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ABSTRACT: The observed data from various fields are frequently characterized by 

measurement error and this has been challenging problem to construct consistent estimators 

of the parameters in a nonlinear regression model.This study uses simulated data under three 

(3) sample sizes (i.e 32,256 and 1024) applying Kernel, Wavelet and Polynomial Spline  on 

noisy data in two approaches (i.e denoising only the explanatory variables and denoising 

both dependent and explanatory variables). The study reveals the performance of denoised 

nonlinear estimators under different sample sizes for each denoising approach and 

comparison was made using the mean squared error criterion. The result of the studies shows 

that the denoised nonlinear least squares estimator (DNLS) is the best under each sample 

size considered.  

KEYWORDS: Production model, Denoising, Smoothers, Measurement Error, Monte-Carlo 
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INTRODUCTION 

The Statistical estimation can be regarded as a subfield of statistics, and lies at the core of a 

number of areas of science and engineering, including data mining, and signal processing. 

Each of these disciplines provides some information on how to model data and how best to 

exploit the hidden structure of the model of interest. In this work, we are interested in 

estimating nonlinear regression model (Nonlinear Cobb- Douglas production model). 

In nonlinear regression, observational data are modeled by a function which contains 

parameters that are not linear in nature. The data consist of independent variables 

(explanatory variables) and their associated observed dependent variables (response 

variables) which may contain measurement error or noise.  

Variables are said to be noisy if they are not exactly equal to the variable of interest because 

the generating system of the measurement may not be perfectly measured. In statistics, an 

error is not a mistake because variability is an inherent part of things being measured and of 

the measurement process. Error-in-variables (EIV) model are regression models that account 

for measurement errors in independent variables. Many economic data sets are contaminated 

by the mismeasured variables. The problem of measurement errors is one of the most 

fundamental problems in empirical economics. The presence of measurement errors causes 

biased and inconsistent parameter estimates and leads to erroneous conclusions to various 

degrees in economic analysis. A measurement error is called classical if it is independent of 

the latent true values; otherwise it is called non-classical. There have been many studies on 

the identification and estimation of linear, nonlinear, and even non parametric model with 

classical measurement errors, see, Cheng and Van Ness (1999) and Carroll, et al. (2006) for 

detail reviews. 
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A natural approach to overcome this problem is to apply the smoothing techniques to handle 

the data for proper removal of the noisy observation (i.e denoise the data). In statistics and 

image processing, to smoothen a data set is to create an approximating function that attempt 

to capture important patterns in the data, while leaving out noise or other fine scale structure 

or rapid phenomena. Smoothing extract more information from the data as long as the 

assumption of smoothing is reasonable and provides flexible and robust analysis. There are 

several methods of smoothing techniques which can be used to screen out noise, such as: 

wavelets, developed by Donoho and Johnstone, (1994, 1995a and 1995b). Other methods are 

kernel, polynomial spline etc. These appear often in applied fields such as marketing 

(Blattberg and Neslin (1990)), Medicine and Biology (Aldroubi and Unser (1996)), and 

Image Processing (Prasad and Lyengar (1997)).  

There have been many studies on denoising. So far, denoising has been extended to least 

squares estimator, least absolute deviation estimator and M-estimator using kernel, wavelet 

and polynomial spline as smoothers. The study carried out by  Cai et al. (2000) denoised both 

the dependent and explanatory variables, while Cui et al. (2002) suggested denoising only the 

explanatory variables. Furthermore, a series of papers (You and Zhou, 2007; You et al., 2009; 

Zhou and Liang, 2009) adopted the approach of only denoising explanatory variables. Cui et 

al. (2011) denoised only the explanatory variables and showed that the denoised nonlinear 

least squares estimator is not robust to outliers. The study carried out by Fasoranbaku and 

Soyonbo (in press) showed that the denoised nonlinear least square estimator under the 

several smoothers (Epanechnikov, Gaussian, wavelet and polynomial spline) considered 

outperforms both the denoised nonlinear least absolute deviation estimator and nonlinear M-

estimator. Soyombo and Fasoranbaku (2015) also used the known Epanechnikov Kernel 

smoother,to perform the denoising procedures, carry out simulation  studies under some 

settings to determine the performance of the denoised non-linear estimators when the 

parameter values are varied. The results show that the DNLS outperforms both the DNLAD 

and DNM. Therefore, parameters of non-linear model are not sensitive and thus have no 

effect on the performance of denoised non-linear estimators.  

This study estimating non-linear regression parameters using denoised data from 

investigating well known Cobb Douglas Production model in economics. The model with 

additive error is written as  

tttt uKLP  32

1


 ......................................... (1) 

 (β1>0), (0< β2<1), (0< β3 <1) 

where tP  is output at time t, Lt is the labour input, Kt is the capital input , β1 is a 

constant(β1>0),  

β2 and β3 are the output elasticity of labour (0< β2<1), and capital (0< β3 <1) and ut is the 

stochastic disturbance term. 

Suppose that  }1:),,{( ntPKL ttt  are unobservable “true” variables satisfying a nonlinear 

relationship, measurements of  ),,( ttt PKL  are collected to yield an observable data set of 

}1:),,{( 21 ntyxx ttt   i.e. the true variables plus additive measurement errors such that 

ttt Lx 1 ,  ttt Kx 2  and ttt uPy   ………......……………. (2) 
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where t  and t  are measurement errors. To be in line with the usual nonlinear model, the 

model (3.1) becomes: 

tttt uxxy  32

211


  …................................. (3) 

The study apply four (4) different smoothers (i.e Epanechnikov Kernel, Guassian Kernel, 

Wavelet and Polynomial Spline) to first denoise only the explanatory variables and later 

denoise both the dependent and explanatory variables. The regression to the denoised data is 

fitted and then applied to the estimators one after the other to provide information on  the 

performance of denoised nonlinear estimators under three (3) different sample sizes.  

Denoising procedure 

The basic idea behind smoothing a data set is the creation of an approximating function that 

attempts to capture important patterns in the data while leaving out the noise, and is also 

referred to as “denoising”. There are various methods to help restore a data set from 

measurement noise. In this study, the following smoothing method are used  

1) Kernel denoising: Given a random sample nXX ...1  with a continuous, univariate density 

function (.)f ,The kernel density estimator is: 

 







 


n

i

i

h

Xx
k

nh
hxf

1

1
),(ˆ  ………………………………(4) 

where  is the value of the scalar variable for which one seeks an estimate while  are the 

values of that variable in the data.  is a function of a single variable called the kernel. The 

kernel determines the shape of the function. The parameter h is called the bandwidth or 

smoothing constant. It controls the degree of smoothing and adjusts the size and form of the 

function.  

             






 


h

Xx
u i   ………………………………..……..(5) 

For the purpose of this study, the two most commonly used Kernels are utilized: 

a) Epanechnikov Kernel denoising: 

)1,1()1(75.0)(
)1(

2 


uonIuuK
x

  ………………..…(6) 

b) Gaussian Kernel denoising: 

                                     









2
exp

2

1
)(

2u
uk


 ……………………........... (7) 

2) Wavelet denoising: they are generated from dilations and translations of a “father” wavelet 
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                           12,...,1,0);2(2)( 00

0

0

2
, 

jj

j

kj kkxx  ……………………………….… 

(8) 

and a “mother” wavelet .   

                  12,...,1,0;,...,);2(2)( 0
2

,  jj

j

kj kjjjkxx    ………………... (9) 

3) Polynomial spline denoising: A smoothing spline is a method  of smoothing (fitting a 

smooth curve to a set of noisy observations) using a spline function which minimizes: 

  dxxuxuyxyp
nx

x
ii

22
)(ˆ)(ˆ),(

1


  ……………………………… (10) 

where    is positive smoothing parameter which controls the amount of smoothing of the 

data, it is defined between 0 and 1.  0  Produces least squares straight line fit to the data, 

while 1  produces a piecewise cubic polynomial fit that passes through the data points. 

Nonlinear Regression Solved by Successive Linear Approximation Using Newton 

Raphson Method.  

))(()(
2

1
))(()()( tttttt HGgg    

Where, 
ti

t g
G




 











)(  is the score vector and ……………………………...…….(11) 

tki

t g
H




 













2

)( is the Hessian matrix. ………………………………………….(12) 

This Hessian matrix is positive definite, the maximum of the approximation )(g  occurs 

when its derivative is zero 

0))(()(  ttt HG  …………………………………………………………… (13) 

  )()(
1 ttt GH 


  …………………………………………………………….. (14) 

This gives a way to compute 1t , the next value in iterations which is 

  )()(
11 tttt GH 
   ………………………………………………………..… (15) 

The iteration procedures continue until convergence is achieved. Near the maximum the rate 

of convergence is quadratic as defined by 

2

1


  t

t

t

t c  for some 0c  when 
t

i  is 

near 


t  for all i.  Thus we get estimates 
t

i  by Newton Raphson methods. 
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Let us consider (1), a nonlinear production model: 

Let ),,,,( 321 tt KLf  represents the function, then the nonlinear production model 

becomes: 

                             ),,,,( 321 ttt KLfP  ……………………………….. (19) 

Where we know the form of the equation, we have observed tP , tL , tK  and we must estimate 

321 ,,  .  

For brevity, henceforth we suppress tL  and tK  in our notation, but we retain ),,( 321   so 

that we may write (3.9) more briefly as 

tt ufP  ),,( 321  …………………………….. (20) 

To estimate the parameters in (20) for nonlinear model we use the score vector and the 

Hessian matrix from (11) and (12) 

Let )()],,([ 2

321

1

2  Sfpu t

n

t




…………………………..(21) 
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From the linearization result in equation (14) we can obtain estimate of 321 ,,   as follow: 
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Once a parameter vector is obtained, the estimates are likely better than the old trial 

estimates, and so can be used in place of  ),,( 0

3

0

2

0

1   and the computation can be done 
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again. The iteration can continue, obtaining new and better estimates until the difference 

between successive parameter vectors is small enough to assume convergence. 

Denoised Non-Linear Regression Estimators. 

When the regressors in a non-linear regression model are subject to measurement errors, it 

becomes a problem to construct consistent estimators of the parameters. It is possible, 

however, to construct consistent estimators in a non-linear model like (1) by first applying the 

denoising techniques discussed ealier to the variables, then estimators like the least squares, 

least absolute deviation and M-estimator will be applied to these denoised variables  to yield 

consistent estimators which are called  

i. Denoised nonlinear least squares (DNLS) of ),,( 321   minimizes  

                                        3,2,1)],ˆ,ˆ([ 2

1




iKLfPD i

n

t

tttn  …………..................... (22) 

ii. Denoised nonlinear least absolute deviation(DNLAD) of ),,( 321    minimizes  

          



n

t

itttn KLfPL
i 1

),ˆ,ˆ(minarg 


 ………………….... (23) 

where i is the solution of the parameters and  

iii. Denoised Mestimators  



n

t

itttn KLfPM
i 1

),ˆ,ˆ(minarg 


  .........……..……(24) 

Where   is a loss function. The function  can be chosen in such a way to provide desirable 

properties of estimators (in terms of bias and efficiency) when the data are truly from the 

assumed distribution. Least-squares estimators are special M-estimators with 2)( xx   , 

where     ),ˆ,ˆ( ittt KLfPx   

Simulation Studies 

A Monte Carlo simulation is a problem solving techniques used to approximate the 

probability of certain outcomes by running multiple trials, using random variables. 

In this work, an extensive Monte Carlo simulations is conducted to generate random data of 

sample sizes 32, 256 and 1024 to examine the performance of the denoised nonlinear 

estimators from the model 

ttttttttt KxLxanduPy   21 ,       ............................................ (25) 

where )30,1(~ˆ ULt , )200,10(~ˆ UK t ,  )25.0,0(~ Nut , )16.0,0(~ Nt  , )16.0,0(~ Nt  ,    

tttt uKLy  32

1


   with standard parameter values )25,0,75.0,01.1( 321   , 

which derived from the theory of production by Charles Cobb  and Paul Douglass with the 

following assumption: 10,10,0 321   . 
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Four (4) different smoothers (i.e Epanechnikov Kernel, Gaussian Kernel, Wavelet and 

Polynomial Spline) are used to denoise the data in two approaches, firstly, only the 

explanatory variables are denoised, later, both the dependent and explanatory variables are 

also denoised under three (3) different sample sizes (i.e 32, 256 and 1024). The choice of the 

smoothing parameter for the Kernels, Wavelet and Polynomial Spline smoothers is selected 

by Plug-in-method, Universal threshold and interesting range methods respectively. The 

regression to the denoised data is fitted and then applied to the estimators one after the other. 

Sample sizes 32, 256, and 1024 are drawn repeatedly from the model (25). In each case,  the 

MSE of the estimators are computed to compare the performance of the denoised nonlinear 

estimators, i.e. the MSE of the denoised nonlinear least squares (DNLS) estimator, denoised 

nonlinear least absolute deviation (DNLAD) estimator and denoised nonlinear M- estimator 

are computed from 1,000 Monte Carlo samples. The analysis is carried out using R statistical 

package and the simulation results are summarized in the numerical tables below.  

Table 4.1: Mean Squared Errors of the denoised nonlinear estimators when 

Epanechnikov Kernel is used as a smoother. 

Estimat

ors 

Parame

ters 

Denoise explanatory varibles Denoised both dependent 

and explanatory variables 

  32 256 1024 32 256 1024 

DNLS β1 0.000760

6 

0.00014

65 

0.00008

66 

0.0007

606 

0.0000

968 

0.00003

87 

β2 0.000039

3 

0.00000

88 

0.00000

58 

0.0000

404 

0.0000

063 

0.00000

33 

β3 0.000016

0 

0.00000

20 

0.00000

05 

0.0000

169 

0.0000

020 

0.00000

05 

           

DNLA

D 

β1 0.001507

2 

0.00025

09 

0.00019

93 

0.0013

879 

0.0001

309 

0.00011

57 

β2 0.000088

3 

0.00002

03 

0.00001

93 

0.0000

841 

0.0000

163 

0.00001

39 

β3 0.000030

4 

0.00000

27 

0.00000

07 

0.0000

307 

0.0000

031 

0.00000

09 

           

DNM β1 0.000922

5 

0.00016

90 

0.00009

10 

0.0008

680 

0.0001

275 

0.00004

55 

β2 0.000045

8 

0.00000

97 

0.00000

63 

0.0000

435 

0.0000

079 

0.00000

37 

β3 .0000203 0.00000

26 

0.00000

06 

0.0000

203 

0.0000

026 

0.00000

07 
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Table 4.2: Mean Squared Errors of the denoised nonlinear estimators when Gaussian 

Kernel is used as a smoother. 

Estimat

ors 

Parame

ters 

Denoise explanatory varibles Denoised both dependent 

and explanatory variables 

  32 256 1024 32 256 1024 

DNLS β1 0.000683

5 

0.00011

64 

0.00006

70 

0.0006

622 

0.0000

775 

0.00001

76 

β2 0.000033

9 

0.00000

69 

0.00000

46 

0.0000

337 

0.0000

054 

0.00000

27 

β3 0.000016

0 

0.00000

20 

0.00000

05 

0.0000

160 

0.0000

020 

0.00000

05 

        

DNLA

D 

β1 0.001393

9 

0.00020

83 

0.00017

19 

0.0013

600 

0.0001

309 

0.00010

59 

β2 0.000081

9 

0.00001

57 

0.00001

93 

0.0000

798 

0.0000

098 

0.00001

33 

β3 0.000032

2 

0.00000

26 

0.00000

07 

0.0000

305 

0.0000

027 

0.00000

09 

        

DNM β1 0.000856

2 

0.00014

07 

0.00007

33 

0.0008

331 

0.0001

178 

0.00003

93 

β2 0.000044

2 

0.00000

75 

0.00000

63 

0.0000

411 

0.0000

065 

0.00000

29 

β3 0.000019

4 

0.00000

26 

0.00000

06 

0.0000

203 

0.0000

026 

0.00000

07 

  

Table 4.3:  Mean Squared Errors of the denoised nonlinear estimators when Wavelet is 

used as a smoother  

Estimat

ors 

Parame

ters 

Denoise explanatory varibles Denoised both dependent 

and explanatory variables 

  32 256 1024 32 256 1024 

DNLS β1 0.000682

7 

0.00007

97 

0.00002

02 

0.0006

622 

0.0000

775 

0.00002

02 

β2 0.000035

3 

0.00000

40 

0.00000

11 

0.0000

337 

0.0000

040 

0.00000

11 

β3 0.000016

8 

0.00000

20 

0.00000

05 

0.0000

160 

0.0000

020 

0.00000

05 

        

DNLA

D 

β1 0.001352

5 

0.00013

71 

0.00006

63 

0.0013

637 

0.0001

497 

0.00006

28 

β2 0.000073

0 

0.00000

93 

0.00000

85 

0.0000

745 

0.0000

104 

0.00001

33 

β3 0.000030

4 

0.00000

31 

0.00000

07 

0.0000

303 

0.0000

034 

0.00000

07 
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DNM β1 0.000812

7 

0.00010

69 

0.00002

71 

0.0008

468 

0.0001

066 

0.00002

77 

β2 0.000041

0 

0.00000

70 

0.00000

15 

0.0000

423 

0.0000

053 

0.00000

29 

β3 0.000019

4 

0.00000

26 

0.00000

06 

0.0000

203 

0.0000

026 

0.00000

06 

 

Table 4.4:  Mean Squared Errors of the denoised nonlinear estimators when Polynomial 

Spline is used as smoother  

Estimat

ors 

Parame

ters 

Denoise explanatory varibles Denoised both dependent 

and explanatory variables 

  32 256 1024 32 256 1024 

DNLS β1 0.000666

5 

0.00007

81 

0.00002

04 

0.0006

665 

0.0000

781 

0.00002

04 

β2 0.000033

7 

0.00000

41 

0.00000

11 

0.0000

337 

0.0000

041 

0.00000

11 

β3 0.000016

0 

0.00000

20 

0.00000

05 

0.0000

160 

0.0000

020 

0.00000

05 

        

DNLA

D 

β1 0.001333

5 

0.00012

12 

0.00006

64 

0.0013

335 

0.0001

212 

0.00006

64 

β2 0.000074

2 

0.00001

02 

0.00001

39 

0.0000

742 

0.0000

102 

0.00001

39 

β3 0.000031

5 

0.00000

26 

0.00000

07 

0.0000

315 

0.0000

026 

0.00000

07 

        

DNM β1 0.000831

1 

0.00010

66 

0.00002

79 

0.0008

311 

0.0001

066 

0.00002

79 

β2 0.000041

1 

0.00000

53 

0.00000

15 

0.0000

411 

0.0000

053 

0.00000

15 

β3 0.000019

4 

0.00000

26 

0.00000

06 

0.0000

194 

0.0000

026 

0.00000

06 

 

From the result of the analysis, it can be seen that the average estimated value of the 

parameters from the three (3) denoised nonlinear estimators (i.e DNLS, DNLAD and DNM)  

under the three (3) different sample sizes considered are close to the true parameter values. 

Therefore, the denoised nonlinear estimators are almost unbiased. 

Tables 4.1, 4.2, 4.3 and 4.4 show the estimated mean squared errors (MSE) of the denoised 

nonlinear estimators (i.e MSE of DNLS, DNLAD and DNM) under the three (3) sample sizes 

(i.e 32,256 and 1024).  

Comparing the parameters β1, β2, β3 of each denoised nonlinear estimator for each smoother 

based on their mean squared error, it can be observed that the denoised nonlinear least square 

estimator is the most efficient followed by denoised nonlinear M-estimator and lastly 

denoised nonlinear least absolute deviation (DNLAD) estimator. Therefore, the denoised 
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nonlinear least squared (DNLS) estimator which has the smallest MSE outperforms both the 

denoised nonlinear M-estimator and the denoised nonlinear least absolute deviation 

(DNLAD) estimator under the three (3) sample sizes. Equally, the denoised nonlinear 

estimators reveal smallest mean squares error under large sample size (1024), compared to 

medium sample size (256) and small sample size (32). Therefore, the denoised nonlinear 

estimators are more efficient under large sample size (1024), but the denoised nonlinear least 

squared estimator is the most efficient among the three (3) nonlinear estimators. Also, it is 

obvious from the estimated mean squared error (MSE) that each of the nonlinear estimators 

considered performed better under the Wavelet and Polynomial Spline denoising  than the 

Kernels, and it can be seen that the denoised nonlinear estimators have smaller mean square 

error under kernels when both  the dependent  and explanatory variables are denoised than 

when only the explanatory variables are denoised  while there is little or no difference in 

mean squares error under the Wavelet and Polynomial spline for the two denoising 

approaches. 

 

CONCLUSION 

This study presents an application of smoothing techniques to denoise nonlinear regression 

estimators under different sample sizes. The Epanechnikov Kernel, Gaussian Kernel, Wavelet 

and Polynomial Spline smoothers are firstly used to denoise only the explanatory variables 

and later denoise both dependent and explanatory variables under the three (3) different 

sample sizes (i.e 32, 256, and 1024). The performance of the denoised nonlinear estimators is 

compared based on the mean squared error criterion to determine their efficiency. The 

simulation studies carried out for sample sizes 32, 256,and 1024 with 1,000 Monte Carlo 

samples, show that the denoised nonlinear least squares (DNLS) estimator which has the 

smallest MSE is the best (most efficient) estimator among all the three (3) denoised nonlinear 

estimators under the four smoothers considered. However, the idea of denoising both the 

dependent and explanatory variables gives  room for  more efficiency of the nonlinear 

estimators when Kernels are used as smoother but Wavelet and Polynomial Spline smoothers 

are effective than Kernels smoothers. Besides, the denoised nonlinear estimators (i.e DNLS, 

DNLAD and DNM) performed better under the large sample size 1024 than the rest of the 

sample sizes (i.e medium and small) considered. 
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