Phyllantus amarus	Euphorbiaceae	4	Herbs			х
31	Devil bean	Crotalarca retusa	Papilionaceae	3	Herbs			х
32	Red camwood	Pterocarpus osun	Fabaceae	8	Tree		х	
33	Waterside camwood	Pterocarpus santaliniodes	Fabaceae	12	Tree	х		
34	Burkil	Pandiaka involucrate	A maranthaceae	10	Herb		х	
35	Cattle stick	Carpolobia lutea	Polygalaceae	5	Shrub			х
36	Water lily	Nymphaea lotus (L)	Nymphaceceae	15	Herb	Х		
37.	Swamp arum	Cyrtosperma senegalensis	Araceae	39	Herb	Х		
38.	Christmas bush	Alchonea Laxiflora	Euphorbiaceae	5	Shrub			х
39.	Cattle stick	Corpolobia Lutea	Polygalaceae	1	Shrub			х
40.	Garden quinine	Clerodendron Splendens	Verbenaceae	3	Shrub			х
41	Fern plant	Pteridium Aquilinum	Dennestiadaceae	27	Herb	Х		
42	Northern black wattle	Acacia aericuliformis	Mimosaceae	5	Tree			х
Total				509				

Source: authors Field analysis (2019)

Table 1.3 Native and non-native species in zone 1 (Highly built-up area of Calabar Municipality

S/N	Common Name	Botanical Name	Family Name	Life form Habit	Species	Туре	Eco	logica	l Stati	us
					Native	Non-native	А	С	0	R
1.	Neem tree	Azadirachta indica	Meliaceae	Tree		Exotic		x		
2.	flame of the forest	Delonie regia	Caesalpinaceae	Tree		Exotic			x	
3.	Fan palm	Borassus flabellifer	Palmae	Tree		Exotic	х			
4.	Afara	Terminalia montalv	Combretaceae	Tree		Exotic	х			
5.	Custard apple	Greenwayodendroh synonmys	Annonaceae	Tree		Exotic			x	
6.	Indian almond	Terminalia catapa	Combretaceae	Tree		Exotic				х
7.	Odan tree	Ficus thoningii	Moraceae	Tree		Exotic				х
8.	Avocado pear	Persea amercana	Lauraceae	Tree		Exotic				х
9.	Mango tree	Mangifera indica	A nacardiaceae	Tree	Native				х	
10.	Palm tree	Elaeis guinensis	Palmae	Tree	Native					Х
11.	Thunder tree	Croton zambesicus	Euphorbiaceae	Tree		Exotic				Х
12.	Drumstick northern b	Moringa oleifera	Moringaceae	Tree		Exotic				X
13.	Comb teak	Gmelina arborea	Verbanaceae	Tree		Exotic				х
14.	Stoll wood	Alstona boonci	Apocynaceae	Tree	Native					х

Vol.9, No.2, pp. 32-47, 2021

ISSN 2054-6351 (print),

ISSN 2054-636X (online)

15.	Cashew nut tree	Anacardium occidentalis	Anacardiaceae	Tree		Exotic	X
16.	Native pear	Dacryodes edulis	Bursaraceae	Tree	Native		х
17.	kassod tree	Cassia siamea	Caesalpinaceae	Tree		Exotic	х
18.	Spanish shawl	Dissolis roiundifolia	Melastomatacea e	Herb	Native		х
19	Arabica seed	Urena cobata	e Malvaceae	Herb	Native		Х
20	Ring worm plant	Cassia alata	Caesalpiniaceae	Shrub	Native		х
21	Burkil	Pandiaka involucrate	Amaranthaceae	Herb		Exotic	Х

Source: Researcher's Field, work (2019)

Note: species frequency of 1-5 are rare species, 6-10 occasional species, 11-15 species, 16 and above abundant species.

Table 1.4 Native and non-native species in zone 2 (moderately built-up are of Calabar Municipality

S/N	Local Name	Botanical Name	Family Name	Life form Habit	Specie ty	pe	Ecol statu	logical	
				muon	Native	Non- native	state		
1	Siam weed	Chromolaena Odoraia	Asleruceae	Herb	Native		х		
2	Morning glory weed	Ipomoza Involucrata	Convolvulceae	Herbs	Native			X	
3.	Palm tree	Elaeis guinensis	Palmae	Tree	Native		Х		
4.	African lak plant	Clerodendrum splendens	Verbenceae	Shrub	Native				x
5	Broom weed	Sida acuta	Malvaceae	Herb	Native			Х	
6	Haemorhage plant	Aspilic Africana	Asteraceae	Herbs	Native		х		
7	Spanish shawl	Dissotis rotundifolia,	Melastomatace ae	Herb	Native				X
8	Arabica seed	Urena cobata	Malvaceae	Herb	Native				x
9	Common ginger lily	Costus afer	Zingiberaceae	Herb	Native				
10	Ring worm plant	Cassia alata	Caesalpiniacea e	Shrub	Native				x
11	Burkil	Pandiaka involucrate	A maranthaceae	Herb		Exotic		х	
12	Gmeliaa tree	Gmelina arhorea	Verbenaceae	Tree		Exotic			х
13	Teak	Teclona grundis	Verbenceae	Tree		Exotic			х
14	Guava	Psidium guajava	Mvrtaceae	Tree		Exotic			х
15	Asthma weed	Erigeron florib unda	Asteraceae	Herb	Native				х
16	Sweet broom	Scoparia dulcis	Scrophularcace ae	Herb	Native				x
17	T hunder tree	Croton zambersicus	Euphorbiaceae	Tree		Exotic			х
18	Narrow-leave	Uapaca standiii	Enphorbiaceae	Tree		Exotic		Х	
19	Camwood	Baphia nitida	Fabaceae	Tree		Exotic	Х		
20	Table fern	Pteris prolifera	Pleridaceae	Herbs	Native			х	

21	Apado	Anthonotha tnacrophylla	Fabaceae	Tree	Native	X
0	D 1 1 1 1	I J				

Source: Researcher's Field, work (2019)

Note: species frequency of 1-5 are rare species, 6-10 occasional species, 11-15 species, 16 and above abundant species.

Table 1.5 Native and non-native species in zone 3 (sparsely built-up area) of Calabar Municipality

S/N	Local Name	Botanical Name	Family Name	Life form Habit	Specie 7	Гуре	Ecc Stat	ologi tus	cal	
					Native	Non- native	A	С	0	R
1.	Christmas bush	Alchornea cordifolia	Euphorbiaceae	Shrub	Native					Х
2.	Cabbage tree	Anthoclecista vogelli	Loganiaceae	Tree	Native			x		
3.	Raphia palm	Raphia African otedo	Arececeae	Tree	Native		x			
4.	Umbrella tree	Musanga cecropiordes	Moraceae	Tree	Native					X
5.	Sand- paper tree	Ficus exasperate	Moraceae	Shrub	Native					X
6.	Ringworm plant	Cassia alata	Caesalpiniacea e	Shrub	Native				x	
7.	Bamboo	Bambusa vulgaris	Poaceae	Shrub	Native			x		
8.	Cattle stick	Carpolobia lutea	Polygalaceae	Shrub	Native					X
9.	Water lily	Nymphaea lotus (L)	Nymphaceceae	Herb	Native			x		
10.	Swamp arum	Cyrtosperma senegalensis	Araceae	Herb	Native		X			
11.	Blood tree	Harungana Madagascariensis	Hypericacae	Shrub	Native					X
12.	Christmas bush	Alchonea Laxiflora	euphorbiaceae	Shrub		Exotic				X
13.	Raphia palm	Raphia hookeri	Arecaceae	Tree	Native		x			
14.	Cattle stick	Corpolobia Lutea	Polygalaceae	Shrub	Native					X
15.	Stool wood	Alslonia Boone	Apocynaceae	Tree	Native					X
16.	Garden quinine	Clerodendron Splendens	Verbenaceae	Shrub		Exotic				X
17.	Fern plant	Nephrolepisbiserfata	Davalliaceae	Herb	Native		х			

Vol.9, No.2, pp. 32-47, 2021

ISSN 2054-6351 (print),

ISSN 2054-636X (online)

18.	Siam weed	Chromolaena odorata	Asteraceae	Herb	Native	x	-
19.	Fern plant	Pteridium Aquilinum	Dennestiadace ae	Herb	Native	x	
20.	Haemorhag e plant	Aspilia Africana	Asteraceae	Herb	Native	х	
21.	Broom Weed	Sida acuta	Malvaceae	Herb	Native	х	
22.	Northern black wattle	Acacia aericuliformis	Mimosaceae	Tree	Exotic		Х

Source: Researcher's Field, work (2019)

Note: species frequency of 1-5 are rare species, 6-10 occasional species, 11-15 species, 16 and above abundant species.

Test of hypothesis

The hypotheses are stated as thus:

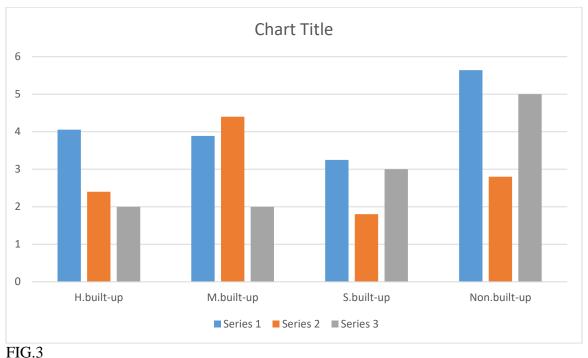
H₀: There is no significant variation in species diversity between the zones (highly, moderately and sparsely built-up areas and the non-built-up areas) in Calabar

H₁: There is a significant variation in species diversity between the zones (highly, moderately and sparsely built-up areas and the non-built-up areas) in Calabar

The hypotheses explained species diversity, species richness and species evenness between the urban formations.

Flora Species diversity

Tree species diversity is the variety of tree species found in the study area and this was presented with respect to the built-up areas (Zones). The diversity of the flora species diversity in the study area, Shannon Wiener index was use to achieved species diversity. The results of the computation is presented in Table 2 from the results, the non-built up area with diversity index of 6.421 was more diverse than the other zones. This was followed by the moderately built-up area (zone 2) with diversity index of 2.978. Accordingly, highly built-up area had a diversity index of 2.871 while sparsely built-up area had a diversity index of 2.304. From the results, the null hypothesis which states that there is no significant difference in flora species diversity among the various built-up areas was rejected. It was concluded based on the results of table 4.17 that there is a significant difference in flora species diversity area.


Table 1.6

Shannon wiener index results showing species diversity in the different zones

S/N	Built – up area (Zone)	Diversity	
1	Highly built-up area – Zone 1	2.871	
2	Moderately built-up area – Zone 2	2.978	
3	Sparsely Built-up area – Zone 3	2.304	
4	Non – Built up area - Zone 4	6.421	
C	A (1) E' 11NL 1 (2010)		

Source: Author's Field Work (2019)

British Journal of Environmental Sciences Vol.9, No.2, pp. 32-47, 2021 ISSN 2054-6351 (print), ISSN 2054-636X (online)

Flora Species Richness

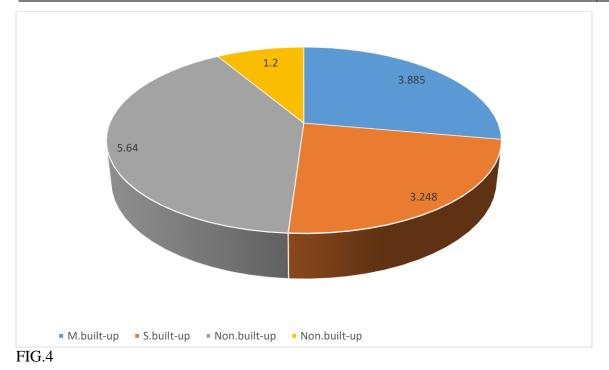

Flora species richness is the total number of species in an area and is one indicator of biodiversity. From the total number of flora species occurrence within the zones, the Margalef (1951) indices for species richness was used for the calculation. The species richness was considered according to the built-up areas (zones) to determine the area that was richer in flora species. The results were as presented in Table 3. From the results, the non-built up area with richness index of 5.640 was richer in flora species. This was followed by the highly built up and moderately built-up areas with richness index of 4.053 and 3.885 respectively. The sparsely built-up area was the least in terms of richness.

TABLE 1.7

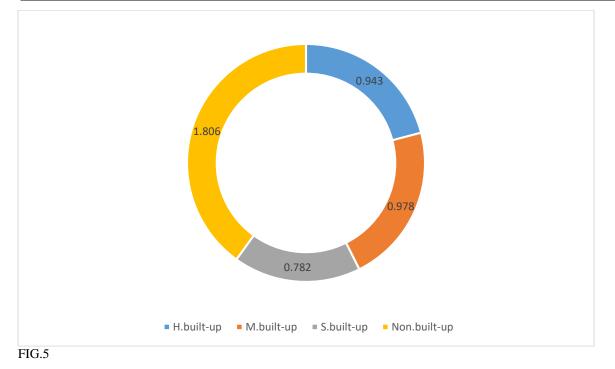
Margalef (195)) species	richness	index i	in the	different zones
Burger (1) C	.) operes				

S/N	Built – up area (Zone)	Richness	
1	Highly built-up area – Zone 1	4.053	
2	Moderately built-up area – Zone 2	3.885	
3	Sparsely Built-up area – Zone 3	3.248	
4	Non – Built up area - Zone 4	5.640	

Source: Author's Field Work (2019)

Flora Species evenness

Species evenness refers to how close in numbers each species in an environment is. It is a measure of biodiversity which quantifies how equal the flora community is numerically. The Pielou (1966) indices for species evenness were used for the analysis. The results were as presented in Table 4. From the results, the non-built up area with evenness index of 1.806. This was followed by the moderately built up and highly built-up areas with evenness index of 0.978 and 0.943 respectively. The sparsely built-up area was the least in terms of evenness with index of 0.782.


TABLE 1.8

Pielou 1966, species evenness index in the different zones

S/N	Built – up area (Zone)	Evenness	
1	Highly built-up area – Zone 1	0.943	
2	Moderately built-up area – Zone 2	0.978	
3	Sparsely Built-up area – Zone 3	0.782	
4	Non – Built up area - Zone 4	1.806	

Source: Author's Field Work (2019)

British Journal of Environmental Sciences Vol.9, No.2, pp. 32-47, 2021 ISSN 2054-6351 (print), ISSN 2054-636X (online)

DISCUSSION

From Table 1.1 the identify flora species in the built-up area of Calabar, 30 flora species were in total. 19 tree flora species were identify such as *Azadirachta indica*, *Delonie regia*, *Borassus flabellifer*, *Terminalia montalv*, *Greenwayodendroh synonmys*, *Terminalia catapa*, *Ficus thoningii*, *Persea amercana*, *Mangifera indica*, *Elaeis guinensis*, *Croton zambesicus*, *Moringa oleifera*, *Gmelina arborea*, *Alstona boonci*, *Anacardium occidentalis*, *Dacryodes edulis*, *Cassia siamea*, *Teclona grundis*, *Psidium guajava*, *Erigeron florib unda*, *Cassia alata*, *Carpolobia lutea* and*Nymphaea lotus*, 3 shrubs speciewhich were counted ininclude*Cassia alata*, *Carpolobia lutea*, while 8 herbs specie were also identify they include *Dissolis roiundifolia*, *Urena cobata*, *Pandiaka involucrate*, *Ipomoza*, *Sida acuta*, *Costa afer*, *Erigeron florib unda* and *Nymphaea lotus*.

In Table 1.2, a total of 42 flora species were encountered in the non built-up area. 20 tree flora species were identify such as Alstonia conggensis, Mittragyna stepolusa, Musanga cecropioides, Harimgana madagariensis, Bambusa vulgaris, Alchohea cordifolia, Kola nitida, Elaeis guinensis, Holarrhena floribunda, Barteria nigriliana, Raphia Afriana oledo, Baphia nitida, Antidesma vogelinanum, Spondias mombin, Combretum racemosum, Funtumia elastic, Pandamis demtdatits, Anthonotha macrophylla, Cleistopholus osun, Ficus spp, Pterocarpus osunandPterocarpus santaliniodes. 5 shrubes flora species were in number such as Alchohea cordifolia, Lasiathera africanum, 'netisferruginea, Dioscoreophy-llumcumminsii, Baphia nitida while 9 flora herbs species encountered such as Chromolaena odorata, Costas afer, Irvingia gabouensis, Antidesma vogelinanum, Nephrolepis biserrata, Spondias mombin, Thoumatococcus danillii, Phyllantus amarus, Crotalarca retusa and Pandiaka involucrate.

In assessing the native and non-native species in zone 1 (highly built up area) of Calabar Municipality, the study revealed a total number of seven (7) native flora species were found in the area. Out of this number, none of the flora species was in abundance and none was common. However, one of the species (*Magnifera indica*) was occasionally occurring in the area while six (6) flora species namely *Elaeis guinensis*, *Alstona boonci*, *Dacryodes edulis*,, *Dissolis roiundifolia*, *Urena cobata* and, *Cassia alata* were rare species.

On the other hand, fourteen (14) of the flora species were non-native species. From this number, two (2) species namely *Borassus flabellifer* and *Terminalia montalv* were in abundance while one species (*Azadirachta indica*) was common. Furthermore, three (3) non-native species were occasionally occurring. They include *Delonie regia*, *Greenwayodendroh synonyms* and *Anacardium occidentalis*. The study also showed that eight (8) of the non-native species were raely found in the area. They include *Terminalia catapa*, *Ficus thoningii*, *Persea amercana*, *Croton zambesicus*, *Moringa oleifera*, *Gmelina arborea*, *Cassia siamea and Pandiaka involucrate*. This was shown in table 1.3.

Table 1.4 shows the native and non-native flora species in zone 2 (moderately built up area) of Calabar Municipality. From the study, a total of fourteen (14) native flora species were encountered in the area. From this number, three (3) of the species namely *Chromolaena Odoraia*, *Elaeis guinensis* and Aspilic *Africana*, were in abundance while none of the flora species found was common. Also, four (4) of the flora species namely *Ipomoza Involucrata*, *Sida acuta*, *Pteris prolifera* and *Anthonotha tnacrophylla* occurred occasionally while thirteen (6) of the native species were rare. They include *Clerodendrum splendens*, *Dissotis crotundifolia*, *Urena cobata*, *Cassia alata*, *Erigeron floribunda and Scoparia dulcis*,

On the other hand, a total of seven (7) non-native species were encountered in the area. Out of this number, one species (*Baphia nitida*) was abundance while none of the flora species were commonly found and two (2) species namely *Pandiaka involucrate* and *Uapaca standiii* occurring occasionally. Furthermore, four (4) of the species were rare. They include *Gmelina arhorea*, *Teclona grundis*, *Psidium guajava* and *Croton zambersicus*.

From the analysis of native and non-native species in zone 3 (sparsely built-up area) of Calabar Municipality, it was revealed that a total of nineteen (19) native flora species were encountered with eight (8) flora species being in abundance. They include; *Raphia African otedo, Cyrtosperma senegalensis, Raphia hookeri,Nephrolepisbiserfata, Chromolaena odorata, Pteridium Aquilinum, Aspilia Africana and Sida acuta*.while common native flora species found in the area were three (3)in number and they include *Anthoclecista vogelli, Bambusa vulgaris and Nymphaea lotus (L)*.Furthermore, one native flora specie (*Cassia alata) was common in the area while seven (7) native flora species were rare. They include Alchornea cordifolia, Musanga cecropiordes, Ficus exasperate, Carpolobia lutea, Harungana Madagascariensis, Corpolobia Lutea* and Alslonia Boone.

The analysis went further to show the non-native species found in the area. From the analysis, it was discovered that three (3) non-native species namely; *Alchonea Laxiflora, Clerodendron*

Splendens and *Acacia aericuliformis* were encountered with all of them being rare in the area. This was shown in table 1.5. From the results, the non-built up area with richness index of 5.640 was richer in flora species. This was followed by the highly built up and moderately built-up areas with richness index of 4.053 and 3.885 respectively. The sparsely built-up area was the least in terms of richness. On the other hand, the Pielou (1966) indices for species evenness were used for the analysis to determine species evenness between the zones in the area. From the results, the non-built up area has an evenness index value of 1.806. This was followed by the moderately built up and highly built-up areas with evenness index of 0.978 and 0.943 respectively. The sparsely built-up area was the least in terms of evenness with index of 0.782.

CONCLUSION

The evaluation of flora species carried out in the study show that Calabar is blessed with diverse indigenous and foreign species of plants but with many disappearance of the of the native species who has been eroded by the introduction of more exotic species in the area. This is because the indigenous species that were dominance in time past are now found with rare and occasionally occurring ecological status across the built-up area of the study. The study thus, conclude that if measures are not undertaken to prevent further colonization of native species by the exotic ones or erosion of key native flora species in Calabar, the city may experience some ecological implications in the near future.

Recommendations

Proceeding from the result obtained, the study thus makes the following recommendations.

- Ecological flora survey should be carried out periodically in Calabar and the state at large for proper monitoring to ascertain the affected species.
- Therefore, a need to enhance conservation of native flora species so that it would not be eroded.
- Panels of researchers and conservation agency should adopt rare and occasional species of flora as indicators to use when assessing progress towards global conservation goals and ecological status of flora diversity in the study area.

• The Government of the state should make an all-inclusive flora (trees, shrubs and herbs) policy in its urban beautification strategies and also, emphasis should be placed on native species that have evolved and adapted to the locality.

References

Atu, Joy Eko, Bisong, Francis Ebuta (2013) Sprawl and Biodiversity in Cross River State, Nigeria, Vol 3, No 21 > Eko

- Huang J, Liu C, Zhang J, Lu X, Ma K. (2016). Diversity hotspots and conservation gaps for the Chinese endemic seedflora. *Biol Conserv* 198:104–12.
- Lukácz BA, Sramkó G, Molnár VA. (2013). Plant diversity and conservation value of continental temporary pools. *Biol Conserv* 158:393–400.
- Malouin C, Larocque G, Doyle M, Bell F, Dacosta J, Liss K. (2015). Considerations of ecosystem services in ecological forest management. In: Larocque G, editor. Ecological Forest Management Handbook. Florida (US): CRC Press. p. 107-38.

- Meng J, Lu Y, Lei X, Liu G. 2011. Structure and floristics of tropical forests and their implications for restoration of degraded forests of China's Hainan Island. *Trop Ecol* 52(2):177-91.
- Nurfadilah S. (2015). Diversity of epiphytic orchids and host trees (phorophytes) in secondary forest of Coban Trisula, Malang Regency, East Java, Indonesia. *BIOTROPIA* 22(2):120-8.
- P. O. Phil-Eze, I. C. Okoro (2008), Sustainable Biodiversity Conservation in Niger Delta: a Practical Approach to Conservation Site Selection, *Biodivers Conserv* 18: 1247-1257.
- R. A. Offiong, A. I. Iwara and I. A. Ekpe (2016), Vegetation Dynamics in Fallow Genealogical Cycles in Part of the Cross River Rainforest, South-Southern Nigeria: *Multi-Disciplinary Journal of Research and Development Perspective-* 5(1): 103-110.
- Reddy CS, Shilpa B, Amarnath G, Pattanik. (2011). Structure and Floristic Composition of tree stand in tropical forest in the Eastern Ghats of Northern Andhra Pradesh, India. *J Forest Res* 22(4):491-500.
- Reddy CS, Shilpa B, Giriraj A, Reddy KN, Rao KT. (2008). Structure and floristic composition of tree diversity in tropical dry deciduous forest of Eastern Ghats, Southern Andhra Pradesh, India. Asian J Sci Res 1(1):57–64.
- You H, Jin HY, Khaldi AH, Kwak MJ, Lee TY, Khaine IK, Woo SY. (2016). Plant diversity in different bioclimatic zones in Tunisia. *J Asia Pac Biodivers* 9(1):56-62.