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ABSTRACT: The present study builds a taxonomy of State Machine Replication (SMR) and 

Transactional Replication (TR) models based on three algorithmic descriptors: the existence or the 

absence of a leader, synchronicity and the type of fault tolerance. As per FLP theorem, termination 

cannot be guaranteed in deterministic algorithms in the presence of even a single faulty process. 

However, the taxonomy shows that this impossibility has been overcome through weak asynchrony 

assumptions to ensure termination or using randomized methods to ensure termination 

deterministically. Increased resource usage and low throughput are major problems associated with 

current Byzantine Fault Tolerance (BFT) systems. Cross Fault Tolerance (XFT) is a new approach 

which solves practical BFT cases with minimal resources. The article further concludes with a short 

review of selected open source practical frameworks that implement SMR like Hyperledger, Apache 

Kafka, Zookeeper, Zab, etcd, zetcd and piChain.  
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INTRODUCTION 

 

A distributed ledger is a replicated data structure among many different nodes or replicas in a peer-

to-peer network. A fundamental feature of a distributed ledger is that it is not maintained by any 

central authority. Any updates to the ledger are independently made by each node. The nodes then 

vote on these updates to ensure that the majority agrees with the conclusion made. Once the consensus 

has been reached, the most agreed upon version of the ledger is saved on each node separately. 

 

Thus, consensus algorithms are central to the functioning of any distributed ledger as it ensures the 

replication across nodes. Consensus may be implemented in different ways such as through the use 

of proof-based algorithms including Proof of Elapsed Time (PoET) and Proof of Work (PoW) for 

permission-less ledgers or through the use of voting-based methods which include State Machine 

Replication and Transactional Replication (Hyperledger Architecture, 2017) for permissioned 

ledgers. 

 

This paper aims to provide a methodical view of consensus based distributed ledger mechanisms 

available in the research literature and then build a taxonomy of state of the art based on three 

algorithmic descriptors: existence (or not) of a leader, the synchrony model and the failure model. It 

is clearly evident from the taxonomy i.e. Figure 1 that the majority of consensus methods which 

support both CFT and BFT are leader-based and they are for replicated state machines. Consensus 

protocols designed for Transaction Replication is quite low and they support CFT. As per FLP 

(Fisher, Lynch & Peterson, 1985) theorem liveness property i.e. termination cannot be guaranteed in 

deterministic algorithms in the presence of even one faulty process. This impossibility has been 
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overcome through weak asynchrony assumptions or by using randomized methods. Hashgraph 

(Baird, 2016) and Aleph (Gągol & Świętek, 2018) are such randomized methods proposed recently 

for replicated state machines. Both are leaderless, asynchronous and Byzantine fault tolerant. Leader-

Free Byzantine (Borran & Schiper, 2010) and Leaderless Byzantine Paxos (Lamport, 2011) are such 

non-randomized i.e. deterministic and Byzantine fault tolerant methods developed using weak 

asynchrony assumptions. Further, Leaderless Byzantine Paxos uses a virtual leader. Having a 

consensus algorithm which is completely leaderless, asynchronous and byzantine fault tolerant seems 

to be another impossibility under deterministic condition. Increased resource usage and low 

throughput are major problems associated with current BFT systems. XFT i.e. Cross Fault Tolerance 

is an approach where it tries to solve practical BFT with minimal resources. XFT needs 2f+1 replicas 

as in CFT and supports both CFT and BFT. We conclude the article with a short review of practical 

open source frameworks for SMR such as Hyperledger, Apache Kafka, Zookeeper, Zab, etcd, zetcd 

and piChain. 

 

 
Figure 1. A Taxonomy of Applicable Consensus Models 

 

THE ROLE OF LEADER 

In leader-based protocols, the most responsibility for the tasks i.e. Request dissemination (receiving 

requests from clients and distributing them to all replicas), Establishing order (reaching agreement on 

the order of requests), Request execution (executing requests in the determined order and sending 

replies to clients) is with the leader while the followers are only responsible for acknowledging the 

order proposed by the leader and executing requests (Biely et al., 2012).  

 

Therefore, a bottleneck exists at the leader and the maximum update throughput is limited by the 

leader's resources (Biely et al., 2012). For instance, with n replicas, for each command, the leader 

handles O(n) messages and non-leader replicas handle only O(1). Also when the leader fails the state 

machine becomes unavailable until a new leader is elected (Moraru, Andersen & Kaminsky, 2013). 

The scalability of such protocols is also poor as the number of replicas on the system increases, the 

leader quickly reaches a CPU limits. Leader election is a difficult task specially in an asynchronous 

distributed system, being similar to the consensus problem as to elect a leader as all replicas must 

reach consensus on the leader (De Prisco, Lampson & Lynch, 1997). 

 

There are a few Paxos variants available in the research literature where the above shortcomings have 

been addressed. Ring Paxos (Jalili, Schiper & Pedone, 2010) offloads the tasks of leader by ordering 
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of identifiers of client requests (i.e. instead of client requests and dissemination of requests) through 

ip-multicasting and a ring of acceptors and batching of requests at the leader and use of pipelining. 

Still, if the leader fails, service will be interrupted until a new leader is elected. S-Paxos (Biely et al., 

2012) offloads work from the leader by delegating it to the other replicas. The only remaining leader-

based task is ordering. HT-Paxos (Kumar & Agarwal, 2014) offloads the leader’s the work of 

handling client communications and client request dissemination and instead it only receives the batch 

identifiers  (or request identifiers) and order them. HT-Paxos gives high throughput compared to S-

Paxos. HT-Ring Paxos (Kumar & Agarwal, 2015) is another Paxos variant which uses the iornic 

concepts of Ring Paxos, S-Paxos and HT-Paxos to offload the leader’s tasks further. Thus, it has 

higher throughput compared to all other Paxos variants. Further, many Paxos-based systems use read 

leases where one or several replicas can satisfy read requests locally without having to commit a more 

expensive Paxos protocol (Moraru, Andersen & Kaminsky, 2014) which improves read throughput 

and latency.  

 

In leader-based consensus algorithms, all read and write requests are handled by the leader. This can 

be improved if we allow followers to serve read requests. This is because all write requests are done 

using majority vote. So, reading from any majority gives the correct result. Thus, the Quorum reads 

is also another technique used to offload the load of the leader. Hence the better performance of the 

followers is assured under failure-free and read-heavy workloads (Arora et al., 2017). 

 

The other leaderless Paxos variants are leaderless Byzantine Paxos (Lamport, 2011), Egalitarian 

Paxos (Moraru, Andersen & Kaminsky, 2013) and Paxos STM (Wojciechowski, Kobus & 

Kokocinski, 2012). Egalitarian Paxos has no designated leader process. Instead, clients can choose at 

every step which replica to submit a command to, and in most cases the command is committed 

without interfering with other concurrent commands. Further, no need for leader election, as long as 

more than half of the replicas are available. Paxos STM is the first replicated Distributed 

Transactional Memory system to provide support for recovered operations within transactions. It 

replicates all transactional objects (objects shared by transactions) and maintains strong consistency 

of object replicas. Leaderless Byzantine Paxos has a virtual leader which performs the role of a leader. 

For Byzantine agreement, relying on a leader is problematic. Leaderless Byzantine Paxos was 

developed to overcome such problems whereby replacing the leader by a virtual leader using a 

synchronous Byzantine agreement. If the system does not behave synchronously, then the 

synchronous Byzantine agreement algorithm may fail, causing different servers to choose different 

virtual-leader messages (Lamport, 2011).  

 

Safety and liveness of Paxos is guaranteed by the fact that any two quorums will intersect. Thus, the 

quorums are typically composed of any majority of replicas. However, in Flexible Paxos (Howard, 

Malkhi & Spiegelman, 2016), use of disjoint quorums as opposed to majority quorums is safe too. 

For example, in a system of 10 nodes, we can safely allow any set of only 3 nodes to participate in 

replication, provided that we require 8 nodes to participate when recovering from leader failure. This 

way, it reduces the latency as leaders will no longer be required to wait for a majority quorum to 

accept proposals. Hence, we will have the high throughput as the result. However, it reduces the 

availability as the system can tolerate fewer failures.  

 

Hierarchical Consensus (Bengfort & Keleher, 2017) is a leader-oriented protocol which has multiple 

sub-quorums where each sub-quorum elects a leader to coordinate decisions. All the nodes are 

organized into a tiers of quorums such that parent quorums manage the decision space and leaf 

quorums manage access ordering. At the beginning all nodes are independent and they must self-
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organize into a hierarchical structure. This has more leaders but less global messages exchanged 

hence it prevents bottlenecks and increases the throughput. 

 

All deterministic (non-randomized) Byzantine algorithms for partially synchronous systems have so 

far been leader-based. However, in (Borran & Schiper, 2010) a deterministic (non-randomized), 

leader-free Byzantine consensus algorithm has been introduced in a partially synchronous setting. As 

per FLP (Fisher, Lynch & Peterson, 1985) theorem which states that no deterministic and 

asynchronous algorithm can satisfy liveness in the presence of at least one faulty process, the 

researchers had replaced determinism by introducing randomization in a form of coin tossing. Two 

new algorithms, called the Swirlds Hashgraph consensus algorithm (Baird, 2016) and ALEPH (Gągol 

& Świętek, 2018) were introduced based on this idea. Both are randomized, leaderless, asynchronous, 

byzantine fault tolerant replicated state machines. 

 

Hashgraph uses a gossip protocol where the participants gossip about gossip and build a data structure 

which records who gossip to whom in which order. In Hashgraph it is assumed that up to n/3 of the 

nodes can behave arbitrarily, where n is the total number of nodes in the system. Any two honest 

nodes can eventually communicate after some unknown but bounded amount of time. Nodes gossip 

with each other constantly by selecting a peer randomly. These gossip interactions grow the 

Hashgraph in a consistent way. Hashgraph uses a round number which puts a given node's events in 

a monotonically increasing order and a binary value called "witness" which is true whenever an event 

is the first created by the particular node in a round. An event is famous if it is a witness and was 

received by most members soon after being created. Every participant has its own copy of the 

hashgraph. Thus, it uses virtual voting i.e. every member can reach Byzantine agreement without a 

single vote ever being sent. In other words, a participant can calculate what another participant’s vote 

would have been sent to it. Hence, the number of messages exchanged when making an agreement is 

zero compared to a traditional Byzantine agreement protocol involved in sending votes. The 

algorithm guarantees that it makes progress eventually when over 2/3 of nodes continue gossiping 

forever but no analysis is available to see how long it takes. For example, during network partitions, 

random coin flips are required for progress. Hashgraph is a local coin protocol and requires expected 

exponential number of rounds. Hence in those situations the latency could be very high. 

 

This issue has been addressed by Aleph which guarantees liveness with an expected constant number 

of rounds needed to terminate. In Aleph, it is assumed that 1/3n-1 processes are controlled by a 

malicious adversary, all remaining 2/3n+1 processes are correct and processes exchange information 

by creating and sharing with each other units which can contain arbitrary data. The total ordering of 

units is computed locally, based only on the partial order structure, and is guaranteed to be the same 

for all processes. This is very similar to Hashgraph’s virtual voting. The Aleph protocol for agreement 

on total ordering of units satisfies both safety and liveness.  

 

In both Hashgraph and Aleph, the consensus for total ordering is done locally and need potentially 

expensive computation by all nodes. Since there are no released performance metrics available, no 

conclusions can be made about the throughput, latency and storage requirements of these protocols. 

Other issue is how well the protocol responds to fail-stop and fail-restart crashes.  

 

SYNCHRONY MODEL 

Consensus algorithms based on synchronous timing are much simpler. However, they are unrealistic 

in practice.  
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Literature shows that the existence of both time bounds i.e. the time required for a message to be sent 

from one processor to another or the relative speeds of different processors is necessary to achieve 

any resiliency, even under the weakest type of faults. It has been proven that if a fixed upper bound 

on message delivery time does not exist or a fixed upper bound on relative processor speeds does not 

exist then there is no consensus protocol that satisfies liveness under even one fail-stop fault (Fischer 

et al., 1985). 

 

The assumption that messages are delivered asynchronously is made in almost all the Paxos variants 

except for Leaderless Byzantine Paxos (Lamport, 2011) and Paxos STM (Wojciechowski, Kobus & 

Kokocinski, 2012). 

 

There are other models available in the literature as well with regard to synchronicity. i.e. partially 

synchronous model and eventually synchronous model. Partially synchrony lies between complete 

synchronicity and complete asynchronicity. In one version of partial synchrony, fixed time bounds 

exist, but they are not known a priori. In another version of partial synchrony, the time bounds are 

known, but are only guaranteed to hold starting at some unknown time T, and protocols must be 

designed to work correctly regardless of when time T occurs (Dwork, Lynch & Stockmeyer, 1988). 

The eventual-synchrony model considers an asynchronous network that may delay messages among 

correct nodes arbitrarily, but eventually behaves synchronously and delivers all messages within a 

fixed (but unknown) time bound (Dwork, Lynch & Stockmeyer, 1988). Protocols in this model do 

not violate the safety property during asynchronous periods as long as the assumptions on the type 

and number of faulty nodes are met. When the network stabilizes and behaves synchronously, then 

the nodes are guaranteed to terminate. Replication protocols need to tolerate network partitions and 

node failures. Protocol designers today prefer eventual synchrony assumptions because of its 

simplicity and practitioners observe that it captures the broader coverage of actual network behaviour, 

especially when compared to the partially synchronous models that assume probabilistic network 

behaviour over time (Cachin & Vukolic, 2017).  

 

PROCESS FAILURE MODEL 

Fault tolerance is a key property expected of any distributed system. It is all about the system 

resiliency in terms of achieving safety and liveness in the face of node failures. There are two kinds 

of possible faults in a SMR-based system i.e. Crash Fault Tolerance (CFT) and Byzantine Fault 

Tolerance (BFT). 

 

Crash Fault Tolerance can be assumed either as fail stop or fail restart. In the fail-stop model, 

processes can fail by stopping, i.e. a faulty process eventually stops executing the algorithm 

permanently whereas in the fail-restart model a process can resume execution after crashing. In this 

model, any state stored in volatile storage is lost upon a crash, while the state in stable storage is 

preserved (Wojciechowski & Poznan, 1983). In most of the SMR based Paxos variants, process crash 

by stop is assumed. However, Paxos variants like Disk Paxos (Gafani & Lamport, 2002), Fast Paxos 

(Lamport, 2006) and Byzantine Disk Paxos (Abraham et al., 2004) support both fail-stop and fail-

restart. Paxos requires 2f + 1 replicas where f is the number of crash faults. This is because, the system 

should be able to execute a request without waiting for f replicas but receives a quorum of f+1 

responses as they may be crashed and they do not send responses. The protocol must ensure that there 

will be at least one replica that processed the most recent request and which will participate on other 

executions there by guarantees safety. 

 

BFT state machine replication is an efficient and effective way to address arbitrary software and 
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hardware faults. Practical Byzantine Fault Tolerant (PBFT) is such a BFT protocol for state machine 

replication. It uses a combination of primary and backup replicas to order and execute requests. The 

primary is the leader and assigns sequence numbers to requests. Backups check these numbers for 

consistency and monitor the leader to detect crashes or misbehaves. PBFT which requires 3f+1 

replicas where f is the number of Byzantine faults. Consequently, each step of the protocol must be 

processed by at least 2f+1 replicas. The protocol works by client first sending a request to all replicas, 

second by the primary multicasts the request to the backups, third by replicas execute the request and 

send a reply to the client, and finally by the client waits for f+1 matching responses for the request 

and completes the operation (Castro & Liskov, 1999). 

 

All the Byzantine Paxos variants have been derived from their corresponding Paxos variants. For 

instance, Byzantine Paxos (Lamport, 2011) was developed by byzantizing a variant of the ordinary 

Paxos algorithm and BVP (Abraham & Malkhi, 2016) is built from the foundations of Vertical Paxos 

(VP) (Lamport, Malkhi & Zhou, 2009). BFT consensus protocols assure the key properties of 

blockchain such as immutability and auditability (Baliga, 2017). 

 

Comparing PBFT with Paxos, it is clear that besides using f additional replicas, PBFT requires one 

extra communication step where the PREPARE phase is executed for the non-leader replicas to verify 

if the leader has made a consistent proposal in its PRE-PREPARE message. But it is clear that the 

PBFT refines the Byzantine Paxos. i.e. the leader in Byzantine Paxos is the replica called primary in 

PBFT and the Byzantine acceptors in Byzantine Paxos are the backups of PBFT (Lamport, 2011). 

 

Zyzzyva (Kotla et al., 2009) is another BFT state machine replication protocol executed by 3f + 1 

replicas and it is based on three sub protocols i.e. agreement, view change and checkpoint. Agreement 

operates within a sequence of views. In each view a single replica called primary is responsible for 

leading the agreement sub protocol. If the current primary is faulty or the system is running slowly, 

then the view change sub protocol coordinates the election of a new primary or leader. The checkpoint 

sub protocol limits the state that must be stored by replicas and minimises the cost of performing view 

changes. Like other BFT replication protocols, in Zyzzyva, an elected primary server proposes an 

order on client requests to the other server replicas. However, the main difference in Zyzzyva is, its 

replicas immediately execute requests speculatively, without running an expensive agreement 

protocol to establish the order. If the primary is faulty then correct replicas’ states may diverge. 

Hence, they may send different responses to a client. However, Zyzzyva preserves correctness 

because a correct client detects such divergence and avoids acting on a reply until the reply and the 

sequence of preceding requests are stable and guaranteed to eventually be adopted by all correct 

replicas. 

 

Existing BFT protocols have not been able to provide high throughput when faults occur. BFT 

protocols which target high throughput typically use a master server. The master tells the other 

replicas the order in which requests should be processed. If the master is malicious, it can degrade 

the performance of whole system without being detected by correct servers. This problem has been 

addressed by Redundant Byzantine Fault Tolerant protocol (RBFT) which gives more robustness to 

BFT. But RBFT uses more hardware resources as the underlying BFT-SMR protocol is executed f + 

1 times in parallel and it adds the PROPAGATE phase, increasing therefore latency (even during 

failure-free runs) and protocol complexity of the underlying BFT-SMR protocol (Milosevic, 2009). 

Further, the replicas of each protocol instance execute a three-phase commit protocol to order the 

request. Each time a node receives an ordered request from a replica of the master instance, the request 

operation is executed and After the operation has been executed and the node sends a REPLY message 
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to the client that is authenticated with a MAC address. When the client receives f +1 valid and 

matching REPLY from different nodes, it accepts the result of the execution of the request (Aublin, 

Mokhtar & Quema, 2013). 

 

However, a straightforward implementation of Byzantine state machine replication on top of Fast 

Byzantine Paxos (FaB) requires only four rounds of communication. FaB Paxos requires a ≥ 5f +1 

acceptors, p ≥ 3f +1 proposers, and l ≥ 3f + 1 learners; as in Paxos, each process in FaB Paxos can 

play one or more of these three roles. Further, the number of rounds is made to three using tentative 

execution, i.e. learners tentatively execute clients’ requests as provided by the leader before consensus 

is reached. Acceptors send to clients and learners the information required to determine the consensus 

value, so that they can at the same time determine whether their trust in the leader was well placed 

(Martin, 2006). 

BFT systems have additional cost in terms of resources and performance compared with CFT. An 

alternative approach, Cross Fault Tolerant (XFT) (Liu et al., 2016) gives the reliability of CFT SMR 

protocol such as Paxos and Raft. It supports BFT even with the network asynchrony as long as 

majority of replicas are correct and communicate synchronously. 

 

OPTIMISTIC REPLICATION 

There are two approaches to fault-tolerant replication of services (or objects) (Wojciechowski, Kobus 

& Kokocinski, 2012). The first is the replicated state machine (SMR) in which a client request is 

executed on every server. The services must be deterministic: any service replica being in the same 

state always produces the same effect upon the same request. SMR coordinates all servers, so that all 

requests are delivered and processed by every replica in the same order. 

 

The second is transactional replication (TR) based on deferred update (also known as multi-primary 

passive replication). Atomic transactions are used to access critical objects; such objects are replicated 

on every server. The transaction’s atomicity and serializability guarantee that the concurrent 

modifications of object replicas are propagated consistently on every server.  

 

We can identify four phases in both SMR and TR protocols: 1) Sending a client request, 2) Replica 

coordination (in SMR only) 3) Request CPU processing (i.e. local execution), 4) Agreement 

coordination (in TR only) 5) Sending a system response (or answer) (Wojciechowski, Kobus & 

Kokocinski, 2012). 

 

Execution dominated workloads are handled much better when using TR since it can (inherently) 

execute multiple requests concurrently, in contrast to classical SMR. In particular, TR allows higher 

throughput than SMR for read-write requests with a majority of read operations that do not cause 

conflicts (Wojciechowski, Kobus & Kokocinski, 2012). 

 

OPEN SOURCE FRAMEWORKS 

 

JPaxos 

JPaxos (Konczak et al., 2011) is an open source project available at https://github.com/JPaxos/JPaxos 

and is a Java library and runtime system, implementing Paxos for replica coordination. It supports 

the fail-restart model of failure and does not support byzantine faults. Further, many research projects 

have re-used JPaxos, including PaxosSTM for agreement coordination among the replicas.  

 

 

http://www.eajournals.org/


European Journal of Computer Science and Information Technology 

Vol.7, No.3, pp.41-52, June 2019 

            ___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

48 

Print ISSN: 2054-0957 (Print), Online ISSN: 2054-0965 (Online) 

 

Raft 

Raft (Ongaro & Ousterhout, 2014) is more comprehensible SMR and a leader based protocol than 

Paxos and has a variant BFTRaft (Copeland & Zhong, 2014) which supports Byzantine Fault 

Tolerance as well. The software is in the Haskell and is available at 

https://github.com/chrisnc/tangaroa. In Raft, there is only one leader and all the other servers are 

followers. The leader handles all client requests (if a client contacts a follower, the follower redirects 

it to the leader). Raft servers communicate using remote procedure calls (RPCs), it is synchronous 

and it uses timeouts when communicating. In Raft, nodes can accommodate fail re-start.  

 

BFTRaft (Copeland & Zhong, 2014) holds safety and liveness properties of Raft in the presence of 

Byzantine failures, while also aiming towards to Raft’s main goal of simplicity and understandability. 

It is written in Haskell and is available at https://github.com/chrisnc/tangaroa. 

 

Hyperledger 

Hyperledger (Hyperledger Architecture, 2017) is a fast-growing open source project hosted by the 

Linux Foundation, to create enterprise grade and distributed ledger frameworks code bases. 

Hyperledger Fabric (Hyperledger Architecture, 2017) is a foundation for developing applications or 

solutions with a modular architecture as it allows components, such as consensus and membership 

services, to be plug-and-play. In Fabric, Apache Kafka (Apache Kafka, 2017) has been used as a 

reference implementation. Hyperledger Indy (Hyperledger Architecture, 2017) uses RBFT (Aublin, 

Mokhtar & Quema, 2013) as the consensus model and Hyperledger Iroha (Hyperledger Architecture, 

2017) uses a voting-based approach to consensus that provides fault tolerance i.e. CFT and BFT, and 

finality within seconds. Both Hyperledger Indy and Hyperledger Iroha provide Byzantine fault 

tolerance and take more time to reach consensus when there are more nodes exist on the network. 

PoET in Hyperledger Sawtooth (Hyperledger Architecture, 2017) uses a proof-based approach for 

consensus. The advantage of proof-based algorithms is that they can scale to a large number of nodes 

since the winner of the proof proposes a block and transmits it to the rest of the network for validation. 

This provides both scalability and Byzantine fault tolerance. Further, all consensus mechanisms used 

in Hyperledger framework i.e. Indy, Iroha and Sawtooth are leader-based. 

 

Apache Kafka 

Apache Kafka is a distributed streaming platform (Apache Kafka, 2017). The Kafka cluster stores 

streams of records in categories called topics. For each topic, the Kafka cluster maintains a partitioned 

log. A Kafka partition represents a distributed replicated log. i.e. The log for each topic's partition is 

replicated among a configurable number of servers. This is how Kafka ensures the CFT. With a 

majority vote for both the commit decision and the leader election and with 2f+1 replicas, if f+1 

replicas are to receive a message prior to a commit being declared by the leader, and if we elect a new 

leader by electing the follower with the most complete log from at least f+1 replicas, then, with no 

more than f failures, the leader is guaranteed to have all committed messages. Apache Kafka uses a 

different approach to choosing its quorum set. Instead of simple majority vote, Kafka dynamically 

maintains a set of in-sync replicas (ISR) that are eligible to be the leader. A write to a Kafka partition 

is not considered committed until all in-sync replicas have received the write. In practice, to tolerate 

f failures, both the majority vote and the ISR approach will wait for the same number of replicas to 

acknowledge before committing a message. Apache Kafka uses Zookeeper for leader election of 

Kafka Brokers and Topic Partition pairs, to see which brokers are alive, and for topic configuration. 
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Kafka has replication between brokers, but by default it is asynchronous. Thus, it suffers from the 

problems endemic to achieving consistency on top of an asynchronous replication system (Rodeo, 

2016). 

 

Kafka is also not flexible. Kafka suffers significant bottlenecks as the number of queues increase: 

leader reassignment latency increases dramatically and memory requirements increase significantly 

(Rodeo, 2016). The ability to commit without the slowest servers in ISR is impossible. This is 

because, any write to a Kafka partition is not considered committed until all in-sync replicas have 

received the write (Apache Kafka, 2017). 

 

Zookeeper and Zab 

Zookeeper is a primary-backup system where the primary process which executes clients requests. It 

uses Zookeeper atomic broadcast (Zab) to trigger the state changes to backup processes. Zab is a 

crash-recovery atomic broadcast protocol used by Zookeeper. When primary crashes, all backup 

processes execute a recovery protocol to agree on a common consistent state and to elect a new 

primary. To be elected as the new primary, it needs the support of a quorum of processes. Compared 

to Paxos, Zab has an additional phase called synchronization. Any elected leader tries to become 

established by executing a read phase as known as discovery phase which is followed by a 

synchronization phase. Once synchronization phase is done, Zab executes a write phase which is 

similar to the Paxos (Junqueira, Reed & Serafini, 2011). 

 

etcd 

etcd is a distributed coordination framework like Zookeeper whose main focus is to provide 

distributed consensus. It is a distributed and reliable key-value store which uses the Raft consensus 

algorithm to manage a highly-available replicated log. The etcd’s data model and client protocol is 

incompatible with Zookeeper applications. This problem has been addressed by zetcd which is a 

proxy which sits in front of an etcd cluster and under the hood, zetcd translates Zookeeper’s data 

model to fit etcd APIs. This allows unmodified Zookeeper applications to run on top of etcd. The 

source code for both etcd and zetcd can be found at https://github.com/etcd-io/etcd and 

https://github.com/etcd-io/zetcd respectively. 

 

piChain 

piChain (Burchert & Wattenhofer, 2018) is an open source RSM library which supports CFT only 

and which is for replicated state machines. It inherits features of Paxos and features of a blockchain 

to provide both consistency and simplicity. piChain does not have an explicit leader election 

subroutine as in Raft and it provides scalability and availability. 

 

CONCLUSIONS 

Distributed consensus can be implemented in two ways, through the use of proof-based schemes or 

through the use of voting-based methods such as State Machine Replication (SMR) and Transactional 

Replication (TR). Voting based consensus is applicable to closed systems and is expected to tolerate 

both Byzantine faults and Crash faults. Paxos is a well-known core consensus protocol used in 

Replicated State Machines and its liveness is guaranteed under weak synchrony assumptions, i.e. it 

requires a majority of non- faulty processes to ensure progress. A majority of Paxos variants which 

support either CFT or BFT or both are leader based. As the designated leader is a single point of 

failure and a bottleneck, the system throughput is limited by the leader's resources. The message 

overhead is significant in voting-based algorithms and it becomes worse when it tries to support 

Byzantine fault tolerance which results in poor scalability. As per the FLP theorem, termination 
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cannot be guaranteed in asynchronous deterministic algorithms in the presence of even one faulty 

process. This impossibility has been overcome through weak asynchrony assumptions to ensure the 

termination deterministically or by using randomized methods. Achieving all three features, i.e. being 

leaderless, asynchronous and BFT seemed to be an impossible task deterministically. 
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