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ABSTRACT: Construction of optimal design for nonlinear models involves optimization of certain 

function of Fisher information matrix which depends on unknown parameter(s) value(s). For a locally 

optimal design, the unknown parameter(s) are replaced by guess value(s) based on prior knowledge of 

the experimenter. If the guesses are not close enough to the actual parameter(s) value(s) the resulting 

design may not be optimal, robust and efficient. To address the problem of constructing inefficient designs 

based on miss guessed parameter value, we employed a new methodology that identify a subclass of 

designs with a simple format and restrict consideration to this subclass. A locally D-optimal design for 

Monod model that is supported at two design point was constructed within this subclass. This approach 

makes construction of optimal design easier because it specifies the optimum number of support points 

required for any design in question.  

KEYWORDS: Monod Model, Saturated Design, D-optimal Design, Fisher Information Matrix, 

Recursive Algorithm, Tylor Series. 

 

 

INTRODUCTION 

 

Monod model is one of the most widely used nonlinear models in biomedical and pharmaceutical sciences. 

It is also used in biochemistry, nutrition sciences and enzyme kinetic studies. The model is widely applied 

for describing microbial growth and substrate degradations in many kinds of applications (e.g., batch and 

continuous fermentation, activated sludge wastewater treatment, pharmacokinetics, plant physiology etc.) 

Despite its wide range applications in different fields, construction of optimal designs remains a biggest 

challenge to experimenters. This is of course not unconnected with the dependence of design support 

points on the unknown parameters of the Fisher information matrix. For a locally optimal design, the 

unknown parameter(s) are replaced by a guess value(s) based on prior knowledge of the experimenter. If 

the guesses are not close enough to the actual parameter(s) value(s) the resulting design may not be 

optimal, robust and efficient. To tackle the menace of constructing inefficient designs arising from miss 

guessed of parameter value, (Yang and Stufken, 2012) proposed identifying a subclass of designs with a 

simple format, so that one can restrict considerations to this subclass for any optimality problem. With a 

simple format, it would be relatively easy to derive an optimal design, analytically or numerically.  

 

So our aim is to identify a subclass of design for Monod model so that for any design 𝜉 that does not 

belong to this class, there exist a design 𝜉∗ in the class that has an information matrix that dominates that 
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of 𝜉 in the Loewner ordering. Also 𝜉∗ will not be worse than 𝜉 for most of the commonly used optimality 

criteria and for many functions of the parameters. Furthermore, for the already identified subclass, D-

optimality criterion and recursive algorithm would be used to determine the specific design support point.  

 

This paper is organized and divided into the following sections. A brief review of literature on locally 

optimal designs is presented in Section two. Strategy and basic concept of methodology is presented in 

section three while section four is devoted to application of the methodology to Monod model. Lastly, a 

concluding remark is given in section five. 

Locally Optimal Designs 

The most commonly and simple approach to the problem of experimental designs for nonlinear models is 

locally optimal design that was introduced by Chernoff (1953). Under this set up, a best guess for the 

unknown  parameters which often comes from the previous experimentation, pilot experiment, or simply 

a mere  guess by the experimenter is been considered (Zhang, 2006). A better design can be chosen base 

on the selected design optimality criterion function evaluated at the guess value. This approach has 

received increasing attention and numerous contributions by several authors. Konstantinous and Dettea 

(2015) considered the construction of optimal designs for nonlinear regression models when there are 

measurement errors in the covariates and developed approximate design theory for the estimation of 

parameters using maximum likelihood and least-squares method of estimation.  

 

Dette et al(2010) derived locally D- and ED𝜌-optimal designs for the exponential, log –linear and three-

parameter emax models. For each model the locally D- and ED𝜌-optimal designs are supported at the 

same set of points, while the corresponding weights are different. They also demonstrate that locally D- 

and ED𝜌-optimal designs for the emax, log-linear and exponential models are relatively robust with 

respect to misspecification of the model parameters. 

 

Wu and Stufken (2014) considered generalized linear models with a single-variable quadratic polynomial 

as the predictor under a popular family of optimality criteria and derive explicit expressions for some D-

optimal designs. For unrestricted design region, optimal designs can be found within a subclass of designs 

based on a small support with symmetric structure. Gutiérrez et al (2014) gave explicit formulae for the 

construction of D-optimal designs as a function of the unknown parameters for the logistic regression 

model. Haines et al (2007) considered the construction of locally D-optimal design for logistic regression 

model with two explanatory variables, the variables are considered to be doses of two drugs and are thus 

constrained to be greater than or equal to zero with no interaction term in the model. The result shows that 

there are two patterns of D-optimal design that depend on model parameters  based on 3 and 4 support 

points respectively. Other contributions can be found in Wang et al (2006), Rodriguez-Torreblanca and 

Rodriguez-Diaz (2007), Russell et al (2009), Dette et al (2001), Chang (2005a and 2005b), Dette et 

al(2006).  

 

So far there is limited work on design issues related to Monod model despite its wide range applications 

in different fields most especially in relation to the newly improved statistical techniques. To this end, we 

proposed to investigate optimal design problems for this important model. Specifically, functional 

algebraic-approach would be used to construct locally D-optimal design for the aforementioned model, 
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where Taylor expansion would be used for the numerical calculation of the locally D-optimal designs via 

recursive algorithm.  

Strategy  

Suppose we make n observations 𝑦1, … , 𝑦𝑛; from an experiment with 𝑥1, … , 𝑥𝑛; explanatory variables. 

Let’s the data be modeled by nonlinear relationship of the form: 

𝑦𝑖 = 𝜂(𝑥𝑖 , 𝜃) + 𝜖𝑖, 𝜖𝑖~𝒩(0, 𝜎2) , 𝑖 = 1,2, … 𝑛                                    (3.1) 
Where 

 𝜂(𝑥𝑖 , 𝜃) is the regression function, 𝜃 is the vector of 𝑟𝑥1 unknown parameters and 𝜖𝑖 is the random 

error component. Note that both 𝜃 𝑎𝑛𝑑 𝜖𝑖 are independent and identically distributed. In addition, 

suppose we have 𝑡 < 𝑛 distinct design point and lets 𝑥𝑖 occurs 𝑚𝑖times among the points 𝑥1, … , 𝑥𝑛, 

in what follows, each of the point 𝑥𝑖 is associated with weight coefficient (proportion of observation 

at ith design point ), 𝑤𝑖 =  𝑚𝑖 𝑛⁄ . Here we require that 0 ≤ 𝑤𝑖 ≤ 1; 𝑖 = 1,2, … , 𝑡 and ∑ 𝑤𝑖 = 1.𝑡
𝑖=1   

Define a discrete probability measure, 𝜉 as 

 𝜉 = (
𝑥1, …  , 𝑥𝑡

𝑤1, … , 𝑤𝑡
)                                                    (3.2)  

Then the matrix, 

 𝑀(𝜉, 𝜃) = ∑ 𝑤𝑖𝑓(𝑥𝑖 , 𝜃)𝑓𝑇(𝑥𝑖, 𝜃)𝑡
𝑖=1                    (3.3)  

is called Fisher information matrix of the design 𝜉. 

where 

𝑓(𝑥, 𝜃) = (
𝜕𝜂(𝑥, 𝜃)

𝜃1
, … ,

𝜕𝜂(𝑥, 𝜃)

𝜃𝑟
 )

𝑇

 

is the vector of partial derivatives of 𝜂(𝑥, 𝜃) with respect to 𝜃 

The asymptotic variance-covariance matrix of the least squares estimator, 𝜃 is given by 

𝑉�̂� =
𝜎2

𝑛
{𝑀(𝜉, 𝜃)}−1 

We are interested in the optimal choice of a design among the available classes of designs in the design 

space, 𝜒 ⊆ ℛ, where ℛ = (0,1) is the design region/interval such that 𝑉�̂�  is minimized. 

If an information matrix of any nonlinear model, discrete or continuous can be transform to matrices of 

the form as in equation 3.4 and 3.5 respectively, then, a subclass of design can be determine with 

information matrix that dominates that of all other designs in terms of Loewner ordering.  

𝑀(𝜉, 𝜃) = 𝐺𝑇(𝑎, 𝑏)𝐻𝜉(𝑎, 𝑏)𝐺(𝑎, 𝑏)                                                                   3.4 

Where 

𝐻𝜉(𝑎, 𝑏) =

[
 
 
 
 
 ∑𝑤𝑖ϑ1(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ2(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ2(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ3(ℎ𝑖)

𝑡

𝑖=1 ]
 
 
 
 
 

                                                                  3.5 
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is a matrix that depends on design  𝜉 through 𝑤𝑖′𝑠 𝑎𝑛𝑑 ℎ𝑖′𝑠 and on (𝑎, 𝑏) through the  ℎ𝑖′𝑠, while 𝐺(𝑎, 𝑏)is 

a matrix that depends on (𝑎, 𝑏) only. 

In this paper we consider Monod model and the information matrix have been verified to conform to the 

transformed matrices of equation 3.4 and 3.5, details of the verification is presented below. 

Consider Monod model given by 

𝑌𝑖 =
𝑎𝑥𝑖

𝑏 + 𝑥𝑖
+ 𝜖𝑖 

Where 

𝑌1, … 𝑌𝑁 are experimental results and [𝑎, 𝑏] ∈ 𝜃 are positive integers(parameters). a is defined as 

supremum of the function and b is the value of x at which half supremum of the function is reached. 

𝜀1, … 𝜀𝑁 are independent and identically distributed random values (experimental errors) with zero mean 

and variance 𝜎2 > 0 and 𝑥1, … 𝑥𝑁 ∈ [0,1] are observation points. 

let  ℎ𝑖 = 𝑎𝑥𝑖 (𝑏 + 𝑥𝑖),⁄   ϑ1(ℎ𝑖) = ℎ𝑖
2,   ϑ2(ℎ𝑖) = ℎ𝑖

3,   ϑ3(ℎ𝑖) = ℎ𝑖
4           (3.6) 

and 

𝐺(𝑎, 𝑏) = [
1

𝑎⁄
−1

𝑏⁄

0 1
𝑎𝑏⁄

]                                                           (3.7) 

Substituting equation (3.5) and (3.7) in to equation (3.4), we get 

𝑀(𝜉, 𝜃) = 𝐺𝑇(𝑎, 𝑏)𝐻𝜉(𝑎, 𝑏)𝐺(𝑎, 𝑏) = [
1

𝑎⁄ 0
−1

𝑏⁄
1

𝑎𝑏⁄
]

[
 
 
 
 
 ∑𝑤𝑖ϑ1(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ2(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ2(ℎ𝑖)

𝑡

𝑖=1

∑𝑤𝑖ϑ3(ℎ𝑖)

𝑡

𝑖=1 ]
 
 
 
 
 

[
1

𝑎⁄
−1

𝑏⁄

0 1
𝑎𝑏⁄

] 

𝑀(𝜉, 𝜃) = ∑𝑤𝑖 [
1

𝑎⁄ 0
−1

𝑏⁄
1

𝑎𝑏⁄
] [

ϑ1(ℎ𝑖) ϑ2(ℎ𝑖)

ϑ2(ℎ𝑖) ϑ3(ℎ𝑖)
] [

1
𝑎⁄

−1
𝑏⁄

0 1
𝑎𝑏⁄

]

𝑡

𝑖=1

         (3.8) 

𝑀(𝜉, 𝜃) = ∑ 𝑤𝑖 [
1

𝑎⁄ 0
−1

𝑏⁄
1

𝑎𝑏⁄
]

[
 
 
 
 

𝑎2𝑥𝑖
2

(𝑏 + 𝑥𝑖)2

𝑎3𝑥𝑖
3

(𝑏 + 𝑥𝑖)3

𝑎3𝑥𝑖
3

(𝑏 + 𝑥𝑖)3

𝑎4𝑥𝑖
4

(𝑏 + 𝑥𝑖)4]
 
 
 
 

[
1

𝑎⁄
−1

𝑏⁄

0 1
𝑎𝑏⁄

]

𝑡

𝑖=1

 

 

𝑀(𝜉, 𝜃) = ∑ 𝑤𝑖

𝑡

𝑖=1

[
 
 
 
 

𝑥𝑖
2

(𝑏 + 𝑥𝑖)2

−𝑎𝑥𝑖
2

(𝑏 + 𝑥𝑖)3

−𝑎𝑥𝑖
2

(𝑏 + 𝑥𝑖)3

𝑎2𝑥𝑖
2

(𝑏 + 𝑥𝑖)4]
 
 
 
 

                                                         (3.9) 
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Now consider the untransformed information matrix, equation (3.3), 

𝑀(𝜉, 𝜃) = ∑𝑤𝑖𝑓(𝑥𝑖, 𝜃)𝑓𝑇(𝑥𝑖, 𝜃),

𝑡

𝑖=1

  𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥𝑖, 𝜃) = (
𝜕𝜂(𝑥𝑖, 𝜃)

𝜕𝜃1
, … ,

𝜕𝜂(𝑥𝑖 , 𝜃)

𝜕𝜃𝑟
 )

𝑇

 

Therefore, 

𝑀(𝜉, 𝜃) = ∑𝑤𝑖

𝑡

𝑖=1

[

𝑥𝑖

(𝑏 + 𝑥𝑖)
−𝑎𝑥𝑖

(𝑏 + 𝑥𝑖)
2

] [
𝑥𝑖

(𝑏 + 𝑥𝑖)

−𝑎𝑥𝑖

(𝑏 + 𝑥𝑖)2] = ∑ 𝑤𝑖

𝑡

𝑖=1

[
 
 
 
 

𝑥𝑖
2

(𝑏 + 𝑥𝑖)2

−𝑎𝑥𝑖
2

(𝑏 + 𝑥𝑖)3

−𝑎𝑥𝑖
2

(𝑏 + 𝑥𝑖)3

𝑎2𝑥𝑖
2

(𝑏 + 𝑥𝑖)4]
 
 
 
 

 (3.10 ) 

 

            ▀ 

Clearly, equation (3.9) and (3.10) are equivalent.       

Having successfully verified the equivalences of our design information matrices, we shall now show the 

mechanism and strategy for a general nonlinear models under certain conditions that there exists a subclass 

of designs such that for any given design 𝜉, there exists a design 𝜉∗ in this subclass such that 𝑀𝜉∗(𝜃) ≥

𝑀𝜉(𝜃). 

To start with let,  ϑ1(ℎ), ϑ2(ℎ),… , ϑ𝑘(ℎ) be k functions defined on [A,B]. Throughout this paper, we have 

the following assumptions: 

 (i) ϑ1(ℎ), ϑ2(ℎ), … , ϑ𝑘(ℎ) are infinity differentiable; 

(ii) 𝑓𝑙,𝑙 has no zero value on [A,B]. 

Here, 𝑓𝑙,𝑡 1 ≤ 𝑡 ≤ 𝑘, 𝑡 ≤ 1 ≤ 𝑘 are defined as follows: 

𝑓𝑙,𝑡(ℎ) = {

ϑ𝑙
′(ℎ),                𝑡 = 1, 𝑙 = 1,… , 𝑘

(
𝑓𝑙,𝑡−1(ℎ)

𝑓𝑡−1,𝑡−1(ℎ)
)

′

,   2 ≤ 𝑡 ≤ 𝑘, 𝑡 ≤ 𝑙 ≤ 𝑘
 

Theorem 3.1 

For any nonlinear regression model, suppose the information matrix can be expressed as in (3.4) and hi ∈
[A, B]. Rename all distinct ϑlt, 1 ≤ l ≤ t ≤ p to ϑ1, ϑ2, … , ϑk such that (i)ϑk is one of ϑll, 1 ≤ l ≤ p and 

(ii)there is no ϑlt = ϑk for 1 < t. Let Ψ(h) = ∏ fl,l(c)
k
l=1 , h ∈ [A, B]. For any given design ξ, there exist 

a design ξ∗, such that Mξ∗(θ) ≥ Mξ(θ). Note that ξ∗ depends on different situations.  

i. When k is odd and 𝛹(ℎ) < 0, ξ∗ is based on at most (k + 1) 2⁄  points including point A. 

ii. When k is odd and 𝛹(ℎ) > 0, ξ∗ is based on at most (k + 1) 2⁄  points including point B. 

iii. When k is even and 𝛹(ℎ) > 0, ξ∗ is based on at most (k 2⁄ ) + 1 points including points A 

and B. 

iv. When k is even and 𝛹(ℎ) < 0, ξ∗ is based on at most k 2⁄  points. 

For a two parameter model with 𝑘 = 3, the conditions in (i) and (ii) of theorem 3.1 above can be narrowed 

down to the following important result. 
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Lemma 3.1: The functions  ϑ1(ℎ), ϑ2(ℎ), ϑ3(ℎ) are called type I functions on [𝐴, 𝐵] if the following 

conditions holds 

i)  ϑ1(ℎ), ϑ2(ℎ), ϑ3(ℎ) are continuous functions on  [𝐴, 𝐵] that are three times differentiable 

on (𝐴, 𝐵] 

ii) ϑ1
′ (ℎ) (

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

)
′

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)
′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)
′

⁄ )
′

< 0 𝑓𝑜𝑟 ℎ ∈ (𝐴, 𝐵]𝑎𝑛𝑑 

iii) 𝑙𝑖𝑚ℎ↓𝐴
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

(ϑ1(𝐴) − ϑ1(ℎ)) = 0 

Where A is finite and B could be +∞. 

Also we can say that the functions  ϑ1(ℎ), ϑ2(ℎ), ϑ3(ℎ) are functions of type II on [𝐴, 𝐵] if 
i)  ϑ1(ℎ), ϑ2(ℎ), ϑ3(ℎ) are continuous functions  [𝐴, 𝐵] that are three times differentiable on 

[𝐴, 𝐵) 

ii) ϑ1
′ (ℎ) (

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

)
′

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)
′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)
′

⁄ )
′

> 0 𝑓𝑜𝑟 ℎ ∈ [𝐴, 𝐵)𝑎𝑛𝑑 

iii) 𝑙𝑖𝑚ℎ↓𝐵
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

(ϑ1(𝐵) − ϑ1(ℎ)) = 0 

In this case A could be −∞ and B is finite. 

 

Application 

4.1.1 Determination of Required Number of Support Points for Monod Model 

To identify the number of support points needed for the construction of optimal design, we have to check 

the form of the function as specified in lemma 3.1. Basically, there are three conditions for verifying 

whether a function is of type I or type II; to verify the first condition, it means to show that    ϑ1(ℎ),  ϑ2(ℎ),
ϑ3(ℎ) are continuous functions  [𝐴, 𝐵] that are three times differentiable on [𝐴, 𝐵) 

Now, 

ϑ1(ℎ𝑖) = ℎ𝑖
2 = (𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )2 

⇒ ϑ1
′ (ℎ𝑖) = 2(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ ),       ϑ1

′′(ℎ𝑖) = 2    𝑎𝑛𝑑   ϑ1
′′′(ℎ𝑖) = 0 

also,    
ϑ2(ℎ𝑖) = ℎ𝑖

3 = (𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )3 

⇒ ϑ2
′ (ℎ𝑖) = 3(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )2,            ϑ2

′′(ℎ𝑖) = 6(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )    𝑎𝑛𝑑  ϑ2
′′′(ℎ𝑖) = 6       

and   
ϑ3(ℎ𝑖) = ℎ𝑖

4 = (𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )4 

⇒ ϑ3
′ (ℎ𝑖) = 4(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )3, ϑ3

′′(ℎ𝑖) = 12(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )2𝑎𝑛𝑑  ϑ2
′′′(ℎ𝑖) = 24(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ ) 

By definition of continuity and differentiability, all differentiable functions are continuous but, the convers 

is not always true. From the above findings we can see that the condition of continuity and differentiability 

has been met. It is important to note that differentiability in the interval, [A, B) means that the function is 

defined for every point in [A, B).  

To verify the second condition, we need to show that 
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ϑ1
′ (ℎ) (

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

)

′

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)

′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

⁄ )

′

> 0 𝑓𝑜𝑟 ℎ ∈ [𝐴, 𝐵) 

Consider, 

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

= (
3(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )2

2(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )
)

′

=
3

2
 

(
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)

′

= (
4(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )3

2(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )
)

′

= 4(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ ) 

and 

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)

′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

⁄ )

′

= (
4(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )

3
2

)

′

=
8

3
 

⇒ ϑ1
′ (ℎ) (

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

)

′

((
ϑ3

′ (ℎ)

ϑ1
′ (ℎ)

)

′

(
ϑ2

′ (ℎ)

ϑ1
′ (ℎ)

)

′

⁄ )

′

= 2(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ ) (
8

2
) = 8(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ ) > 0 

Next is to check for the last condition which is given as  

𝑙𝑖𝑚ℎ↓𝐵

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

(ϑ1(𝐵) − ϑ1(ℎ)) = 0 

ϑ2
′ (ℎ)

ϑ1
′ (ℎ)

(ϑ1(𝐵) − ϑ1(ℎ)) =
3(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )2

2(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )
(ϑ1(𝐵) − ϑ1(ℎ)) 

𝑙𝑖𝑚ℎ↓𝐵

3(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )2

2(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )
(ϑ1(𝐵) − ϑ1(ℎ)) =

3(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )2

2(𝑎𝑥𝑖 (𝑏 + 𝑥𝑖)⁄ )
(ϑ1(𝐵) − ϑ1(𝐵)) = 0 

Having verified that the function is a type II function, then for any given 𝑘, we can use theorem 3.1 and 

draw necessary conclusions about the minimum number of support points required and the inclusion of 

the boundary point as design support point. Obviously, for 𝑘 = 3,  we have two support points and one of 

which is the boundary point, B. The next important task will be the determination of the other support 

point, the lower boundary support point. 

4.1.2 Dependence of Support Point on the Unknown Parameter Value 

Consider the information matrix of the design given in equation 3.10 

 

𝑀(𝜉, 𝜃) = ∑ 𝑤𝑖

𝑡

𝑖=1

(

 
 

𝑥𝑖
2

(𝑏 + 𝑥𝑖)2

−𝑎𝑥𝑖
2

(𝑏 + 𝑥𝑖)3

−𝑎𝑥𝑖
2

(𝑏 + 𝑥𝑖)3

𝑎2𝑥𝑖
2

(𝑏 + 𝑥𝑖)4
)

 
 

 

If a D-optimal design is minimally supported, then it is easy to see that it has uniform weights on all 

support points. As a result, one has to determine only the 𝑟 support points. On the other hand, if it is not 
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known that the D-optimal design is minimally supported, then one is faced with the task of determining 

the support points and the corresponding weights (probabilities) of the design, so the determination of a 

D-optimal design is considerably easier when it is minimally supported. From the above important result, 

𝑓𝑜𝑟 𝑘 = 3, 𝑡ℎ𝑒𝑛 𝑡 = 2, this implies that the design saturated/minimally supported. As mentioned above, 

for a saturated design (a design whose number of support point is equal to the model parameters) the 

weight coefficient at both design point are equal. This implies 𝑤𝑖 = 1
2⁄  ; 𝑖 = 1, 2. Now, 𝑀(𝜉, 𝜃) reduces 

to 

𝑀(𝜉, 𝜃) =
1

2

(

 
 

𝑥1
2

(𝑏 + 𝑥1)2
+

𝑥2
2

(𝑏 + 𝑥2)2

−𝑎𝑥1
2

(𝑏 + 𝑥1)3
+

−𝑎𝑥2
2

(𝑏 + 𝑥2)3

−𝑎𝑥1
2

(𝑏 + 𝑥1)3
+

−𝑎𝑥2
2

(𝑏 + 𝑥2)3

𝑎2𝑥1
2

(𝑏 + 𝑥1)4
+

𝑎2𝑥2
2

(𝑏 + 𝑥2)4
)

 
 

 

For a locally D-optimal design, determinant of the information matrix is important and must be determine. 

|𝑀(𝜉, 𝜃)| =
𝑎𝑥1

2𝑥2
2

4
[

1

(𝑏 + 𝑥1)2(𝑏 + 𝑥2)4
+

1

(𝑏 + 𝑥1)4(𝑏 + 𝑥2)2
−

2

(𝑏 + 𝑥1)3(𝑏 + 𝑥2)3
] 

|𝑀(𝜉, 𝜃)| =
𝑎𝑥1

2𝑥2
2

4(𝑏 + 𝑥1)4(𝑏 + 𝑥2)4
= [(𝑏 + 𝑥1)

2 + (𝑏 + 𝑥2)
2 − 2(𝑏 + 𝑥1)(𝑏 + 𝑥2)] 

|𝑀(𝜉, 𝜃)| =
𝑎𝑥1

2𝑥2
2

4(𝑏 + 𝑥1)
4(𝑏 + 𝑥2)

4
[𝑥1

2 + 𝑥2
2 − 2𝑥1𝑥2] 

|𝑀(𝜉, 𝜃)| =
𝑎𝑥1

2𝑥2
2

4(𝑏 + 𝑥1)4(𝑏 + 𝑥2)4
(𝑥2 − 𝑥1)

2                                    (4.1) 

Observe that the parameter, 𝑎, has been factored out as such it does not affect the optimization of the 

design, hence we can fix it at 1. In addition, the upper support point, 𝑥2 which is regarded as the upper 

boundary point, B, is also fixed at 1. Therefore, the problem reduces to approximating the lower bound of 

X such that (4.1) is a maximum.  

Imposing the condition 𝑎 = 𝑥2 = 1 we get 

  

|𝑀(𝜉, 𝜃)| =
𝑥1

2(1 − 𝑥1)
2

4(𝑏 + 𝑥1)4(𝑏 + 1)4
                                        4.2 

optimization of 4.2 with respect to 𝑥1 is equivalent to optimizing 
𝑥1

2(1−𝑥1)2

4(𝑏+𝑥1)4
. Therefore, 4.2 reduces to 

|𝑀(𝜉, 𝜃)| =
𝑥1

2(1 − 𝑥1)
2

4(𝑏 + 𝑥1)4
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Taking the log of both sides we get 

log(|𝑀(𝜉, 𝜃)|) = 𝑙𝑜𝑔
1

4
+ 2𝑙𝑜𝑔𝑥1 + 2𝑙𝑜𝑔(1 − 𝑥1) − 4𝑙𝑜𝑔(𝑏 + 𝑥1) 

Taking the partial derivatives with respect to 𝑥1 we have 

𝜕 log(|𝑀(𝜉, 𝜃)|)

𝜕𝑥1
=

2

𝑥1
−

2

(1 − 𝑥1)
−

4

(𝑏 + 𝑥1)
= 0 

𝑥1 =
𝑏

(2𝑏 + 1)
                                      4.3 

Equation (4.3) shows clearly the dependence of support point on the unknown parameter value, b 

Now the design in (3.2) becomes 

𝜉 =  

[
 
 
 

𝑏

(2𝑏 + 1)
1

1

2

1

2]
 
 
 
 

4.1.3 Determination of Lower Support Point Using Recursive Algorithm 

The function 𝑔(𝑥1, 𝑏) = (2𝑏 + 1)𝑥1 − 𝑏 = 0 is called the gradient of the objective function. 

for 𝑏0 = 0.75, 𝑥0 =
0.75

(2(0.75)+1)
= 0.3 

since we are able to established/found an optimal design 𝑥0 with respect to 𝑏0 then we can use recursive 

algorithm as in (Dette et al (2001)) to find an approximate optimal experimental design 𝑥1(𝑏) for different 

values of b provided the Jacobian of the function exist. 

For this problem, the Jacobian of the function is given by 

𝐽 =
𝜕(2𝑏 + 1)𝑥1 − 𝑏

𝜕𝑥1
│𝑏=𝑏0

 

𝐽 = 2(0.75) + 1 = 2.5 

 Using the relation, 

 ξ∗(s + 1, τ0) = −𝐽−1(τ0)
1

(𝑠+1)!
(

𝑑

𝑑τ
)

𝑠+1

𝑔 (ξ∗
(𝑠)

(τ), τ)  , for s = 0,1,2, … 

𝑤ℎ𝑒𝑛 𝑠 = 0, 
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𝑑

𝑑𝑏
(2𝑏 + 1)𝑥1 − 𝑏 = 2𝑥1 − 1 = −0.4 

⇒ ξ∗(1,0.75) = −
(−0.4)

2.5
= 0.16  

and 

 ξ∗
(𝑠)

(τ) = ξ∗(τ0) + ∑ ξ∗(k, τ0)(τ − τ0)
𝑘𝑠

𝑘=1  is obtained as  

  

ξ∗
(0)

(b) = 0.3 + 0.16(𝑏 − 0.75) 

𝑤ℎ𝑒𝑛 𝑠 = 1, 

ξ∗(2,0.75) = −
1

2.5
(

𝑑

𝑑b
)
2

𝑔(0.3 + 0.16(𝑏 − 0.75), b) 

 

𝑔(0.3 + 0.16(𝑏 − 0.75), b) = [0.3 + 0.16(𝑏 − 0.75)](2𝑏 + 1) − 𝑏  

𝑑

𝑑b
𝑔(0.3 + 0.16(𝑏 − 0.75), b) =

𝑑

𝑑b
(0.32𝑏2 − 0.48𝑏 + 0.18) = 0.64𝑏 − 0.48  

 (
𝑑

𝑑b
)
2

𝑔(0.3 + 0.16(𝑏 − 0.75), b) = 0.64  

So 

 ξ∗(2,0.75) = −
1

2.5
(

1

2!
) 0.64 = −0.128 

⇒ ξ∗
(1)

(b) = 0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2 

𝑤ℎ𝑒𝑛 𝑠 = 2,  

ξ∗(3,0.75) = −
1

2.5
(

𝑑

𝑑b
)
3

𝑔(0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2, b) 

 𝑔(0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2, b) = 

[(0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2)](2𝑏 + 1) − 𝑏 

Now, 
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𝑑

𝑑b
𝑔(0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2, b)

= [−0.48 + 0.64𝑏 − 0.256(𝑏 − 0.75)2 − 0.256(𝑏 − 0.75)(2𝑏 + 1)] 

 

(
𝑑

𝑑b
)
2

𝑔(0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2, b)

= [0.64 − 0.512(𝑏 − 0.75) − 0.256(2𝑏 − 1.5) + (2𝑏 + 1)] 

(
𝑑

𝑑b
)
3

𝑔(0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2, b) = −1.536 

ξ∗(3,0.75) = −
1

2.5
𝑥

1

3!
(−1.536) = 0.1024 

⇒ ξ∗
(2)

(b) = 0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2 + 0.1024(𝑏 − 0.75)3 

 

𝑤ℎ𝑒𝑛 𝑠 = 3,  

ξ∗(3,0.75) = −
1

2.5
𝑥

1

4!
(8.19) = −0.1364 

⇒ ξ∗
(3)

(b) = 0.3 + 0.16(𝑏 − 0.75) − 0.128(𝑏 − 0.75)2 + 0.1024(𝑏 − 0.75)3

− 0.1364(𝑏 − 0.75)4                                                                     4.4 

From the above computation we can deduce that for a given value of b, the lower support point can be 

approximated by the polynomial in equation 4.4 above. 

CONCLUSION 

 

In this paper, we have proved that the support points of locally D-optimal designs for Monod model are 

dependent on the guess parameter value, in addition the design is shown to be minimally supported 

(saturated) at two design points including B, the upper boundary point. We also proposed the use of Taylor 

series to approximate the lower support points for Monod model. 
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