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ABSTRACT: Designing optimum experiment for nonlinear models is generally challenging due 

to the dependence of design support point on the unknown parameter(s) value(s). For a locally 

optimal design, the unknown parameters are replaced by a guess value; if the guesses are not so 

close to the actual parameter(s) value(s), the resulting design may not be optimal, robust and 

efficient. One possible way to salvage the situation is to identify a subclass of designs with a simple 

format, so that one can restrict considerations to this subclass for any optimality problem. With a 

simple format, it would be relatively easy to derive an optimal design, analytically or numerically. 

In this paper, we identified a subclass of design with relatively simple format and use functional 

approach based on implicit function theorem to construct locally D-optimal design for Poisson 

regression model. The result showed the dependence of optimal design points on values of 

unknown parameters and on the bound of the design interval. Also the design proved to be 

minimally supported (saturated) at two design points including B, the upper boundary point. 

Furthermore, the lower support point was shown to be approximated by a convergent power series 

using recursive algorithm.  

KEYWORDS: Poisson Regression Model, Minimally Supported/Saturated Design, D-optimal 

Design, Fisher Information Matrix, Functional Approach, Tylor Series. 

 

INTRODUCTION 

 

Optimal experimental designs for Poisson regression model have received increasing attention in 

recent years, most especially in the field of Biomedical and clinical trials. One major challenge in 

the construction and development of design for general nonlinear models (Poisson inclusive) is 

the dependence of design support points on the unknown parameters of the Fisher information 

matrix (Zhang, 2006). One possible way to salvage the situation is to identify a subclass of designs 

with a simple format, so that one can restrict considerations to this subclass for any optimality 

problem (Yang and Stufken, 2012). With a simple format, it would be relatively easy to derive an 

optimal design, analytically or numerically. This approach can be meaningful provided the number 

of support points in the subclass is as small as possible. According to Carathéodory’s theorem, we 

can always restrict our consideration to at most 𝑟(𝑟 +  1)/2  design points (where r is the total 

number of parameters). On the other hand, if we want all parameters to be estimable, the minimum 

number of support points should be at least r. If the number of support points of a design for an 𝑟-

parameter model is 𝑟, then the design is called minimally supported or saturated. Thus, the ideal 

situation is that the designs in the subclass should have no more than r points.  
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So our goal here is to identify a class of relatively simple designs so that for any design 𝜉 that does 

not belong to this class, there exist a design 𝜉∗ in the class that has an information matrix that 

dominates that of 𝜉 in the Loewner ordering. Also 𝜉∗ will not be worse than 𝜉 for most of the 

commonly used optimality criteria and for many functions of the parameters. Furthermore, for the 

already identified subclass, D-optimality criterion and recursive algorithm would be used to 

determine the specific design support point. This paper is organized and divided into the following 

sections. A brief review of literature on locally optimal designs is presented in Section two. 

Strategy and basic concept of methodology is presented in section three while section four is 

devoted to application of the methodology to Poisson regression model. Lastly, a concluding 

remark is given in section five. 

Locally Optimal Designs 

The most commonly and simple approach to the problem of experimental designs for nonlinear 

models is to use a best guess for the unknown  parameters which usually comes from the previous 

experimentation, pilot experiment conducted specially for this purpose, or simply a mere  guess 

by the experimenter. A better design can be chosen base on the selected design optimality criterion 

function evaluated at the guess value. This approach was introduced by Chernoff (1953) and is 

termed as locally optimal design. 

 

Locally optimal designs have been investigated by several authors. Konstantinous and Dettea 

(2015) considered the construction of optimal designs for nonlinear regression models when there 

are measurement errors in the covariates and developed approximate design theory for the 

estimation of parameters using maximum likelihood and least-squares method of estimation.  

Dette et al(2010) derived locally D- and ED𝜌-optimal designs for the exponential, log –linear and 

three-parameter emax models. For each model the locally D- and ED𝜌-optimal designs are 

supported at the same set of points, while the corresponding weights are different. They also 

demonstrate that locally D- and ED𝜌-optimal designs for the emax, log-linear and exponential 

models are relatively robust with respect to misspecification of the model parameters. 

 

Wu and Stufken (2014) considered generalized linear models with a single-variable quadratic 

polynomial as the predictor under a popular family of optimality criteria and derive explicit 

expressions for some D-optimal designs. For unrestricted design region, optimal designs can be 

found within a subclass of designs based on a small support with symmetric structure. Gutiérrez 

et al (2014) gave explicit formulae for the construction of D-optimal designs as a function of the 

unknown parameters for the logistic regression model.  

 

Haines et al (2007) considered the construction of locally D-optimal design for logistic regression 

model with two explanatory variables, the variables are considered to be doses of two drugs and 

are thus constrained to be greater than or equal to zero with no interaction term in the model. The 

result shows that there are two patterns of D-optimal design that depend on model parameters  

based on 3 and 4 support points respectively. Other contributions can be found in Wang et al 

(2006), Rodriguez-Torreblanca and Rodriguez-Diaz (2007), Russell et al (2009), Dette et al 

(2001), Chang (2005a and 2005b), Dette et al(2006).  
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Despite its wide range applications, Poisson regression model have not been given the 

desirable/considerable attention most especially in relation to the newly improved techniques in 

the field of optimal experimental design. To this end, we proposed to investigate optimal design 

problems for this important model. Specifically, functional algebraic-approach would be used to 

construct locally D-optimal design for the aforementioned model, where Taylor expansion would 

be used for the numerical calculation of the locally D-optimal designs via recursive algorithm.  

Strategy  

Suppose we make n observations 𝑦1, … , 𝑦𝑛; from an experiment with 𝑥1, … , 𝑥𝑛; explanatory 

variables. Let’s the data be modeled by nonlinear relationship of the form: 

𝑦𝑖 = 𝜂(𝑥𝑖 , 𝜃) + 𝜖𝑖, 𝜖𝑖~𝒩(0, 𝜎2) , 𝑖 = 1,2, … 𝑛                                    (3.1) 
Where 

 𝜂(𝑥𝑖 , 𝜃) is the regression function, 𝜃 is the vector of 𝑟𝑥1 unknown parameters and 𝜖𝑖 is the 

random error component. Note that both 𝜃 𝑎𝑛𝑑 𝜖𝑖 are independent and identically distributed. 

In addition, suppose we have 𝑡 < 𝑛 distinct design point and lets 𝑥𝑖 occurs 𝑚𝑖times among the 

points 𝑥1, … , 𝑥𝑛, in what follows, each of the point 𝑥𝑖 is associated with weight coefficient 

(proportion of observation at ith design point ), 𝑤𝑖 = 𝑚𝑖 𝑛⁄ . Here we require that 0 ≤ 𝑤𝑖 ≤
1; 𝑖 = 1,2, … , 𝑡 and ∑ 𝑤𝑖 = 1.𝑡

𝑖=1   

Define a discrete probability measure, 𝜉 as 

 𝜉 = (
𝑥1, …  , 𝑥𝑡

𝑤1, … , 𝑤𝑡
)                                                    (3.2)  

Then the matrix, 

 𝑀(𝜉, 𝜃) = ∑ 𝑤𝑖𝑓(𝑥𝑖 , 𝜃)𝑓𝑇(𝑥𝑖, 𝜃)𝑡
𝑖=1                    (3.3)  

is called Fisher information matrix of the design 𝜉. 

where 

𝑓(𝑥, 𝜃) = (
𝜕𝜂(𝑥, 𝜃)

𝜃1
, … ,

𝜕𝜂(𝑥, 𝜃)

𝜃𝑟
 )

𝑇

 

is the vector of partial derivatives of 𝜂(𝑥, 𝜃) with respect to 𝜃 

The asymptotic variance-covariance matrix of the least squares estimator, 𝜃 is given by 

𝑉𝜃̂ =
𝜎2

𝑛
{𝑀(𝜉, 𝜃)}−1 

We are interested in the optimal choice of a design among the available classes of designs in the 

design space, 𝜒 ⊆ ℛ, where ℛ = (0,1) is the design region/interval such that 𝑉𝜃̂  is minimized. 

If an information matrix of any nonlinear model, discrete or continuous can be transform to 

matrices of the form as in equation 3.4 and 3.5 respectively, then, a subclass of design can be 

determine with information matrix that dominates that of all other designs in terms of Loewner 

ordering (Biedermann and Yang, 2015) 

𝑀(𝜉, 𝜃) = 𝐺𝑇(𝑎, 𝑏)𝐻𝜉(𝑎, 𝑏)𝐺(𝑎, 𝑏)                                                                   3.4 

Where 
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𝐻𝜉(𝑎, 𝑏) =

[
 
 
 
 
 ∑𝑤𝑖ϑ1(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ2(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ2(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ3(ℎ𝑖)

𝑡

𝑖=1 ]
 
 
 
 
 

                                                                  3.5 

is a matrix that depends on design  𝜉 through 𝑤𝑖′𝑠 𝑎𝑛𝑑 ℎ𝑖′𝑠 and on (𝑎, 𝑏) through the  ℎ𝑖′𝑠, while 

𝐺(𝑎, 𝑏)is a matrix that depends on (𝑎, 𝑏) only. 

In this paper we consider Poisson regression model and the information matrix have been verified 

to conform to the transformed matrices of equation 3.4 and 3.5, details of the verification is 

presented below. 

Consider Poisson regression model with mean response function given by 

𝜂(𝑥𝑖, 𝜃) = exp (𝑎 + 𝑏𝑥𝑖) 

let   ℎ𝑖 =  𝑎 + 𝑏𝑥𝑖, ϑ1(ℎ𝑖) = exp 2(ℎ𝑖),   ϑ2(ℎ𝑖) = ℎ𝑖exp 2(ℎ𝑖),   ϑ3(ℎ𝑖) = ℎ𝑖
2exp 2(ℎ𝑖)   (3.6) 

and 

𝐺(𝑎, 𝑏) = [
1 −𝑎

𝑏⁄

0 1
𝑏⁄

]                                                         (3.7) 

Suppose the design is run in accordance with (3.2), the information matrix can be derive from (3.3) 

as  

𝑀(𝜉, 𝜃) = ∑𝑤𝑖𝑓(𝑥𝑖, 𝜃)𝑓𝑇(𝑥𝑖, 𝜃)

𝑡

𝑖=1

= ∑𝑤𝑖

𝑡

𝑖=1

[
exp (𝑎 + 𝑏𝑥𝑖)

𝑥𝑖exp (𝑎 + 𝑏𝑥𝑖)
] [exp (𝑎 + 𝑏𝑥𝑖) 𝑥𝑖exp (𝑎 + 𝑏𝑥𝑖)] 

 𝑀(𝜉, 𝜃) = ∑ 𝑤𝑖
𝑡
𝑖=1 [

exp 2(𝑎 + 𝑏𝑥𝑖) 𝑥𝑖exp2 (𝑎 + 𝑏𝑥𝑖)

𝑥𝑖exp 2(𝑎 + 𝑏𝑥𝑖) 𝑥𝑖
2exp 2(𝑎 + 𝑏𝑥𝑖)

]                           (3.8) 

 

It can be shown that ∑ 𝑤𝑖𝑓(𝑥𝑖 , 𝜃)𝑓𝑇(𝑥𝑖, 𝜃)𝑡
𝑖=1  and 𝐺𝑇(𝑎, 𝑏)𝐻𝜉(𝑎, 𝑏)𝐺(𝑎, 𝑏) are equivalent, that is 

to say one is a linear transformation of another. 

Consider  
𝑀(𝜉, 𝜃) = 𝐺𝑇(𝑎, 𝑏)𝐻𝜉(𝑎, 𝑏)𝐺(𝑎, 𝑏) 

𝑀(𝜉, 𝜃) = 𝐺𝑇(𝑎, 𝑏)𝐻𝜉(𝑎, 𝑏)𝐺(𝑎, 𝑏) = [
1 0

−𝑎
𝑏⁄

1
𝑏⁄
]

[
 
 
 
 
 ∑𝑤𝑖ϑ1(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ2(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ2(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ3(ℎ𝑖)

𝑡

𝑖=1 ]
 
 
 
 
 

[
1 −𝑎

𝑏⁄

0 1
𝑏⁄

] 

𝑀(𝜉, 𝜃) = ∑𝑤𝑖 [
1 0

−𝑎
𝑏⁄

1
𝑏⁄
] [

ϑ1(ℎ𝑖) ϑ2(ℎ𝑖)

ϑ2(ℎ𝑖) ϑ3(ℎ𝑖)
] [

1 −𝑎
𝑏⁄

0 1
𝑏⁄

]

𝑡

𝑖=1

                      (3.9) 
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Substituting equation (3.6) in to equation (3.9) we get 

𝑀(𝜉, 𝜃) = ∑𝑤𝑖 [
1 0

−𝑎
𝑏⁄

1
𝑏⁄
] [

exp2 (ℎ𝑖) ℎ𝑖exp2 (ℎ𝑖)

ℎ𝑖exp 2(ℎ𝑖) ℎ𝑖
2exp2 (ℎ𝑖)

] [
1 −𝑎

𝑏⁄

0 1
𝑏⁄

]

𝑡

𝑖=1

 

= ∑𝑤𝑖 [
exp2 (ℎ𝑖)

−𝑎
𝑏⁄ exp 2(ℎ𝑖) + 1

𝑏⁄ ℎ𝑖exp2 (ℎ𝑖)

−𝑎
𝑏⁄ exp 2(ℎ𝑖) + 1

𝑏⁄ ℎ𝑖exp2 (ℎ𝑖)
𝑎2

𝑏2⁄ exp 2(ℎ𝑖) − 2𝑎
𝑏2⁄ ℎ𝑖exp 2(ℎ𝑖) +

ℎ𝑖
2

𝑏2
⁄ exp2(ℎ𝑖)

]

𝑡

𝑖=1

 

𝑀(𝜉, 𝜃) = ∑𝑤𝑖

𝑡

𝑖=1

[
exp 2(𝑎 + 𝑏𝑥𝑖) 𝑥𝑖exp2 (𝑎 + 𝑏𝑥𝑖)

𝑥𝑖exp 2(𝑎 + 𝑏𝑥𝑖) 𝑥𝑖
2exp 2(𝑎 + 𝑏𝑥𝑖)

]                       (3.10) 

            ▀ 

Clearly, equation (3.8) and (3.10) are equivalent.       

Having successfully verified the equivalences of our design information matrices, we shall now 

show the mechanism and strategy for a general nonlinear models under certain conditions that 

there exists a subclass of designs such that for any given design 𝜉, there exists a design 𝜉∗ in this 

subclass such that 𝑀𝜉∗(𝜃) ≥ 𝑀𝜉(𝜃). 

To start with let,  ϑ1(ℎ), ϑ2(ℎ),… , ϑ𝑘(ℎ) be k functions defined on [A,B]. Throughout this paper, 

we have the following assumptions: 

 (i) ϑ1(ℎ), ϑ2(ℎ), … , ϑ𝑘(ℎ) are infinity differentiable; 

(ii) 𝑓𝑙,𝑙 has no zero value on [A,B]. 

Here, 𝑓𝑙,𝑡 1 ≤ 𝑡 ≤ 𝑘, 𝑡 ≤ 1 ≤ 𝑘 are defined as follows: 

𝑓𝑙,𝑡(ℎ) = {

ϑ𝑙
′(ℎ),                𝑡 = 1, 𝑙 = 1,… , 𝑘

(
𝑓𝑙,𝑡−1(ℎ)

𝑓𝑡−1,𝑡−1(ℎ)
)

′

,   2 ≤ 𝑡 ≤ 𝑘, 𝑡 ≤ 𝑙 ≤ 𝑘
 

Theorem 3.1 

For any nonlinear regression model, suppose the information matrix can be expressed as in (3.4) 

and hi ∈ [A, B]. Rename all distinct ϑlt, 1 ≤ l ≤ t ≤ p to ϑ1, ϑ2, … , ϑk such that 

(i)ϑk is one of ϑll, 1 ≤ l ≤ p and (ii)there is no ϑlt = ϑk for 1 < t. Let Ψ(h) = ∏ fl,l(c)
k
l=1 , h ∈

[A, B]. For any given design ξ, there exist a design ξ∗, such that Mξ∗(θ) ≥ Mξ(θ). Note that ξ∗ 

depends on different situations.  

i. When k is odd and 𝛹(ℎ) < 0, ξ∗ is based on at most (k + 1) 2⁄  points including point A. 

ii.  When k is odd and 𝛹(ℎ) > 0, ξ∗ is based on at most (k + 1) 2⁄  points including point B. 

iii. When k is even and 𝛹(ℎ) > 0, ξ∗ is based on at most (k 2⁄ ) + 1 points including points A 

and B. 

iv. When k is even and 𝛹(ℎ) < 0, ξ∗ is based on at most k 2⁄  points. 

For a two parameter model with 𝑘 = 3, the conditions in (i) and (ii) of theorem 3.1 above can be 

narrowed down to the following important result. 

Lemma 3.1: The functions  ϑ1(ℎ), ϑ2(ℎ), ϑ3(ℎ) are called type I functions on [𝐴, 𝐵] if the 

following conditions holds 

http://www.eajournals.org/


International Journal of Mathematics and Statistics Studies 

            Vol.7, No.2, pp.1-11, April 2019  

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

6 
Print ISSN: 2053-2229 (Print), Online ISSN: 2053-2210 (Online) 
 

i)  ϑ1(ℎ), ϑ2(ℎ), ϑ3(ℎ) are continuous functions on  [𝐴, 𝐵] that are three times 

differentiable on (𝐴, 𝐵] 

ii) ϑ1
′ (ℎ) (

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

)
′

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)
′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)
′

⁄ )
′

< 0 𝑓𝑜𝑟 ℎ ∈ (𝐴, 𝐵]𝑎𝑛𝑑 

iii) 𝑙𝑖𝑚ℎ↓𝐴
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

(ϑ1(𝐴) − ϑ1(ℎ)) = 0 

Where A is finite and B could be +∞. 

Also we can say that the functions  ϑ1(ℎ), ϑ2(ℎ), ϑ3(ℎ) are functions of type II on [𝐴, 𝐵] if 
i)  ϑ1(ℎ), ϑ2(ℎ), ϑ3(ℎ) are continuous functions  [𝐴, 𝐵] that are three times differentiable 

on [𝐴, 𝐵) 

ii) ϑ1
′ (ℎ) (

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

)
′

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)
′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)
′

⁄ )
′

> 0 𝑓𝑜𝑟 ℎ ∈ [𝐴, 𝐵)𝑎𝑛𝑑 

iii) 𝑙𝑖𝑚ℎ↓𝐵
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

(ϑ1(𝐵) − ϑ1(ℎ)) = 0 

In this case A could be −∞ and B is finite. 

 

Application 

4.1.1 Determination of Required Number of Support Points for Poisson Model 

To identify the number of support points needed for the construction of optimal design, we have 

to check the form of the function as specified in lemma 3.1. Basically, there are three conditions 

for verifying whether a function is of type I or type II. To verify the first condition, it means to 

show that    ϑ1(ℎ),  ϑ2(ℎ), ϑ3(ℎ) are continuous functions on [𝐴, 𝐵] that are three times 

differentiable on [𝐴, 𝐵) 

Now, 

ϑ1(ℎ𝑖) = exp(2ℎ𝑖) 

⇒ ϑ1
′ (ℎ𝑖) = 2 exp(2ℎ𝑖) ,       ϑ1

′′(ℎ𝑖) = 4exp(2ℎ𝑖),       ϑ1
′′′(ℎ𝑖) = 8 exp(2ℎ𝑖) 

also 

ϑ2(ℎ𝑖) = ℎ𝑖exp(2ℎ𝑖) 

⇒ ϑ2
′ (ℎ𝑖) = exp(2ℎ𝑖) + 2ℎ𝑖 exp(2ℎ𝑖)    

ϑ2
′′(ℎ𝑖) = 4exp(2ℎ𝑖) + 4ℎ𝑖exp(2ℎ𝑖) 

ϑ2
′′′(ℎ𝑖) = 12exp(2ℎ𝑖) + 8ℎ𝑖exp(2ℎ𝑖) 

and 

ϑ3(ℎ𝑖) = ℎ𝑖
2 exp(2ℎ𝑖) 

⇒ ϑ3
′ (ℎ𝑖) = 2ℎ𝑖

2exp(2ℎ𝑖) + 2ℎ𝑖 exp(2ℎ𝑖) 
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  ϑ3
′′(ℎ𝑖) = 4ℎ𝑖

2exp(2ℎ𝑖) + 8ℎ𝑖 exp(2ℎ𝑖) + 2 exp(2ℎ𝑖) 

  ϑ3
′′′(ℎ𝑖) = 8ℎ𝑖

2exp(2ℎ𝑖) + 24ℎ𝑖 exp(2ℎ𝑖) + 12 exp(2ℎ𝑖) 

Clearly the condition of continuity and differentiability as contained in lemma 3.1 has been 

satisfied. It remain to verify the second condition which entails showing that 

ϑ1
′ (ℎ) (

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

)

′

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)

′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

⁄ )

′

> 0 𝑓𝑜𝑟 ℎ ∈ [𝐴, 𝐵) 

Consider, 

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

= [
exp(2ℎ𝑖) + 2ℎ𝑖 exp(2ℎ𝑖)

2 exp(2ℎ𝑖)
]

′

 

=
2exp(2ℎ𝑖) [4 exp(2ℎ𝑖) + 4ℎ𝑖exp(2ℎ𝑖)] − 4 exp(2ℎ𝑖)[exp(2ℎ𝑖) + 2 ℎ𝑖exp(2ℎ𝑖)]

4 exp(4ℎ𝑖)
 

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

=
4exp(4ℎ𝑖)

4 exp(4ℎ𝑖)
= 1 

(
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)

′

= (
2ℎ𝑖

2exp(2ℎ𝑖) + 2ℎ𝑖 exp(2ℎ𝑖)

2 exp(2ℎ𝑖)
)

′

=
8ℎ𝑖 exp(4ℎ𝑖) + 4 exp(4ℎ𝑖)

4 exp(4ℎ𝑖)
= 1 + 2ℎ𝑖 

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)

′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

⁄ )

′

= (1 + 2ℎ𝑖)
′ = 2 

⇒ ϑ1
′ (ℎ) (

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

)

′

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)

′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

⁄ )

′

= 2exp(2ℎ𝑖) ∗ 1 ∗ 2 = 4 exp(2ℎ𝑖) > 0 

Having verified the second condition, next is to check for the last condition which is given as  

𝑙𝑖𝑚ℎ↓𝐵

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

(ϑ1(𝐵) − ϑ1(ℎ)) = 0 

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

(ϑ1(𝐵) − ϑ1(ℎ)) =
exp(2ℎ𝑖)[1 + 2ℎ𝑖]

2 exp(2ℎ𝑖)
(ϑ1(𝐵) − ϑ1(ℎ)) 

𝑙𝑖𝑚ℎ↓𝐵

exp(2ℎ𝑖)[1 + 2ℎ𝑖]

2 exp(2ℎ𝑖)
(ϑ1(𝐵) − ϑ1(𝐵)) = 𝑙𝑖𝑚ℎ↓𝐵

exp(2ℎ𝑖)[1 + 2ℎ𝑖]

2 exp(2ℎ𝑖)
(0) = 0 

Obviously, all the three conditions of lemma 3.1 are satisfied and this indicates that the function 

is a type II function; hence condition (ii) of theorem 3.1 applies. 

Application of theorem 3.1 implies having an optimal design with two support points and one of 

which is the upper boundary point, 𝑥2. The next important task is to show the dependence of 

support point on the unknown parameter value and determine the lower support point using 

recursive algorithm.  
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4.3.2 Dependence of Support Point on the Unknown Parameter Value 

Given that  

𝑓(𝑥𝑖, 𝜃) = (
𝜕𝜂(𝑥𝑖, 𝜃)

𝜕𝜃1
,
𝜕𝜂(𝑥𝑖, 𝜃)

𝜕𝜃𝑟
 )

′

= [exp (𝑎 + 𝑏𝑥𝑖) 𝑥𝑖exp (𝑎 + 𝑏𝑥𝑖)] 

Then for a saturated design, 

𝑀(𝜉, 𝜃)

=
1

2
[

exp[2 (𝑎 + 𝑏𝑥1)] + exp[2 (𝑎 + 𝑏𝑥2)] 𝑥1exp[2 (𝑎 + 𝑏𝑥1)] + 𝑥2exp[2 (𝑎 + 𝑏𝑥2)]

𝑥1exp[2 (𝑎 + 𝑏𝑥1)] + 𝑥2exp[2 (𝑎 + 𝑏𝑥2)] 𝑥1
2exp[2 (𝑎 + 𝑏𝑥1)] + 𝑥2

2exp[2 (𝑎 + 𝑏𝑥2)]
] 

and 

|𝑀(𝜉, 𝜃)| =
1

4
(𝑥1

2 + 𝑥2
2−2𝑥1𝑥2)exp [2(𝑎 + 𝑏𝑥1)+2(𝑎 + 𝑏𝑥2)]  

=
1

4
(𝑥2 − 𝑥1)

2exp [2(𝑎 + 𝑏𝑥1)+2(𝑎 + 𝑏𝑥2)]  

Remember that the function is a type II function and hence 𝑥2 is fixed at the upper boundary point, 

1. This implies |𝑀(𝜉, 𝜃)| =
1

4
(1 − 𝑥1)

2exp [2(𝑎 + 𝑏𝑥1) +2(𝑎 + 𝑏)] 

Taking the log of both sides we get 

log(|𝑀(𝜉, 𝜃)|) = 𝑙𝑜𝑔
1

4
+ 2𝑙𝑜𝑔(1 − 𝑥1) + 4𝑎 + 2𝑏(1 + 𝑥1) 

Taking the partial derivatives with respect to 𝑥1 we have  

𝑥1 = 1 +
1

𝑏
; 𝑏 < 0                                                                         3.11 

Evidently, equation (3.11) shows clearly the dependence of design support point on the unknown 

parameter value. Now the design in (3.2) becomes 

𝜉 =  [
1 +

1

𝑏
1

1

2

1

2

] 

4.3.3 Determination of Lower Support Point Using Recursive Algorithm 

The function 𝑔(𝑥1, 𝑏) = 1 + 𝑏(1 − 𝑥1) = 0 is called the gradient of the objective function. 

𝑓𝑜𝑟 𝑏0 = −2,        𝑥0 = 1 +
1

−2
= 0.5  
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since we are able to established/found an optimal design 𝑥0 with respect to 𝑏0 then we can use 

recursive algorithm as in (Dette et al (2001))  to find an approximate optimal experimental design 

𝑥1(𝑏) for different values of b provided the Jacobian of the function exist. 

For this problem, the Jacobian of the function is given by 

 

𝐽 =
𝜕(1 + 𝑏(1 − 𝑥1))

𝜕𝑥1
│𝑏=𝑏0

= −𝑏│𝑏=𝑏0
= 2 

Using the relation 

ξ∗(s + 1, τ0) = −𝐽−1(τ0)
1

(𝑠 + 1)!
(

𝑑

𝑑τ
)

𝑠+1

𝑔 (ξ∗
(𝑠)

(τ), τ)  , for s = 0,1,2, … 

𝑊ℎ𝑒𝑛 𝑠 = 0  

𝑑(1 + 𝑏(1 − 𝑥1))

𝑑𝑏
= 1 − 𝑥1│𝑥1=𝑥0

= 1 − 0.5 = 0.5 

⇒ ξ∗(1, −2) = −
0.5

2
= −0.25 

and ξ∗
(𝑠)

(τ) = ξ∗(τ0) + ∑ ξ∗(k, τ0)(τ − τ0)
𝑗𝑘

𝑗=1  is obtained as  

  

ξ∗
(0)

(b) = 0.5 − 0.25(𝑏 + 2) 

𝑤ℎ𝑒𝑛 𝑠 = 1, 

(
𝑑

𝑑τ
)
2

𝑔 (ξ∗
(𝑠)

(τ), τ) = (
𝑑

𝑑b
)
2

𝑔(0.5 − 0.25(𝑏 + 2), 𝑏) 

now,  

𝑔(0.5 − 0.25(𝑏 + 2), 𝑏) = 1 + 𝑏(0.5 − 0.25(𝑏 + 2)) = 1 + 𝑏 + 0.25𝑏2 

(
𝑑

𝑑b
)𝑔(0.5 − 0.25(𝑏 + 2), 𝑏) = 1 + 0.5𝑏 ⇒ (

𝑑

𝑑b
)
2

𝑔(0.5 − 0.25(𝑏 + 2), 𝑏) = 0.5 

 

ξ∗(2, −2) = −
0.5

2(2)!
= −0.125 

⇒ ξ∗
(1)

(b) = 0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2 
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𝑤ℎ𝑒𝑛 𝑠 = 2,  

(
𝑑

𝑑τ
)
3

𝑔 (ξ∗
(𝑠)

(τ), τ) = (
𝑑

𝑑b
)
3

𝑔(0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2, 𝑏) 

but,  𝑔(0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2, 𝑏) = 1 + 𝑏(1 − (0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 +

2)2)) 

(
𝑑

𝑑b
)
3

(1 + 𝑏(1 − (0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2))) = 0.125 

ξ∗(3, −2) = −
1

2(3)!
(0.125) = −0.0104 

⇒ ξ∗
(2)

(b) = 0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2 − 0.0104(𝑏 + 2)3 

𝑤ℎ𝑒𝑛 𝑠 = 3,  

(
𝑑

𝑑τ
)

4

𝑔 (ξ∗
(𝑠)

(τ), τ) = (
𝑑

𝑑b
)
4

𝑔(0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2 − 0.0104(𝑏 + 2)3, 𝑏) 

but,  𝑔(0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2 − 0.0104(𝑏 + 2)3, 𝑏) = 1 + 𝑏(1 − (0.5 −

0.25(𝑏 + 2) − 0.125(𝑏 + 2)2 − 0.0104(𝑏 + 2)3)) 

(
𝑑

𝑑b
)
4

(1 + 𝑏(1 − (0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2 − 0.0104(𝑏 + 2)3))) = 0.0104 

ξ∗(4, −2) = −
1

2(4)!
(0.0104) = −2.17 ∗ 10−4 

⇒ ξ∗
(3)

(b) = 0.5 − 0.25(𝑏 + 2) − 0.125(𝑏 + 2)2 − 0.0104(𝑏 + 2)3 − 2.17

∗ 10−4(𝑏 + 2)4               (4.5) 

From the above computation we can deduce that for a given value of b, the lower support point 

can be approximated by the polynomial in equation 4.5 above. 

CONCLUSION 

In this paper, we have proved that the support points of locally D-optimal designs for Poisson 

regression model are dependent on the guess parameter value, in addition the design is shown to 

be minimally supported (saturated) at two design points including B, the upper boundary point. 

We also proposed the use of Taylor series to approximate the lower support points for Poisson 

model. 
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