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ABSTRACT: This paper addresses the challenges of estimation of population mean for small or 

no sample size in the presence of nonresponse and presents a calibration estimator that produces 

reliable estimates under stratified random sampling from a class of synthetic estimators using 

calibration approach. Examining the alternative estimator under three distributional assumptions, 

namely, normal, gamma, and exponential distributions through a simulation analysis with average 

absolute relative bias, average coefficient of variation, and average mean squared error as 

evaluation criteria, the results show that it has a consistent estimates of the mean with less bias 

and greater gain in efficiency. Further validation through the coefficient of variation also shows 

that the estimator exhibits a more preferred coefficient of variations suitable for small area 

estimation.  
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INTRODUCTION   

The use of synthetic estimators in small area estimation (SAE) has become one popular technique 

in small area estimation. This is so because it could produce reliable estimates when there are small 

or no sample observation in areas of interest as was first examined in 1968 by National Center for 

Health Statistics (NCHS) of the United States of America. This essential property of the synthetic 

estimators has made it so attractive in SAE unlike the direct estimators that are based on the sample 

information obtained from the area of interest which are not reliable due to lack of effective sample 

size in areas of interest. This indirect method of estimation has also been applied in the estimation 

of mean income of family, the average production of crops in blocks, and number of unemployed 

persons in the councils, among others.  

Although synthetic estimation technique has been adopted by different authors like Gonzalez 

(1973), Sarndal (1981), Sarndal, Swensson and Wretman (1992), and Marker (1999) to 

compensate for the challenges of small sample sizes in SAE, and the use of calibration weights as 
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a means of improving the precision (Rao, 2003; Lundstrom and Sarndal,1999, 2001;  Sarndal and 

Lundstrom, 2005, 2008; Sarndal, 2007; Lehtonen et al., 2003; Kott, 2006; Lehtonen and Veijanen, 

2012; Lehtonen and Veijanen, 2015; Pfeffermann, 2013; Rota and Laitila, 2015; Rao and Molina, 

2015 and Rota, 2016),  the challenge of small or no sample size in the presence of nonresponse 

still remains a gap in the literature.  

Deville and Sarndal (1992) earlier introduced the calibration estimation approach with distance 

function to account for the auxiliary information in the estimation, a method often refers to as 

“creating estimators by bench marking the auxiliary information to external controls”. Thereafter, 

Lundstrom and Sarndal (1999, 2001), posited that the distance measure proposed by Deville and 

Sarndal is not effective in addressing the dual problem of small sample size and nonresponse in a 

domain of interest (Guisti and Rocco, 2013 advocated for an estimator that could address the dual 

problem of small sample size in the presence of nonresponse in a domain of interest.). After a 

study by Hidiroglou and Estavao (2014) showed that calibration estimators performed poorly when 

sample sizes become very small but more efficient as sample size increased, whereas, synthetic 

estimator become more effective at domains with small sample sizes, Andersson (2017) proposed 

a new distance measure for calibration weight to bridge the gap of “how close the calibration 

weight is to the design weight under nonresponse”.  

Following the works of Lundstrom and Sarndal (1999, 2001) and Anderson (2017), this paper 

proposes an alternative synthetic estimator that addresses the limitations in the previous studies 

using calibration approach.  

THEORETICAL UNDERPINNING 

Consider a finite population 𝑈 = 1,2, . . . , 𝑁 consisting of  𝑁units. The population can be divided 

into 𝐷 -nonoverlapping domains 𝑈𝑑, 𝑑 = 1,2, . . . , 𝑁𝑑 units such that ∑ 𝑁𝑑 = 𝑁𝑑 . Let the 

population be further partition into 𝐺 -nonoverlapping groups (considered to be strata) which are 

considered to be larger than the domains 𝑈𝑔, 𝑔 = 1,2, . . . , 𝐺 consisting of 𝑁𝑔units such that 

∑ 𝑁𝑔𝑔 = 𝑁. The case considered here occurs when the 𝐺 - groups cut across the 𝐷 -domains to 

form a grid of 𝐷𝐺cells denoted by 𝑈𝑑𝑔, 𝑑 = 1,2, . . . , 𝐷, 𝑔 = 1,2, . . . , 𝐺. 

Let 𝑁𝑑𝑔be the size of the 𝑈𝑑𝑔such that 𝑁 = ∑ 𝑁𝑑 = ∑ 𝑁.𝑔 = ∑ ∑ 𝑁𝑑𝑔𝑑𝑔𝑔𝑑 . The sample s is 

analogously partitioned into domain subsamples 𝑆𝑑, group subsamples 𝑆.𝑔 and cells subsamples 

𝑆𝑑𝑔with sizes 𝑛𝑑 , 𝑛.𝑔 and 𝑛𝑑𝑔 respectively, such that 𝑛 = ∑ 𝑛𝑑𝑑 = ∑ 𝑛.𝑔𝑔 = ∑ ∑ 𝑛𝑑𝑔𝑑𝑔 .  

Supposed that 𝑌be the study variable, which values 𝑦𝑑𝑔𝑘are known for just the element of a 

sample, s, of the 𝑘𝑡ℎunit in the (𝑑𝑔)𝑡ℎcell, where 𝑘 = 1,2, . . . , 𝑁𝑑𝑔 ( the number of population 

units in the (𝑑𝑔)𝑡ℎ cell), and 𝑋 be auxiliary variable,  which values 𝑥𝑑𝑔𝑘 > 0 may or may not be 

known for all units in 𝑈. Then, each 𝑘𝑡ℎ unit has an inclusion probability 𝜋𝑘 = 𝑃(𝑘 ∈ 𝑠)with 

design weight 𝑑𝑘 = 𝜋𝑘
−1 and a stratum weight 𝑊𝑑𝑔 = 𝑁𝑑

−1𝑁𝑑𝑔.  
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For different reasons, there are missing units in the sample, s. If we further denote the response set 

by r, and instead of the original sample size, s, we receive complete response for 𝑛_𝑟, then, the 

response probability 𝑃(𝑘 ∈ 𝑠_𝑟 |𝑘 ∈ 𝑠), where 𝑠_𝑟 ⊂ 𝑠, is a responded sample.  

Now, let us consider the following estimators for domain estimation in the presence of 

nonresponse: 

a. domain estimator of population mean in the presence of unit nonresponse (direct estimation): 

Sarndal, Swensson and Wretman (1992), suggested an estimator under nonresponse in estimating 

domain population mean �̄�𝑑 =
1

𝑁𝑑
∑ ∑ 𝑌𝑑𝑔𝑘𝑘𝑔 as: 

�̂̄�𝑑𝑟 =
1

𝑁𝑑
∑ ∑

𝑑𝑘

𝜃𝑘
𝑦𝑑𝑔𝑘𝑘∈𝑠𝑟𝑔          (1) 

where 𝜃𝑘is the influence probability of inclusion due to nonresponse. Equation (1) is an extension 

of the basic Horvitz-Thompson estimator to a selection in two phases.  

b. calibration estimator of population mean in the presence of unit nonresponse(calibration 

approach): 

 

Lundstrom and Sarndal (1999, 2001) proposed a single step weighting scheme through calibration 

approach as an improvement to Equation (1) for estimating the domain population mean in the 

presence of nonresponse as: 

�̂̄�𝑑 = ∑ 𝑃𝑑𝑔𝑠𝑟
�̄�𝑑𝑔          

 (2) 

where 𝑃𝑑𝑔 is the calibration weights formed to be as ‘close as possible’ to the basic stratum weights 

𝑊𝑑𝑔 in stratified random sampling at the two levels of information which satisfy the calibration 

equations. 

 

When information is available at the population level of the auxiliary variable, the calibration 

weight becomes 𝑃𝑑𝑔 = 𝑊𝑑𝑔𝑣𝑘  and the calibration estimator in equation (2) becomes 

�̂̄�𝑑𝑈 = ∑ 𝑊𝑑𝑔𝑣𝑘𝑈𝑠𝑟
�̄�𝑑𝑔         

 (3) 

where 𝑣𝑘𝑈 = 1 + 𝑞𝑑𝑔(∑ �̄�𝑑𝑔𝑈𝑑
− ∑ 𝑊𝑑𝑔�̄�𝑑𝑔𝑠𝑟

)(∑ 𝑊𝑑𝑔𝑞𝑑𝑔�̄�𝑑𝑔
2

𝑠𝑟
)

−1
�̄�𝑑𝑔 

Equation (1) was compared to Equation (3) by assuming that 𝑣𝑘𝑈 =
1

𝜃𝑘
. However, when 

information on the population of the auxiliary variable is unknown, the calibration estimator was 

obtained as:  

�̂̄�𝑑𝑠 = ∑ 𝑊𝑑𝑔𝑣𝑘𝑠𝑠𝑟
�̄�𝑑𝑔         

 (4)  

where 𝑣𝑘𝑠 = 1 + 𝑞𝑑𝑔(∑ 𝑊𝑑𝑔�̄�𝑑𝑔𝑠 − ∑ 𝑊𝑑𝑔�̄�𝑑𝑔𝑠𝑟
)(∑ 𝑊𝑑𝑔𝑞𝑑𝑔�̄�𝑑𝑔

2
𝑠𝑟

)
−1

�̄�𝑑𝑔 
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The estimators in equations (3) and (4) are very unstable with small sample size. More so when 

the domain of interest has no sample unit it becomes difficult (if not impossible) to be computed 

given that they are modified direct estimators.  

METHODOLOGY 

Let us start by considering a synthetic estimator using the Lundstrom and Sarndal (1999, 2001).   

Lemma: Supposed that preference is given to the groups as a powerful factor in explaining 

individual variation of  elements within groupsg’s (g = 1,2, . . . , G) considered to be homogeneous 

for small area d’s (d = 1,2, . . . , D)  under stratified sampling. Let the groupsg’s (g = 1,2, . . . , G) 

be similar for small area d’s (d = 1,2, . . . , D) 

under stratified sampling. Then, the Lundstrom and Sarndal (1999, 2001) could be modified to 

obtain a calibration synthetic estimator for population mean in small area in the presence of 

nonresponse as follows:  

(i) �̂̄�𝑑𝐶𝑈
∗ = ∑ 𝑊𝑑𝑔𝜗𝑘𝑈𝑠𝑟

�̄�.𝑔  (when information from the auxiliary variable is available at the 

population level), where   𝜗𝑘𝑈 = 1 + 𝑞𝑑𝑔(∑ �̄�.𝑔𝑈𝑑
− ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠𝑟

)(∑ 𝑊𝑑𝑔𝑞𝑑𝑔�̄�.𝑔
2

𝑠𝑟
)

−1
�̄�.𝑔, for 𝑔 ∈

𝑠𝑟 
 and, 

 (ii) �̂̄�𝑑𝐶𝑆
∗ = ∑ 𝑊𝑑𝑔𝜗𝑘𝑠𝑠𝑟

�̄�.𝑔 ( when information from the auxiliary variable is only available at the 

sample level), where 𝜗𝑘𝑠 = 1 + 𝑞𝑑𝑔(∑ 𝑊𝑑𝑔�̄�.𝑔𝑠 − ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠𝑟
)(∑ 𝑊𝑑𝑔𝑞𝑑𝑔�̄�.𝑔

2
𝑠𝑟

)
−1

�̄�.𝑔 

Proof:  Let the calibration synthetic estimator �̂̄�𝑑𝐶
∗  be given as  

�̂̄�𝑑𝐶
∗ = ∑ 𝑊𝑑𝑔

∗
𝑠𝑟

�̄�.𝑔          (5) 

where �̄�.𝑔 = ∑ ∑
𝑦𝑑𝑔𝑘

𝑛.𝑔
𝑘𝑑 , 𝑛.𝑔 = ∑ 𝑛𝑑𝑔𝑑 and 𝑊𝑑𝑔

∗   the chosen calibration weights  such that the chi-

square type distance measure:  

𝛷 = ∑
(𝑊𝑑𝑔

∗ −𝑊𝑑𝑔)
2

𝑊𝑑𝑔𝑞𝑑𝑔
𝑠𝑟

           (6) 

 is minimized, while satisfying the calibration constraints: 

∑ 𝑊𝑑𝑔
∗ �̄�.𝑔 = ∑ �̄�.𝑔𝑈𝑑𝑠𝑟

          (7) 

and, 

∑ 𝑊𝑑𝑔
∗ �̄�.𝑔 = ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠𝑠𝑟

         

 (8)    

Case 1: Availability of information for auxiliary variable at the population level 
Assume that information from the auxiliary variable is available at the population level, Info-U: 

then minimizing the distance function in (6) subject to the calibration constraint in (7) will give 

the following calibration weights; 
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𝑊𝑑𝑔
∗ = 𝑊𝑑𝑔𝜗𝑘𝑈          

 (9) 

substituting (9) in (5) will give 

�̂̄�𝑑𝐶𝑈
∗ = ∑ 𝑊𝑑𝑔𝜗𝑘𝑈𝑠𝑟

�̄�.𝑔         

 (10) 

where 𝜗𝑘𝑈 is as earlier defined 𝜗𝑘𝑈 = 1 + 𝑞𝑑𝑔(∑ �̄�.𝑔𝑈𝑑
− ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠𝑟

)(∑ 𝑊𝑑𝑔𝑞𝑑𝑔�̄�.𝑔
2

𝑠𝑟
)

−1
�̄�.𝑔 

 

Case 2:  Non-availability of information for the auxiliary at the population level of the domain 

Suppose that there is no information on the population mean of the auxiliary variable in the 

domain, calibration can be done on the unbiased estimate ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠 . Here, minimizing the 

distance measure in (6) subject to the calibration constraint in (8) will result in the calibration 

weights: 

𝑊𝑑𝑔
∗ = 𝑊𝑑𝑔𝜗𝑘𝑠          

 (11) 

and substituting (11) in (5) will result in a new estimator under Info-S as follows: 

�̂̄�𝑑𝐶𝑆
∗ = ∑ 𝑊𝑑𝑔𝜗𝑘𝑠𝑠𝑟

�̄�.𝑔         

 (12) 

where 𝜗𝑠𝑘 is as earlier defined as 𝜗𝑘𝑠 = 1 + 𝑞𝑑𝑔(∑ 𝑊𝑑𝑔�̄�.𝑔𝑠 − ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠𝑟
)(∑ 𝑊𝑑𝑔𝑞𝑑𝑔�̄�.𝑔

2
𝑠𝑟

)
−1

�̄�.𝑔

   

Note:  Athough the estimators in equations (10) and (12) are useful in areas where there are 

small/no sample sizes, they are biased when there is small sample size and nonresponse.  

New Calibration Estimator with Alternative Weights for Small Area in the presence of 

Nonresponse.  

Here, we proposed a new estimator with alternative distance measure and a new design weight 𝑑𝑘
∗  

(which is the product of the original design weight 𝑑𝑘and the inverse of the nonresponse influence 

probability �̂� ) for the estimation of population mean �̄�𝑑 to resolve the challenges of biasness and 

higher mean square error due to small sample size and nonresponse in small area estimation. 

Proposition: Let the estimator of population mean for small area in the presence of nonresponse 

beŷ̄dr =
1

Nd
∑ ∑

dk

θk
ydgkk∈srg ,then, an alternative estimator ŷ̄dr

o = X̄d
TB̂drc that can produce reliable 

estimates under stratified random sampling can be obtained  by defining a new design weight and 

calibrating on an alternative distance measure  ∑
(𝑊𝑑𝑔

𝑜 −𝑊𝑑𝑔)
2

𝑊𝑑𝑔(𝑊𝑑𝑔−1)𝑠𝑟
.  

Proof: Recall the influence probability𝜃𝑘in equation (1), and let the estimate of its inverse be given 

as �̂� =
1

�̂�𝑘
=

𝑛𝑑𝑔

𝑛𝑟
, then one can obtain a new design weight under nonresponse for the distance 

minimization as:  

𝑑𝑘
∗ = 𝑑𝑘�̂�           (13)    

and under stratified sampling, equation (1) can be written as: 
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�̂̄�𝑑𝑟
∗ =

1

𝑁𝑑
∑ ∑ 𝑑𝑘

∗ 𝑦𝑑𝑔𝑘

𝑘∈𝑠𝑟𝑔

 

�̂̄�𝑑𝑟
∗ = ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠𝑟

          

 (14)   Thus, the estimator for the population mean using calibration approach is given as:  

�̂̄�𝑑𝑟
0 = ∑ 𝑊𝑑𝑔

0 �̄�.𝑔𝑠𝑟
          

 (15) 

where 𝑊𝑑𝑔
𝑜 is the chosen calibration weight such that the distance function: 

𝛷 = ∑
(𝑊𝑑𝑔

𝑜 −𝑊𝑑𝑔)
2

𝑊𝑑𝑔(𝑊𝑑𝑔−1)𝑠𝑟
          (16) 

is minimized subject to the calibration constraint: 

∑ 𝑊𝑑𝑔
𝑜 �̄�.𝑔 = ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠𝑠𝑟

         

 (17) 

and the calibration weights obtained as: 

𝑊𝑑𝑔
𝑜 = 𝑊𝑑𝑔�̄�.𝑔

2 (∑ 𝑊𝑑𝑔𝑠𝑟
�̄�.𝑔

2 )
−1

�̄�𝑑        

 (18) 

given that ∑ 𝑊𝑑𝑔�̄�.𝑔𝑠 = �̄�𝑑.  

 

Substituting (18) in (15) gives a new calibration estimator for small area in the presence of 

nonresponse as   

�̂̄�𝑑𝑟
𝑜 = �̄�𝑑�̂�𝑑𝑟𝑐           (19) 

Equation (19) takes the form of the global regression-synthetic estimator of the population mean 

for small area, (see, for example, Rao, 2003), where  

�̂�𝑑𝑟𝑐 =
∑ 𝑊𝑑𝑔�̄�.𝑔�̄�.𝑔𝑠𝑟

∑ 𝑊𝑑𝑔�̄�.𝑔
2

𝑠𝑟

          (20) 

FINDINGS AND DISCUSSION 

In this section, empirical investigation is carried out using simulation analysis in R. The procedure 

of population generation and sample selection for different sample settings in the simulation 

analysis is adopted from Hidiroglou and Estevao (2014). However, three different probability 

distributions are considered, namely; normal, gamma, and exponential distributions.  

Findings:  

First, bivariate observations (𝑥𝑖𝑗, 𝑦𝑖𝑗) were generated which comprised finite population of size 

4950 units. A population, 𝑈, was created by generating data for three separate subpopulations 

termed groups (strata) with different intercepts and slopes. Group1 was split into ten cells 

𝑈11, . . . , 𝑈110;  Group 2  into ten cells, 𝑈21, . . . , 𝑈210; and Group 3 into ten cells, 𝑈31, . . . , 𝑈310. The 

population were further partitioned into ten domains 𝑈1, . . . , 𝑈10 with the groups larger than the 

domains and cut across the domains, forming a total of thirty grids that were mutually exclusive 
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and exhaustive. The number of units in each cell, 𝑁𝑑𝑔 were allocated in a monotonic manner: cell 

𝑈11 with 20 units; cell 𝑈12 with 30 units; and cell 𝑈310 with 310 units. 

The values of 𝑥 in each group were generated from three different distributions: Gamma 

(𝛼 = 5, 𝛽 = 10), Normal (5,1) and Exponential (1.5) distributions. Then the simulation for the 

variable of interest 𝑦 was obtained using the model 𝑦𝑑𝑘 = 𝛽𝑜𝑔 + 𝛽1𝑔𝑥𝑑𝑘 + 𝑣𝑑 + 𝑒𝑑𝑘, where 𝑑 =

1,2, . . . ,30; 𝑘 = 1,2, . . . , 𝑁 and 𝑔 = 1,2,3; 𝑒𝑑𝑘~𝑁(0, 𝐶𝑑𝑘
2 𝜎𝑒

2), 𝑣𝑑~ 𝑁(0, 𝜎𝑣
2). 

It was assumed that 𝜎𝑒
2 = 𝜎𝑣

2 = 202 = 400 for the gamma distribution; and 𝜎𝑒
2 = 𝜎𝑣

2 = 12 = 1 

for normal and exponential distributions, respectively. To reflect the heterogeneity of the model 

errors for the synthetic and calibration estimators we set 𝑐𝑑𝑘 = 𝑥𝑑𝑘. The summary of the 

representation of units in each group across the domains and the results of the evaluation under 

nonresponse are as presented in the Tables (Appendix A).  

DISCUSSION 

Table 1 shows how the population was split into three groups with the respective values of 

intercepts and slopes for gamma, normal and exponential distributions. Table 2 presents the 

population of a broad domain under study divided into sub domains and further partitioned into 

groups that are larger than the domains but cut across the domains to form grids that are mutually 

exclusive and exhaustive. Each simulation run in Table 2 involves the selection of 𝑅 = 100,000,  

using R software for independent samples and the computation of various estimates for sample of 

sizes 𝑛 = 248(5%), 𝑛 = 495(10%),  𝑛 = 744(15%), 𝑛 = 990(20%), and 𝑛 = 1239(25%) 

drawn using SRSWOR from 𝑈.  An assumption of 89% for the response rate has been considered 

for all sample settings. 

Table 3 (Appendix A) presents the results of the evaluation under nonresponse, where the percent 

average absolute relative bias of the optimum calibration estimator �̂̄�𝑑𝑟
0  was smallest in all sample 

settings with 6% for normal distribution, 13.1% to 13.2% for gamma and 13.1% to 13.3% for 

exponential distributions, making it a more reliable calibration estimator for small area. The values 

are better than other calibration synthetic estimator �̂̄�𝑑𝑟𝑆𝐶
∗ under nonresponse with constant  %𝐴𝑅𝐵 

of 52.8%, 61.0% and 63.5% for gamma, normal and exponential probability distributions, 

respectively, and negligible compared to that of the existing estimator �̂̄�𝑑𝑠with constant %𝐴𝑅𝐵 of 

115.5% and 114.9% for gamma and normal distributions, respectively, as well as 117.1% to 

117.4% for exponential distribution. The performance of the new calibration estimator is an 

improvement of the Andersson (2017) alternative distance measure over that of Lundstrom and 

Sarndal (1999, 2001).  

As expected, this result agrees with the argument of Andersson (2017) on the choice of weights in 

the presence of nonresponse. The effective reduction in bias of �̂̄�𝑑𝑟
0  further justifies the suggestion 

by Guisti and Rocco (2013) on addressing both small area problems and nonresponse adjustment 

as it has smaller average MSE under nonresponse for normal and exponential distributions. 

Although existing calibration estimator �̂̄�𝑑𝑠 outperformed the new estimators in terms of average 
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MSE under gamma distribution in all the sample settings considered in this study, the new 

estimator is shown to be consistently more precise under the normal distribution, followed by 

exponential and the gamma distributions. Other than weight adjustments, this result is in tandem 

with the suggestion of Sarndal, et. al. (1992) that partitioning the elements perceived to belong to 

the response homogeneous groups (RHGs) help in reducing the variance of the interest variable.  

Furthermore, the new estimator has %𝐶𝑉 of 6.1% to 6.4% for normal distribution which is less 

than 10% and makes the bias to be negligible, 13.4% to 14.0% for gamma and 14.7% to 22.0% for 

exponential distributions for different sample settings. These values fall within the benchmark of 

25% proposed by Molina and Rao (2010) for small area estimators and found to be very suitable 

for small area estimation in the presence of nonresponse.  

Implication to Research 

This paper considered the use of calibration weighting scheme in small area estimation under 

stratified sampling design to produce reliable synthetic estimators of population mean. The paper 

also presented a calibration estimator with alternative weighting scheme that exhibits smaller 

relative biases, gain in efficiencies and highly preferred coefficient of variations suitable for small 

area estimation. In terms of the probability distributions, the proposed estimator is more consistent 

in performance with Normal distributions. This supports the idea of calibration technique using 

the assumed constraint on synthetic estimators under stratified sampling design for greatly 

improving on the precision of estimators even in areas where there are smaller/no sample 

observation. The result of the coefficient of variation also suggests that when nonresponse occurs, 

it corresponds to an additional phase of sampling determined by original sample design in line 

with Guisti and Rocco (2013).  

 

CONCLUSION 

In conclusion, the concept of calibration on new design weights and an alternative distance 

measure is a contribution towards the development of an ultimate estimator for small area 

estimation under nonresponse and has yielded a fruitful result compared to the Lundstrom and 

Sarndal (1999, 2001) approach.  This result will further enhance the disaggregation of national 

data and effective estimation in small areas with negligible biases in areas where there are small/no 

sample observation for proper policy implementations. 
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Appendix A: Empirical Evaluation Results 

 

 

                                     

 

 

 

 

 

 

 

Table 1: Partitioning the Population into Groups with their respective slopes and intercepts for 

Gamma, Normal and Exponential Distributions 

 

                    

Groups (g) 

Domains (d) 

1 2 3 𝑈𝑑 

1 𝑈11 𝑈12 𝑈13 𝑈1 

2 𝑈21 𝑈22 𝑈23 𝑈2 

3 𝑈31 𝑈32 𝑈33 𝑈3 

4 𝑈41 𝑈42 𝑈43 𝑈4 

5 𝑈51 𝑈52 𝑈53 𝑈5 

6 𝑈61 𝑈62 𝑈63 𝑈6 

7 𝑈71 𝑈72 𝑈73 𝑈7 

8 𝑈81 𝑈82 𝑈83 𝑈8 

9 𝑈91 𝑈92 𝑈93 𝑈9 

10 𝑈101 𝑈102 𝑈103 𝑈10 

𝑼.𝒈 𝑈.1 𝑈.2 𝑈.3 𝑈 

 

Table 2: Summary Representation of the Units in each Group across the Domains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISTRIBUTIONS GAMMA NORMAL & 

EXPONENTIAL 

GROUP (𝒈) Cells in groups 𝜷𝟎𝒈 𝜷𝟏𝒈 𝜷𝟎𝒈 𝜷𝟏𝒈 

1 𝑈𝑑1 for 𝑘 = 1,2, . . . ,10 200 30 5 1.5 

2 𝑈𝑑2 for 𝑘 = 11,12, . . . ,20 300 20 10 1.0 

3 𝑈𝑑3 for 𝑘 = 21,22, . . . ,30 400 10 15 0.5 
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 %𝑨𝑹𝑩 𝑴𝑺𝑬 %𝑪𝑽 

SAM DIS �̂̄�𝑑𝑠 �̂̄�𝑑𝑟𝑆𝐶
∗  �̂̄�𝑑𝑟

0  �̂̄�𝑑𝑠 �̂̄�𝑑𝑟𝑆𝐶
∗  �̂̄�𝑑𝑟

0  �̂̄�𝑑𝑠 �̂̄�𝑑𝑟𝑆𝐶
∗  �̂̄�𝑑𝑟

0  

5% Gam 115.5 52.8 13.1 2.0
× 109 

3.8 × 1010 2.3 × 109 115.6 52.8 14.0 

 Norm 114.9 61.0 6.0 3.3
× 109 

1.0 × 107 1.2 × 105 114.9 61.0 6.4 

 Exp 117.4 63.5 13.3 2.1
× 109 

6.8 × 106 3.7 × 105 118.0 63.9 16.0 

10% Gam 115.5 52.8 13.2 2.0
× 109 

3.8 × 1010 2.3 × 109 115.6 52.8 13.6 

 Norm 114.8 61.0 6.0 3.3
× 109 

1.0 × 107 1.2 × 105 114.9 61.0 6.2 

 Exp 117.2 63.6 13.2 2.0
× 109 

6.8 × 106 3.7 × 105 117.5 63.6 14.7 

15% Gam 115.5 52.8 13.2 2.0
× 109 

3.8 × 1010 2.3 × 109 115.5 52.8 13.5 

 Norm 114.8 61.0 6.0 3.3
× 109 

1.0 × 107 1.2 × 105 114.9 61.0 6.1 

 Exp 117.1 63.6 13.2 2.0
× 109 

6.8 × 106 3.6 × 105 117.3 63.6 14.8 

20% Gam 115.5 52.8 13.2 2.0
× 109 

3.8 × 1010 2.3 × 109 115.5 52.8 13.4 

 Norm 114.8 61.0 6.0 3.3
× 109 

1.0 × 107 1.2 × 105 114.8 61.0 6.1 

 Exp 117.1 63.6 13.1 2.0
× 109 

6.8 × 106 4.0 × 105 117.2 63.6 22.0 

25% Gam 115.5 52.8 13.2 2.0
× 109 

3.8 × 1010 2.3 × 109 115.5 52.8 13.4 

 Norm 114.8 61.0 6.0 3.3
× 109 

1.0 × 107 1.2 × 105 114.8 61.0 6.1 

 Exp 117.1 63.6 13.3 2.0
× 109 

6.8 × 106 4.0 × 105 117.2 63.6 13.7 

Table 3:  %𝐴𝑅𝐵, 𝑀𝑆𝐸 and %𝐶𝑉for Gamma (5,10), Norm (5,1) and Exp (1.5) for 89% Response 

Rate. 

. 

N/B: The R-code is on request 

 

 

 

 


