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ABSTRACT: In this paper, we studied the approximate bound-state solutions of the radial 

Schrodinger equation with a quantum mechanical Gaussian potential, by using the generalized 

parametric Nikiforov-Uvarov method. The energy spectrum and the corresponding wave function 

were obtained analytically in closed form. The computed eigenvalues for the ground state and first 

excited state for sufficiently large potential depths are in good agreement with the results obtained 

with other methods.  
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INTRODUCTION 

Starting from the Schrodinger equation (SE), the eigenvalues and wave-functions of quantum 

systems can be predicted. However, not all quantum systems are exactly soluble and as such the 

use of approximation methods and numerical schemes are required for determining the eigenstates 

of the system [1].  The SE with different quantum mechanical potentials have been discussed in 

the literature [2 – 8] .Hamzavi et al. [2] have calculated the bound state solutions of the SE for a 

Yukawa Potential by using the generalized parametric Nikiforov-Uvarov (NU) method. Ita et al. 

[3], used the Wentzel, Kramers, Brillouin, and Jeffery (WKBJ) approach to estimate the energy 

spectrum for the Manning-Rosen plus a class of Yukawa potential. Several methods [9 -14] have 

been applied to calculate the eigenvalues of the radial SE for an attractive Gaussian potential. The 

variational approximation approach [9, 10] and asymptotic Iteration method [11] were applied to 

calculate the bound state solutions of the SE for the quantum mechanical Gaussian potential 

(QMGP). The results of the variational method for sufficiently large potential depth reported in 

Refs. 9 and 10 are in good agreement with numerical solutions. Also, the Ricatti-Pade method [12] 

was used to find the eigenvalues of the QMGP for large potential depths, while Fernandez [13] 

applied the Wronskian method to find the exact energy spectrum of the Gaussian well for any 

potential well depth. To the best of our knowledge, the study of the eigensolutions within the 

framework of the NU method with a QMGP has not been reported. Therefore, the aim of this paper 

is to find an approximate analytical eigenvalue solution of the radial SE for an attractive QMGP 

by using the parametric NU method. 
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RADIAL SCHRODINGER EQUATION 

The three-dimensional time independent SE for a particle of mass 𝑚  and wave-function 𝜓(𝑟, 𝜃, 𝜙) 

is given as  

−
ℏ2

2𝑚
[

1
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𝜕

𝜕𝑟
(𝑟2 𝜕

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
) +

1

𝑟2 sin2 𝜃  

𝜕2

𝜕𝜙2] 𝜓(𝑟, 𝜃, 𝜙) + 𝑉(𝑟)𝜓(𝑟, 𝜃, 𝜙) =

𝐸𝜓(𝑟, 𝜃, 𝜙).   (1) 

If we substitute 𝜓(𝑟, 𝜃, 𝜙) =  
𝑅(𝑟)𝑌(𝜃,𝜙)

𝑟
  into Eq.  (1), with the appropriate separation constant we 

obtained the radial equation as 

𝑑2𝑅(𝑟)

𝑑𝑟2 +
2𝑚

ℏ2 [𝐸 − 𝑉(𝑟) −
𝑙(𝑙+1)ℏ2

2𝑚𝑟2 ] 𝑅(𝑟) = 0,                                                                                         (2) 

where the last term in Eq.  (2) is the centrifugal term with orbital quantum number   𝑙. 

The quantum potential in Eq.  (2)  is a Gaussian well modeled as  

𝑉(𝑟) =  −𝑉0𝑒−𝛼𝑟2
    (𝑉0,    𝛼 > 0).                                                                                                        (3) 

were  𝑉0,  and  𝛼 are the well depth and screening parameter respectively. 

In order to estimate the eigen-solutions of Eq.  (2), we Taylor-expand the Gaussian function to get  

𝑉(𝑟) = 𝑉0(𝛼𝑟2 − 1).                                                                                                                                (4) 

It is worthwhile to mention that the truncated Gaussian potential in Eq.  (4)  is an accurate 

approximation owing to the fact that the Gaussian potential is a short-range potential which can be 

used in the study of a single particle motion in atomic nuclei and also in analyzing scanning 

tunneling microscope [10] 

 NIKIFOROV-UVAROV METHOD 

The Nikiforov-Uvarov (NU) method is used to solve the second order differential equations with  

 Special orthogonal polynomials [15]. The Schrodinger-type equation with the appropriate 

coordinate transformation 𝑟 → 𝑠 is given as 

𝜓𝑛
′′(𝑠) +  

�̃�(𝑠)

𝜎(𝑠)
𝜓𝑛

′ (𝑠) +
�̃�(𝑠)

𝜎2(𝑠)
𝜓𝑛(𝑠) = 0,                                                                                                (5)  

where  𝜎(𝑠) and �̃�(𝑠) are polynomials of at most order 2 and  �̃�(𝑠) is of order 1.  

Equation   (5) for any quantum potential [16]   has the general parametric form given as 

 

 𝜓𝑛
′′(𝑠) +  

(𝜆1−𝜆2𝑠)

𝑠(1−𝜆3𝑠)
𝜓𝑛

′ (𝑠) +
(−𝛾1𝑠2+𝛾2𝑠−𝛾3)

𝑠2(1−𝜆3𝑠)2 𝜓𝑛(𝑠) = 0.                                                                                   (6) 

The respective energy spectrums and eigen-functions equations [16] are given as  

 𝜆2𝑛 − 𝜆5(2𝑛 + 1) + (2𝑛 + 1)(√𝜆9 + 𝜆3√𝜆8 ) + 𝜆3𝑛(𝑛 − 1) + 𝜆7 + 2𝜆3𝜆8 + 2√𝜆8𝜆9 = 0,  

(7) 
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  𝜓𝑛(𝑠) = 𝑁𝑛𝑠𝜆12(1 − 𝜆3𝑠)
−𝜆12−

𝜆13
𝜆3 𝑃𝑛

(𝜆10−1,   𝜆11
𝜆3

−𝜆10−1)

(1 − 2𝜆3𝑠),                                                      (8) 

where  𝑁𝑛 and  𝑃𝑛
(𝛼,𝛽)

 are normalization constant and Jacobi polynomials respectively. 

The parametric constants in Eq.   (7) and Eq.  (8) are given as   

  𝜆4 =
1

2
(1 − 𝜆1),   𝜆5 =

1

2
(𝜆2 − 2𝜆3),     𝜆6 = (𝜆5)2 + 𝛾1,    𝜆7 = 2𝜆4𝜆5 − 𝛾2, 

   𝜆8 = (𝜆4)2 + 𝛾3,   𝜆9 = 𝜆3𝜆7 + (𝜆3)2𝜆8 + 𝜆6,  𝜆10 =  𝜆1 + 2𝜆4 + 2√𝜆8   ,                               (9)                   

   𝜆11 =  𝜆2 − 2𝜆5 + 2(√𝜆9 + 𝜆3√𝜆8),    𝜆12 = 𝜆4 + √𝜆8,    𝜆13 =    𝜆5 − (√𝜆9 + 𝜆3√𝜆8),                                                                                 

“In some problems” [16] 𝜆3=0 such that  

lim
𝜆3→0

𝑃𝑛

(𝜆10−1,   𝜆11
𝜆3

−𝜆10−1)

(1 − 𝜆3𝑠) =  𝐿𝑛
𝜆10−1(𝜆11𝑠),                                                                         (10) 

and 

 lim
𝜆3→0

(1 − 𝜆3𝑠)
−𝜆12−

𝜆13
𝜆3 =   𝑒𝜆13𝑠                                                                                                              (11) 

By substituting Eqs.   (10) and  (11) into Eq.  (8), the wave function has the form given as  

 𝜓𝑛(𝑠) =  𝑠𝜆12  𝑒𝜆13𝑠  𝐿𝑛
𝜆10−1(𝜆11𝑠)                                                                                                        (12) 

 

 ENERGY SPECTRUM AND EIGEN-FUNCTION SOLUTIONS 

To calculate the energy spectrums we write Eq.   (2)  with the approximate potential given in Eq.   

(4) as 

  
𝑑2𝑅(𝑟)

𝑑𝑟2
+

2𝑚

ℏ2
[(𝐸 + 𝑉0) − 𝑉0𝛼𝑟2 −

𝑙(𝑙+1)ℏ2

2𝑚𝑟2
] 𝑅(𝑟) = 0,                                                                      (13)                                                                                     

Using dimensionless variables 

 𝑟 = 𝜌𝜁,      𝜌 = √ 
ℏ

𝑉0𝛼𝑚
 ,       𝜖 =

𝐸+𝑉0

ℏ𝑉0𝛼
 ,                                                                                                           (14) 

with the following derivatives 

𝑑𝑅(𝑟)

𝑑𝑟
=  

𝑑𝑅(𝑟)

𝑑𝜁   
 × 

𝑑𝜁

𝑑𝑟   
 ,       

𝑑2𝑅(𝑟)

𝑑𝑟2
=

1

𝜌2

𝑑2𝑅(𝑟)

𝑑𝜁2   
 ,                                                                                         (15) 

We can rewrite Eq.   (13)  as 
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𝑑2𝑅(𝜁)

𝑑𝜁2
+ (2𝜖 −

2

ℏ
𝜌2𝜁2 −

𝑙(𝑙+1)

𝜁2
)𝑅(𝜁) = 0.                                                                                          (16) 

In order to put Eq.    (16)  into the form of Eq.   (6), we set  𝜁2 = 𝑠 and use the derivatives 

 
𝑑𝑅(𝜁)

𝑑𝜁   
=  

𝑑𝑠

𝑑𝜁  
×  

𝑑𝑅(𝜁)

𝑑𝑠   
 ,    

𝑑2𝑅(𝜁)

𝑑𝜁2   
= (2𝜁)2 𝑑2𝑅(𝜁)

𝑑𝑠2   
+ 2

𝑑𝑅(𝜁)

𝑑𝑠   
.                                                                     (17) 

Substituting Eq.   (17) into Eq.   (16), with the coordinate transformation 𝑅(𝜁) →  𝜓(𝑠) we obtained 

𝜓′′(𝑠) +  
1

2𝑠
𝜓′(𝑠) + (

−
2𝜌2

ℏ
𝑠2+2𝜖𝑠−𝑙(𝑙+1)

4𝑠2 )𝜓(𝑠) = 0.                                                                            (18)                                                                   

Now comparing Eq.   (18) with Eq.   (6), we found  

𝛾1 =  
2𝜌2

ℏ
 , 𝛾2 = 2𝜖    𝛾3 = 𝑙(𝑙 + 1),                                                                                                     (19) 

and the parametric constants given in Eq.   (9) are obtained as follows 

𝜆1 =  1,      𝜆2 =   𝜆3 =   𝜆4 =   𝜆5 = 0,   𝜆6 =  𝛾1,  𝜆7 = − 𝛾2,   𝜆8 = 𝑙(𝑙 + 1),

𝜆9 =  𝛾1,  𝜆10 = 1 + 2√𝑙(𝑙 + 1) , 𝜆11 = 2√𝛾1, 𝜆12 = √𝑙(𝑙 + 1),   

         𝜆13 = −√𝛾1 .                                                                                                                                             (20) 

Finally, substituting the appropriate terms in Eqs.  (14), (19) and (20) into Eq.   (7), we obtained 

the energy spectrum of the Gaussian well as  

 𝐸𝑛𝑙 =  √
2ℏ2𝑉0𝛼

𝑚
 {(𝑛 +

1

2
) +  √𝑙(𝑙 + 1)} −  𝑉0,                                                                                  

(21)                                                  

and the wave function for the Gaussian well is obtained using Eq.   (12) as  

𝜓𝑛𝑙(𝑠) =  𝑠𝜆12  𝑒𝜆13𝑠  𝐿𝑛
𝜆10−1(𝜆11𝑠) = 𝑁𝑛𝑠√𝑙(𝑙+1)𝑒

−√2𝜌2

ℏ
 𝑆 

𝐿𝑛
2√𝑙(𝑙+1)

(2√
2𝜌2

ℏ
 𝑠 ),                             (22) 

were   𝐿𝑛
2√𝑙(𝑙+1)

(2√
2𝜌2

ℏ
 𝑠 )  is the associated Laguerre polynomial.       

 RESULTS AND DISCUSSION 

The eigenvalues in Eq.  (21) for the ground state and first excited states are computed for s-wave 

( 𝑙 = 0). We used the units ℏ = 2𝑚 = 1 and set  𝛼 = 0.4 for different potential well depth (𝑉0) as 

shown in table 1. The results for the ground state eigenvalues are in good agreement with the 

variational method for bound states solutions reported in Refs.  9 and 10. We note that the first 

excited energy values computed with our method are fairly in good agreement for the well depth 

of  𝑉0 ≥ 10 (see Fig.   1) as compared with the results in Ref.   9. While for potential barrier depth 

with  𝑉0 ≤ 3 would result in positive energies. This might be an indication that tunneling effect 
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occurs for positive eigenvalues. The results of Chalk [17] for the transmission probability with the 

truncated Gaussian potential also show that tunneling effects occurs for all positive eigenvalues. 

However, when the screening parameter is set equal to zero (𝛼 = 0), the particle is confined to the 

Gaussian well with the negative energy of −𝑉0. 

Table 1. Approximate eigenvalues for the ground state 𝐸00  and first excited state 𝐸10  

𝑽𝟎 NU 

method 

(present 

work)   

(𝐄𝟎𝟎)  

Variational 

method[9]    
(𝐄𝟎𝟎) 

Numerical  

solution[9] 

(𝐄𝟎𝟎) 

Variational  

Method[10] 

 (𝐄𝟎𝟎) 

NU 

method 

(present 

work) 

(𝐄𝟏𝟎) 

Variational  

Method[9]
  

(𝐄
𝟏𝟎

) 

Numerical 

method[9] 

(𝐄𝟏𝟎) 

1 -0.3675 -0.467 -0.47740 -0.4671    

2 -1.1056 -1.179 -1.18772   -0.01 -0.07543 

2.5 -1.5000   -1.8005    

3 -1.9046 -1.956 -1.96372 -1.9557  -0.31 -0.36980 

4 -2.7351 -2.767 -2.77449  -0.2053 -0.73 -0.78392 

5 -3.5858 -3.601 -3.60765  -0.7574 -1.23 -1.27170 

10 -8.0000 -7.948 -7.95267  -4.0000 -4.25 -4.28060 

15 -12.5505 -12.446 -12.4500  -7.6515 -7.74 -7.76229 

20 -17.1716 -17.023 -17.02623  -11.5147 -11.46 -11.48523 

25 -21.8377 -21.650 -21.65289  -15.5132 -15.34 -15.36143 

30 -26.5359 -26.312 -26.31538  -19.6077 -19.33 -19.34617 

 

 

 

Figure 1: The energy of the first excited state as a function of the well depth  𝑉0. The results 

obtained with the NU method are plotted with the results obtained using the variation method in 

Ref.  9 
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CONCLUSION 

We have obtained the bound-state solutions to the radial SE for a QMGP and the corresponding 

wave-function in closed form within the framework of the NU method. The approximate ground-

state and first excited eigenvalues obtained for the s-wave are in good agreement with the 

variational method and numerical solution for sufficiently large potential depth. Equations (21) 

and (22) might be useful in analyzing the tunneling effects of a single particle confined in a QMGP 

well and in the studying of asymptotic behavior of other physical systems. 
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