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ABSTRACT: In this paper, a new class of Log-Logistic distribution using Marshall-Olkin 

transformation is introduced. Its characterization and statistical properties are obtained. And  The 

estimation of parameters of  distribution under progressive censoring is investigated, maximum 

likelihood estimators of the unknown parameters are obtained using statistical software 

(Mathematica), MLE performs for different sampling schemes with different sample sizes is 

observed, and the asymptotic variance covariance matrix is computed also.  
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INTRODUCTION 

The Log-Logistic distribution (known as the Fisk distribution in economics) is the probability 

distribution of a random variable whose logarithm has a logistic distribution .It has attracted  a 

wide applicability in survival and reliability over the last few decades, particularly for events 

whose rate increases initially and decrease later, for example mortality from cancer following 

diagnosis or treatment, see [10]. It has also been used in hydrology to model stream flow and 

precipitation, see [14] and [6], for modeling good frequency, see [1]. [4] Used this model to 

describe the thermal inactivation of Clostridium botulinum 213B at temperatures below 121:1 _C. 

Furthermore, it is applied in economics as a simple model of the distribution of wealth or income, 

see [8].The cumulative distribution function F(x) and density  function f(x) of Log-Logistic 

distribution are given by 

𝐹(𝑥) =  
𝑥𝛽

𝛼𝛽 +  𝑥𝛽  
   ,        𝑥 > 𝑜 (1-1) 

And 

𝑓(𝑥) =  
𝛼𝛽 𝛽 𝑥𝛽−1

(𝑥𝛽 + 𝛼𝛽)2
  ,   𝑥 >  (1-2) 
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Where α > 0 is the scale parameter and is also the median of the distribution, β > 0 is the shape 

parameter .When β > 1, the Log-Logistic distribution is unimodal. It is similar in shape to the log-

normal distribution but has heavier tails. Its cumulative distribution function can be written in 

closed form, unlike that of the log-normal. [7] Used the ratio of maximized likelihood to consider 

the discrimination procedure between the two distribution functions. 

On the other hand, [12] introduced a new family of survival functions which is obtained by adding 

a new parameter γ > 0 to an existing distribution. The new parameter will result in flexibility in 

the distribution. Let 𝐹̅(𝑥) =  1 − 𝐹 (𝑥) be the survival function of a random variable X.  

 

Then 

𝐺̅(𝑥) =  
𝛾𝐹(𝑥)

1 − (1 − 𝛾)𝐹̅ (𝑥)
 (1-3) 

Is a proper survival function. 𝐺̅(𝑥)is called Marshall-Olkin family of distributions. If γ= 1, we 

have that G = F. The density function corresponding to (3) is given by 

𝑔 (𝑥) =  
𝛾𝑓(𝑥)

(1 − (1 − 𝛾)𝐹̅ (𝑥))2
 (1-4) 

And the hazard rate function is given by 

ℎ (𝑥) =  
ℎ𝐹(𝑥)

1 − (1 − 𝛾)𝐹̅ (𝑥)
 

 

(1-5) 

Where ℎ𝐹(𝑥) is the hazard rate function of the original model with distribution F.By using the 

Marshall-Olkin transformation (1-3), several researchers have considered various distribution 

extensions in the last few years. [12] generalized the exponential and Weibull distributions using 

this technique. [2] introduced Marshall-Olkin extended semi Pareto model for Pareto type III and 

established its geometric extreme stability. Semi-Weibull distribution and generalized Weibull 

distributions are studied by [3]. Ghit any et al. (2005) conducted a detailed study of Marshall-Olkin 

Weibull distribution, that can be obtained as a compound distribution mixing with exponential 

distribution, and apply it to model censored data. Marshall-Olkin Extended Lomax Distribution 

was introduced by [9]. [11] Investigated Marshall-Olkin q-Weibull distribution and its max-min 

processes .In this paper, we use the Marshall-Olkin transformation to define a new model, so-

called the Marshall-Olkin Log-Logistic distribution, which generalizes the Log-Logistic model. 

We aim to reveal some statistical properties of the proposed model and estimation of its 

parameters. 
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Density function 

Let t follows Log-Logistic distribution, then its survival function is given by 

𝐹̅(𝑡) =  1 −
𝑡𝛽

𝛼𝛽 +  𝑡𝛽  
   ,

𝛼𝛽

𝛼𝛽 +  𝑡𝛽  
 

Substituting it in (1-3) we obtain a survival function of Marshall-Olkin Log-Logistic distribution 

denoted by 

𝐺̅(𝑡) =
𝛼𝛽 𝛾

𝑡𝛽 + 𝛼𝛽 𝛾
                                   𝛼, 𝛽, 𝛾, 𝑡  > 0 

 

(1-6) 

The corresponding density function is given by 

𝑔(𝑡) =
𝛼𝛽 𝛽𝛾𝑡𝛽−1

(𝑡𝛽 + 𝛼𝛽 𝛾)2
                                   𝛼, 𝛽, 𝛾, 𝑡  > (1-7) 

If γ = 1, we obtain the Log-Logistic distribution with parameter α, β>0.This distribution contains 

the Log-Logistic distribution as a particular case .The following theorem gives some conditions 

under which the density function(1-7) is decreasing or unimodal. 

 

Maximum Likelihood Estimation 

In case complete data 

Consider a random sample consisting of n observations from the log logistic distribution and the 

likelihood function of this sample is 

𝐿(𝑡1,𝑡2, ⋯ , 𝑡𝑛; 𝛽, 𝛼, 𝛾) = ∏ 𝑓(𝑡𝑖)

𝑛

𝑖=1

 

(1-8) 

𝐿(𝒕, 𝛽, 𝛼, 𝛾) =
∏ (𝛽𝛾𝛼𝛽𝑡𝑖

𝑛
𝑖=1

𝛽−1
)

∏ (𝑡𝑖
𝛽

+ 𝛼𝛽𝛾)
2

𝑛
𝑖=1

 

 

(1-9) 

 

On taking logarithms of (1-9) we get, 
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𝐿𝐿 = 𝑛(log(𝛽𝛾)) + 𝑛(log[𝛼𝛽]) + (𝛽 − 1) ∑ log[𝑡𝑖]

𝑛

𝑖=1

− 2 ∑ log [𝑡𝑖
𝛽

+ (𝛼𝛽𝛾)]

𝑛

𝑖=1

 

 

  (1-10) 

 

Differentiating (1-10) with respect to β, αand γ and equating to zero are: 

 

𝜕𝐿𝐿

𝜕𝛽
=

𝑛

𝛽
+ 𝑛𝑙𝑜𝑔[𝛼] + ∑ log[𝑡𝑖] − 2 ∑

𝛼𝛽𝛾 log[𝛼] + log[𝑡𝑖] 𝑡𝑖
𝛽

𝛼𝛽𝛾𝑡𝑖
𝛽

𝑛

𝑖=1

𝑛

𝑖=1

 (1-11) 

 

𝜕𝐿𝐿

𝜕𝛼
=

𝑛𝛽

𝛼
− 2 ∑

𝛼𝛽−1𝛽𝛾

𝛼𝛽𝛾𝑡𝑖
𝛽

𝑛

𝑖=1

 (1.12) 

𝜕𝐿𝐿

𝜕𝛾
=

𝑛

𝛾
− 2 ∑

𝛼𝛽

𝛼𝛽𝛾𝑡𝑖
𝛽

𝑛

𝑖=1

 
(1-13) 

 

The maximum likelihood estimate (MLE) ( 
^ ^ ^

, ,    ) of ( , , )    is obtained by solving the 

nonlinear likelihood equations (1-11), (1-12) and (1-13). These equations cannot be solved 

analytically and popular software can be used to solve these equations numerically. 

In case progressive type two right censored data. 

Let  t1, t2 , ……… tnbe independent and identically distributed random lifetimes of n items. A type–

ll progressively right censored sample may be obtained in the following way: the failure time of 

the first r1 items to fail are not observed; at the time of the (r+1)st failure, denoted with tr+1, Rr+1 of 

the remaining units are withdrawn from the test randomly. At the time of next failure, denoted 

with t2, Rr+2 surviving items are removed at random from the remaining items, and so on. At the 

time of the 𝑚th failure, where 𝑚 is a predetermined number, all the remaining Rr+m items are 

censored. 
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Therefore, a progressively type-ll right censoring scheme is specified by a sequence integers 𝑛, 𝑚 

and r1,………,rm-1 with the constraints 

n- m- r1 -….rm-1≥ 0, n≥m≥1. 

The likelihood function to be maximized when general progressive type- II censored sample based 

on n independent from F (t) is 

     *

1

1

( ) , , 1 ,
i

m r
r R

r i i

i r

L c F t f t F t   




 

         (1-14) 

 

Where, 

1 2, ... ,r r mt t t   
 

 
   *

1 1 1

!
1 ... ... 1 ,

! 1 !
r r m

n
c n R r n R R m

r n r
          

 
 

The likelihood function given in Eq. (1.14) can be expressed as: 

 

(1-15) 

 
 

 

1

* 1

2

11

( )
; , ,

( )

( )

( )

i

r
m r

ir

ir
i

R

i

i

tt
L t c

t t

t

t



 





 

 
  

   

 






 
  

  

 
  

 



 

 

  (1-16) 

 
 

1
* 1

2

11

( )
; , , ( )

( )

( )

( )

i

r
m r

m r r i

ir
i

R

i

i

t t
L t c

t t

t

t



 





 


   

   

 


 



 
  

  

 
  

 



 

The log-likelihood function, denoted by  , , ,t   l , takes the form 
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      1

1

1 1

1

; , , constant log log

( ) log[ ] ( 1) log[ ] 2 log

log

r

r

m r m r

i i

i i

m r

i

i i

t
t m r r

t

m r t t

R
t



  



 

   
 

   

 

 





 

 





 
     

 

       

 
  

 

 



l

 

(1-17) 

 

The three equations obtained by differentiating (1.17) and equating to zero are 

 

 

 

1 1

11

2 1 2 1

2

1

( )
2

( )( )
( ) ( )

0,

m r

ir i

i im r
i i

i

m r m r r

t t

R t
t t

 

 

 
  

   

      

      

     
  

   



 



 






  
   

  

  
 







  (1-19)         

 

2

2

1 11

( )(
( ) ( )

2 0,
i im r m r

i i

i ir i

R t
r t t

t t

 
  

     

  

  
  

     

    



 

 

  
  

    
  

   
 (1-20) 

 

(1-18) 

1

1 1

2

1

log[ ]
( ) log[ ]

log[ ] log[ ]
log[ ] 2

log[ ] ( log[ ] log[ ]
( )(

( ) ( )
0,

r

m r m r
i i

i

i i i

i i
i im r

i i

i

m r r
m r

t

t t
t

t

t t
R t

t t





 

 

   
 

 

  


   

  

 

       
  

   





 

 







 
    

 







 

 


 


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The maximum likelihood estimate (MLE)  ˆ ˆ ˆ, ,    of  , ,    is obtained by solving the 

nonlinear likelihood equations (1-18), (1-19) and (1-20). These equations cannot be solved 

analytically and popular software can be used to solve the equations numerically. 

( )I 4. Fisher information matrix  

2 2 2

2

2 2 2

2

2 2 2

2

( ) .

E E E

I E E E

E E E

    


    

    

        
      

          
        
        

          
 

        
                

l l l

l l l

l l l

 

The elements of the sample information matrix, for progressively type II censored will be 

 

(1-21) 

22

2 2 2
11

2 2

1

2

( ( )) ( )
2 ( )

( ) ( ( )) ( )

( ( )) ( ( ))
( ( ))( ( ( ))( )

( ) ( ( )) ( ) ( ( ))
(

2 ( ( )) 2
( ( ))(

( ) ( ))

m r
i i

ir i i

i i
i i i im r

i i i i

i

i
i i

i i

A D t B Q tm r r C

F t G t G t

A D t A D tA A
H R G t R A D t

G t G t G t G t

A A D tB
R G t

G t G t

 




 

   


 















  
     



 
   




 






2

3 2

( ( )) ( ( ))
)

( )) ( ))
)

i i

i i

A D t B Q t

G t G t

    



 

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12 1 1

2 2
11 1 1

1

2 2

1

2

( ( ))
2 ( )

( ( )) ( ) ( ) ( ) ( )

( ( )) ( ( ))
( ( )( )

( ) ( ( )) ( ) ( ( ))
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( )(
( ( ))
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i

ir r r i i

i i
i i im r

i i i i

i

i i

i

A D tm r r N r r q q

F t F t F t F t F t

A D t A D tA A
R R G t

G t G t G t G t

N
R G t

G t
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 




     

  

   
  

 



 

  









  
     

 

 
 

 








21

2 3 2

2 ( ( )) ( ( ))( )

( ( )) ( ( )) ( ( ))
)

i i

i i i

A D t B Q tq

G t G t G t

         



  
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



 
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
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


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 








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( ( )) ( ( )) ( )
2 (

( ( )) ( )

i im r
i i i

ir r

J k
R G t

G t G t G tr k r

F t F t









 

  




 

 

 


  
 


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1

3 2 2

1

2

2

2 3
( ( ))( ) ( )

( ( )) ( ( )) ( ) ( ( )) ( )
(

( ( ))( )
( ( )) ( )

)

i i im r
i i i i i

i

i i

i i

J k f g
R G t R

G t G t G t G t G t

f g
R G t

G t G t






 


 














   

 

 





 

(1-25) 

3 2

3 22 2 2

2 2 2
1 11

2 2

2 2

2

2 2
( ( ))( )

( ( )) ( ( ))
2 (

( ( )) ( ( ))

( ) ( ( ))( )
( ( )) ( ) ( ( )) ( )

)

i im r m r
i i

i ir i

i i i

i i i i

R G t
G t G tr

F t G t

R R G t
G t G t G t G t

 


 

   


  


 

 

     


 



 

 






   


   

 

 

 

(1-26) 

Where, 

2

2 2 2

1 1 1

2

1 1 1 1 1

1 1

3 1 2 2 1 2

2 2 2 2

2 2

log[ ] log[ ]

log[ ] ( ) log[ ]

( ) log[ ] ( )

( ) log[ ]

log[ ]

log[ ]

log[ ] ( 1)

r r r

r r r r r

r r

A B

C D t t t

Q t t t F t t

G t t H

J N

a b

c d

f

 

 

 

  

 

 

 

     

  

 

   

      

    

      

  

    



 

 





 

 

  

  

 

 

  

 2 1 2 1

2 2 2 3 2 2 2

2 1 1

(2 1)

log[ ]

g

h j

k q

 

 

 

     

      

      

 

 

 



  

 

 

For 0  , the maximum likelihood estimators (
^ ^ ^

, ,    ) of ( , , )   are consistent estimators, 

and  ˆ ˆ ˆ, ,n         is asymptotically to normal with mean vector 0 and variance-

covariance matrix 1I  . 
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Asymptotic variance covariance matrix  

 

     

     

     

2 2 2

2
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,

2 2 2

2
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , ,

2 2

ˆ ˆˆ ˆ ˆ, , ,

ˆ ˆ ˆˆ ˆ, ,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆva , , , ,

ˆˆ ˆ ˆ ˆ, ,

V Cov Cov

r Cov V Cov

Cov Cov V

        

        

    

        

       
    

    

   

  

     
 

   
 
      
 
 
   

   

l l l

l l l

l l 2

2
ˆˆ ˆ ˆ, , ,

.

   


 
 
 
 
 
 
 
 
 
 
 

l

 

A Numerical example and data analysis 

In this section, we present some results from generating progressive censored type II data from 

extended logistic distribution by using Mathematica to observe how the MLEs perform for 

different sampling schemes and for different sample sizes,  The asymptotic variance covariance 

matrix is computed also. We have taken n=50, 100, 150 and200, m=20, 30,50and70 

Different sampling schemes. Different values of the parameters are takenβ=3, α=4 and γ=2, β=1.5, 

α=3 and γ=1in each case, we have calculated the MLEs. We replicate the process 1000 times and 

compute the average biases and standard deviations of the different estimates. 

 The scheme (n, m, r),  

 

Scheme [1] n=50, m=20, r=0,   R1= R2=1, R3=2, R4=1, R5=3, R6=2, R7=R8=1, 

R9=3, R10= R11=1, R12=3, R13=2, R14=0, R15= R16= R17=1, R18= R19=2, R20=1 

 Scheme[2]n=100, m=30, r=0,   R1= R2=3, R3=6, R4= R5=1, 

R6=4,R7=R8=R9=R10=3R11=1,R12=2,R13=1,R14=R15=R16=R17=2, 

R18=6, R19=5, R20= R21=R22=0, R23=1, R24=2, R25=3, R26=4, R27= R28=1, 

R29=4, R30=1. 
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 scheme[3]  n=150, m=50, r=0,   R1=0, R2=1, R3=0, R4= R5= R6=2, R7=4, 

R8=2,R9=3,R10=1, R11=3,R12=5,R13=4, R14=5, 

R15=0,R16=8,R17=4,R18=0,R19=1,R20=R21=2,R22=0,R23=3,R24=2, 

R25=4,R26=R27=1,R28=2,R29=0,R30=1,R31=2,R32=4,R33=1,R34=3, 

R35=0,R36=1,R37=R38=0,R39=2,R40=3,R41=2,R42=6,R43=0,R44=1, 

R45=2, R46=0, R47=R48=1, R49=4, R50=2. 

Scheme[4] n=200,  m=70, r=0,   R1=0, R2=4, R3=2, 

R4=0,R5=3,R6=R7=2,R8=R9=1,R10=4,R11=R12=2,R13=4,R14=R15=1 

R16=R17=0,R18=2,R19=R20=1,R21=2,R22=0,R23=R24=2,R25=1, 

R26=0R27=R28=2,R29=4, R30=R31=1, R32=5,R33=R34=1, R35=2, 

R36=3,R37=0,R38=2,R39=3,R40=2,R41=1,R42=3,R43=4,R44=1, 

R45=2,R46=3,R47=2,R48=0,R51=R52=1,R53=R54=0,R55=2,R56=0, 

R57=R58=1, R59=4, R60=R61=1, R62=2, R63=R64=0,R65=3,R66= R67=2, R68=6, 

R69=5, R70=2. 

Table 1:    Estimation of parameters when β=3, α=4, γ=2.  

Scheme ̂  ̂  ̂   ˆ ˆ ˆva , ,r   
)

  

 

(50, 20, 0) 

 

3.2499 

 

4.0441 

 

1.938 

0.410822 0.052003 0.19120

0.052003 0.00703 0.02524

0.19120 0.02524 0.09686

 
 
 
 
 

 

 

 

(100,30,0) 

 

3.1122 

 

3.9698 

 

2.210 

0.60380 0.06399 0.47191

0.06399 0.007431 0.05230

0.47191 0.05230 0.39767

 
 
 
 
 
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Table 2:Estimation of parameters using Scheme[3] 

Β Α γ ̂  ̂  ̂   ˆ ˆ ˆva , ,r   
)

 

 

3 

 

4 

 

2 

 

3.0518 

 

3.952 

 

2.214 

0.00363 0.02804 0.01097

0.02804 0.225423 0.08835

0.01097 0.08835 0.03669

 
 
 
 
 

 

 

1.5 

 

3 

 

1 

 

1.556 

 

2.846 

 

1.118 

0.00378 0.02917 0.01031

0.02917 0.23270 0.08182

0.01031 0.08182 0.03054

 
 
 
 
 

 

 

Table 3:Estimation of parameters using Scheme[4] 

Β Α γ ̂  ̂  ̂   ˆ ˆ ˆva , ,r   
)

 

 

3 

 

 

4 

 

2 

 

3.249 

 

4.0441 

 

1.938 

0.00913 0.00908 0.00804

0.00908 0.00934 0.00786

0.00804 0.00786 0.00746

 
 
 
 
 

 

 

1.5 

 

3 

 

1 

 

1.5310 

 

2.8614 

 

1.125 

0.00378 0.02917 0.01031

0.02917 0.23270 0.08182

0.01031 0.08182 0.03054

 
 
 
 
 
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