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ABSTRACT: This work compared the performance of the Box-Jenkins and time series 

regression models. The two methods were theoretically presented. Data was also 

collected for fitting the models. Three test measures were used for the comparative 

analysis. The results showed that the time series regression model performs better than 

the Box-Jenkins model. 
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INTRODUCTION 

In recent times, time series modelling and forecasting have proven to have fundamental 

importance in practical domains. Due to this, researches are intensified and geared 

towards developing and improving methodologies that can give accuracy and efficiency 

of the modelling process. Two of such methodologies are the Box-Jenkins and the Time 

Series Regression Methods. The aim of time series analysis is to use the past 

observations to develop and appropriate model that describes the underlying structure 

of the series for the prediction of future. This can be achieved by using any of the 

aforementioned methods. 

Hejase and Assi (2012) established a weather model for the United Arab Emirate (UAE) 

using 10 years weather data. The research employed various models like classical 

empirical models, artificial neural network models, and time series regression models 

with autoregressive integrated moving average (ARIMA) models. The work used time 

series regression to model the mean daily and monthly global solar radiation for the city 

of Al-Ain. The Analysis was shown to yield accurate average long-term prediction 

performance of solar radiation in Al-Ain. The low corresponding values of mean bias 

error (MBE), mean absolute bias error (MABE), mean absolute percentage error 

(MAPE), and root-mean-square error (RMSE) confirmed the adequacy of the obtained 

model for long-term prediction of GSR data in Al-Ain, UAE. 

 Bhaskaram  et al (2013) investigated the short term associations between exposures 

such as air pollution, weather variables or pollen, and health outcomes such as 

mortality, myocardial infection or disease-specific hospital admissions. Typically, for 

both exposure and outcome, data were available at regular time intervals and the aim 

was to explore the short-term associations between them. General features of time series 

data were outlined and real focus was made on time series regression that differ from 
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other regression methods. Short term fluctuations were modelled in the presence of 

seasonal and long-term patterns, dealing with time varying confounding factors and 

lagged associations between exposure and outcome. The result showed that time series 

regression is no different from regression techniques used in other areas. 

 Imai et al (2015) presented a time series regression approach to obtain potential 

solutions for five issues arising in changes in immune population, strong 

autocorrelations, a wide range of plausible lag structures and association patterns, 

seasonality adjustments and large over dispersion. The approach was illustrated with 

cholera, rainfall, influenza and temperature data sets. Modifications were made to 

standard time series regression practice using sums of past cases as proxies for the 

immune population and logarithm of lagged disease counts to control autocorrelation. 

The results showed that time series regression may be used to investigate the 

dependence of infectious disease on weather but are likely to require modifying to allow 

for certain features. 

Tebb et al (2015) provided an introduction to time series methodologies that is oriented 

toward issues within psychological research. This was accomplished by first 

introducing the basic characteristics of time series data. Various time series regression 

models were explicated to achieve a wide range of goals. The paper described how 

regressive techniques and autoregressive integrated moving average models can be 

combined in a dynamic regression model that can simultaneously explain and forecast 

a time series variable. Thus, the paper seeks to provide an integrated resource for 

psychological researchers interested in analysing time series data. 

 

In this work, however, we shall compare the performance of the time series regression 

model with the more popular Box and Jenkins model. 

         

METHODOLOGY 

 

Time Series Regression 

The time series regression technique uses the general 𝑝th-order polynomial trend model 

of the form: 

                        𝑋𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + ⋯ + 𝛽𝑝𝑡𝑝 + 𝜀𝑡                             (1) 

The above expression (1) is a function of time  ; where 𝑡 ∈ 𝑇 , 𝑡 = ±1, ±2, ±3, … and  

𝜀𝑡 is a white noise process. 

         If there is no trend in the time series; then there is no long run growth or decline 

in the time series over time; hence  

                        𝑋𝑡 = 𝛽0 
Equation (1) can be estimated by 

                      𝑋�̂� = 𝛽0̂ + 𝛽1̂𝑡 + 𝛽2̂𝑡2 + ⋯ + 𝛽�̂�𝑡𝑝 

and 

                           𝜀�̂� = 𝑋𝑡 − 𝑋�̂�  
 

Linear Trend 

This indicates a straight line long run growth or decline over time and is represented 

by: 
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                     𝑋𝑡 = 𝛽0 + 𝛽1𝑡 + +𝜀𝑡                                                             (2) 

The increasing or decreasing nature of the time varying function is indicated by the sign 

of  𝛽1 which is either greater than or less than 0. 

 

Other Trends 

          If  𝑝 = 2, we have the quadratic trend given by 

                      𝑋𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡2 + 𝜀𝑡                                                   (3) 

This gives a quadratic or curve linear long run change over time. 

 

          Other trends can also be observed in time series for 𝑝 ≥ 3 with one or more 

reversals in curvature. 

          Any time series 𝑋𝑡 showing any of these trends can be modelled using the 

appropriate polynomial function of time 𝑡. 

 

Box and Jenkins Method 
          The Box and Jenkins method use models such as Autoregressive (AR), Moving 

Average (MA), Mixed Autoregressive-Moving Average (ARMA) models. For a non-

stationary series, the time series has to be made stationary by some transformation 

methods and the model is identified by examining the behaviour of the Autocorrelation 

function (ACF) and Partial Autocorrelation function (PACF). 

 

Autoregressive (AR) Model 

An autoregressive process model of order 𝑝 denoted by 𝐴𝑅(𝑝) is given as: 

             𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝 + 𝜀𝑡                                    (4) 

where, 

                   𝑥𝑡 = 𝑋𝑡 − 𝜇 

and 𝜙1, 𝜙2, … , 𝜙𝑝 are the unknown parameters to be estimated in the model. 

Expression (4) can be represented as: 

                     (1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝)𝑥𝑡 = 𝜀𝑡   

                 ⟹ 𝜙𝑝(𝐵) = 𝜀𝑡  

where, 

             𝜙𝑝(𝐵) = (1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝) 

 

Moving Average (MA) Models 

     A moving average model of order 𝑞 denoted 𝑀𝐴(𝑞) is expresed as: 

             𝑥𝑡 = 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞                                    (5) 

       where, 

                   𝑥𝑡 = 𝑋𝑡 − 𝜇 

and  {𝜀𝑡} is a zero mean white noise process with constant variance. 

Expression (5) can be written: 

                    𝑥𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞)𝜀𝑡 

                          ⟹ 𝑥𝑡 = 𝜃𝑞(𝐵)𝜀𝑡  

where, 

             𝜙𝑞(𝐵) = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞) 
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Mixed Autoregressive – Moving Average Process (Model) 

       A combination of  𝐴𝑅(𝑝) and  𝑀𝐴(𝑞) results in the mixed autoregressive – moving 

average time series model of order (𝑝, 𝑞) denoted as  𝐴𝑅𝑀𝐴(𝑝, 𝑞). 

  

This is represented as: 

   𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜙2𝑥𝑡−2 + ⋯ + 𝜙𝑝𝑥𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞   (6)      

       ⟹ (1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ − 𝜙𝑝𝐵𝑝)𝑥𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞)𝜀𝑡 

                                       ⟹ 𝜙𝑝(𝐵)𝑥𝑡 = 𝜃𝑞(𝐵)𝜀𝑡 

 

Autoregressive Integrated Moving Average (ARIMA) Models 

            For a non-stationary time series to be stationary, it has to be differenced 𝑑 times. 

Thus, given a non-stationary series 𝑋𝑡, we can fit the 𝑑th difference: 

                              𝑥𝑡 = ∇𝑑𝑋𝑡         

to a stationary ARMA model; where   ∇= 1 − 𝐵 and 𝐵𝑚𝑋𝑡 = 𝑋𝑡−𝑚. The result gives 

rise to an ARIMA model denoted as 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞); where 𝑝 is the order of 

autoregression (𝐴𝑅), 𝑑 is the degree of differencing and 𝑞 is the order of moving 

average. 

            In general, the  𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model is expressed as: 

                     𝜙(𝐵)∇𝑑𝑋𝑡 = 𝜙(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = 𝜑(𝐵)𝑋𝑡 = 𝜃(𝐵)𝜀𝑡               (7)                         

where, 

         𝜑(𝐵) = 𝜙(𝐵)∇𝑑= 𝜙(𝐵)(1 − 𝐵)𝑑 = (1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑𝑝+𝑑𝐵𝑝+𝑑)  

  ⟹ (1 − 𝜑1𝐵 − 𝜑2𝐵2 − ⋯ − 𝜑𝑝+𝑑𝐵𝑝+𝑑)𝑋𝑡 = (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞)𝜀𝑡 

  ⟹ 𝑋𝑡 = ∑ 𝜑𝑗𝑋𝑡−𝑗
𝑝+𝑑
𝑗=1 + 𝜀𝑡 − ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞
𝑗=1                                                    (8) 

 

White Noise Process 

          A process {𝜀𝑡} is said to be a white noise process with mean 0 and variance 𝜎𝜀
2  

written {𝜀𝑡}~𝑊𝑁(0, 𝜎𝜀
2 ),  if it is a sequence of uncorrelated random variables from a 

fixed distribution. A well fitted model is expected to follow a white noise process.  

 

 

Autocovarance 

            The autocovariance at lag 𝑘 denoted 𝛾𝑘 is defined by:           

                   𝛾𝑘 = 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡+𝑘) = 𝐸[(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑘 − 𝜇)]  
 

Autocorrelation  

           The autocorrelation at lag 𝑘 denoted by 𝜌𝑘  is defined as:                   

              𝜌𝑘 =
𝐶𝑜𝑣(𝑋𝑡,𝑋𝑡+𝑘)

√[𝑉𝑎𝑟(𝑋𝑡)][𝑉𝑎𝑟(𝑋𝑡+𝑘)]
=

𝐸[(𝑋𝑡−𝜇)(𝑋𝑡+𝑘−𝜇)]

√{𝐸[(𝑋𝑡−𝜇)2]}{𝐸[(𝑋𝑡+𝑘−𝜇)2]}
 

 

Autocorrelation Function(ACF) 

  The autocorrelation function  {𝜌𝑘} of  {𝑋𝑡} is the plot of 𝜌𝑘 against the lag 𝑘.       For 

a white noise process, the autocorrelation function of the residual is expected to lie 

within ± 2 √𝑁⁄  .  
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Partial Autocorrelation 

 Is the conditional correlation between 𝑋𝑡 and  𝑋𝑡+𝑘 after their mutual linear 

dependency on the intervening variables  𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑘−1 has been removed.  

 

Partial Autocorrelation Function(PACF) 

       The partial autocorrelation function  {𝜙𝑘𝑘} of  {𝑋𝑡} is a plot of the partial 

autocorrelations against the lag 𝑘. 

Model Evaluation 

 After fitting the Time Series Regression and the Box-Jenkins models and 

confirming the adequacy of the models; a comparative study between the two 

approaches shall be based on the following statistics: 

 

 (i) The Mean Square Error (MSE)  

             𝑀𝑆𝐸 =
1

𝑁
∑ (X𝑖 − �̂�𝑖)

2𝑁
𝑖=1                                                                                                                 

(ii)  The mean absolute error (MAE)    

               𝑀𝐴𝐸 =
1

𝑁
∑ │𝑁

𝑖=1 X𝑖 − �̂�𝑖│         

(iii)  The mean absolute percentage error (MAPE)  

           𝑀𝐴𝑃𝐸 = [
 1

𝑁
∑ |

X𝑖−�̂�𝑖

X𝑖
|𝑁

𝑖−1 ] × 100                             

 

Data Analysis 

The data used in this work is the average daily sales per month in Dollars from Wimpey 

Supermarket in Port Harcourt, Nigeria. The data is displayed in the Appendix of this 

work. 

 

Regression Method (RM) 

 
The regression equation is 

Xt = 2206 + 7.30 t 

 

 

Predictor     Coef    SE Coef       T      P 

Constant    2206.20     7.86     280.69  0.000 

t           7.2983      0.3705    19.70  0.000 

 

 

S = 23.0903   R-Sq = 91.9%   R-Sq(adj) = 91.7% 
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Time Series Plot of Residual and Its Autocorrelation Function of the RM  
 

 
 

         Figure 1: Time Series Plot of the Residual from the RM 

 

 

 
 

 Figure 2:  Autocorrelation function of the Residual from RM 
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The plot of the residual shows that the residual follows a white noise process and the 

residual autocorrelation function contains no spike. Hence, the fitted model is adequate.  

 

Box and Jenkins Method (BJM) 

Raw Data Plot 

          The raw data plot of the sales is shown in figure 3 below: 

 

 
                              

      Figure 3: Time series plot of the average daily sales per month in Dollars 

 

Stationary plot of the Data 
 

Figure 3 clearly indicates that the series is non-stationary and requires differencing of 

the form:  𝐷𝑋𝑡 = 𝑥𝑡 = 𝑋𝑡 − 𝑋𝑡−1 to obtain stationarity. The result of the stationary 

series is as shown in the following plot. 
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  Figure 4: Differenced Series Plot of  𝑋𝑡  

 

By mere inspection, the differenced series is stationary and the Box-Jenkins method 

can now be applied.  

 

Model Identification 

Autocorrelation and Partial Autocorrelation 

           As shown in figures 5 and 6 below, the autocorrelation function of 𝐷𝑋𝑡 declines 

exponentially to 0 while the partial autocorrelation function cut off after lag 1. This 

suggest a tentative model of ARIMA(1, 1, 0) which can be expressed as: 

 

                        𝑥𝑡 = 𝜙1𝑥𝑡−1 + 𝜀𝑡                                                            (9) 
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Figure 5: Autocorrelation Function Plot for 𝐷𝑋𝑡 

 

 
               Figure 6: Partial Autocorrelation Function Plot for 𝐷𝑋𝑡 
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Residual Analysis 

 

Time Series Plot of the Residual 
          The residual obtained from the fitted [ARIMA(1,1,0)] model is shown below 

(figure 7). The plot shows that the residual follows a white noise process, indicating a 

good fit. 

 

 

 

 
                       Figure 7: Time Series Plot of the Residual from BJM 

 

 

 

Autocorrelation Function of the Residual 

         Figure 8 shows no spike in the autocorrelation function plot. This indicates that 

the fitted model is adequate. 
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Figure 8: Autocorrelation Function of the Residual from BJM 

 

Conclusion: Since in BJM, both the residual plot and its autocorrelation function fulfils 

the assumption of Model adequacy; we conclude that the fitted model in expression (9) 

is adequate. The fitted model is: 

 

                             𝑥𝑡 = 0.34𝑥𝑡−1 + 𝜀𝑡 
 

 

Comparative Performances of the Estimated Models 

By our analysis, the two competing models (RM and BJM) have been found to be 

adequate. The next step involves fishing out the most preferred models. This will be 

achieved by subjecting the two models to the model evaluation test described in the 

methodology. The evaluation involves comparing the values of the different types of 

errors incurred by the models. The results are tabulated in 1 table below. 
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Table 1: Error Comparison Table between RM and BJM Models 

Model MSE MAE MAPE 

Time Series 

Regression 

5.124 3.152 7.492 

Box-Jenkins 

Method 

7.428 5.451 7.723 

 

As seen in the above table, the time series regression model (RM) incurs less error than 

the Box-Jenkins model (BJM) in all the test measures. Hence, the time series regression 

model is the most preferred. 

 

CONCLUSION 

  

Despite the newness and complexity of the Box and Jenkins method of analysing time 

series, the old time series regression models still exhibit superiority over the modern 

Box-Jenkins models. This is clearly shown by the result of the above test measures. 
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APPENDIX :  Average Daily Sales per month in Dollars  

Source:  Wimpey Supermarket, Port Harcourt, Nigeria.  

 

S/N  S/N  S/N  S/N  S/N  S/N  

1 2195 7 2290 13 2296 19 2363 25 2413 31 2426 

2 2209 8 2262 14 2276 20 2386 26 2426 32 2406 

3 2201 9 2258 15 2305 21 2354 27 2405 33 2440 

4 2245 10 2256 16 2308 22 2397 28 2419 34 2408 

5 2238 11 2261 17 2356 23 2398 29 2423 35 2448 

6 2267 12 2288 18 2393 24 2400 30 2408 36 2460 

 

 

 

                     

 

 


