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ABSTRACT | Biological nitrogen fixation (BNF) soybean cultivar TGx 1440 -1E cultivation for grain yields 

and soil microbiome with different soil amendments in humid tropics in the late cropping season of 2010, 

Abeokuta, Nigeria, at Latitude 70 121 N and Longitude 30 251 E in randomized complete block design (RCBD) 

replicated three times. Treatments application includes: agro-waste recycled to biofertilizer in anaerobic 

biodigester with two biofertilizer formulations (GF1 and GF2), sunshine fertilizer (SF) and chemical fertilizer 

(NPK 20:10:10).  Soybean vegetative growth parameters, nodulation, amount of nitrogen fixed, yield and yield 

components were determined at 8 weeks after planting (WAP). GF2 had significantly (P < 0.05) higher number 

of leaves. GF1 had significantly (P < 0.05) higher number of pods and seed weight/plant with lower biological 

nitrogen fixation, compared to other treatments. Soybean cultivars breeders should integrate biofertilizer into 

seed development programme, that bypass the naturalized soil rhizobia and nodulate only with highly effective 

inoculant strains under environmental stress, improved  soil resilience for climate mitigation with rhizosphere-

microbial interactions to manage soybean cyst nematode (SCN). Smart agriculture framework developed 

impacts on trans-disciplinary approach, soyabean cultivation nitrogen use efficiency (NUE), remote access to 

agriculture data in real-time, crop development, supply chain management, proftability and biofertilizer 

varietal characteristics. 

KEYWORDS | Soyabean, Biofertilizer, Biological nitogen fixation, Soil Health, Nodulation, Rhizobium,    

Sensors, Wicked Problems, Agriculture 5.0, Rhizosphere engineering, Microbiome. 
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INTRODUCTION  

Nigeria is the largest soybeans non-genetically modified organisms (non-GMO) producers in  

Sub-Saharan Africa (SSA) with less than 500,000 metric tons, compared to 8,000-10,000 metric tons for 

maize and sorghum 4,000 - 5,000 metric tons cultivation. Soybean crop well-suited for Nigeria weather 

and ecology, disease and pest tolerant and low farm inputs in production with rotational crop (with corn, 

sorghum and cotton).The Nigeria Soybean yield 1.0 ton/ha compared to Argentine/Brazil (2.5-3.0 ton/ha 

and USA (4.5 tons/ha). Alguacil et al.,14 reported animal waste when mixed with chemical fertilizer584   

improves the soil microbes, aggregate stability, N, P, K, carbon sequestration and pH compared to urea. 

Animal waste (cattle and poultry manure) increased organic matter, Nitrogen, pH, microbial biomass and 

soil fauna in sandy soil. 486 Organic matter significantly impacts on the formation of soil aggregates, 

maintenance of soil structure, fertility and water holding capacity in soils ecosystem 611,304 and degraded 

soil of semi-arid region.293 Nitrogen increases carbon sequestration rate of crop residues than un-amended 

soil.409 Biofertilizer applied to agricultural soil can transform current carbon-neutral status of soils to a 

carbon sink.93 The field research objectives are: 

i. Agro-waste recycling to biofertilizer production using anaerobic biodigester  that will simulate 

biological nitrogen fixation (BNF) in soyabean cultivation and improved soil microbiome; 

ii. Soybean cultivar (TGx 1440–1E) cultivation with biofertilizer, chemical fertilizer (NPK 

20:10:10) and sunshine fertilizer in humid tropics in the late cropping season of 2010, Abeokuta, 

Nigeria, at Latitude 70 121 N and Longitude 30 251 E in three replicates. 

iii. The formulation of biofertilizer inoculants strains able to fix N2 and non-rhizobial inoculants that 

increase root growth and improve rhizosphere uptake efficiency and reduce any abiotic or biotic 

constraints on crop growth and development. 

iv. Develop a trans-disciplinary framework that transform agriculture 5.0 and integrate academic-

industry -institutions collaboration for agriculture development, and;   

v. Smart agriculture framework to capture soybean field trial data in real-time for improve crop 

production and management. 

Principle of Root/Rhizosphere Management and Architecture | 

The relationship between amount of fertilizer added and the crop yield called law of diminishing 

increments by Mitscherlich equation,399 "decreasing increments law", where the successive nutrient 

supply results in decreasing increments of productivity. Achieving high nutrient use efficiency and high 

crop productivity has become a challenge with increased global demand for food, depletion of natural 

resources, and deterioration of environmental conditions.99, 612,98 Plant roots can not only highly regulate 

morphological traits to adapt to soil environmental conditions, but also significantly modify rhizosphere 

processes through their physiological activities, particularly the exudation of organic acids, phosphatases, 

and some signalling substances, proton release, and redox changes.237 , 690  The root-induced rhizosphere 

processes not only determine mobilization and acquisition of soil nutrients  but also the microbial 

dynamics, nutrient use efficiency by crops, and  profoundly influence crop production and 

sustainability.690 Application of biofertilizer in Soybean cultivation can manipulate the root growth and 

rhizosphere processes to provide an effective approach to improve nutrient use efficiency, biological 

nitrogen fixation and crop productivity simultaneously. The efficiency of root and rhizosphere processes 

can be enhanced with intensity of soil nutrient supply with slow release biofertilizer. However, overuse 

of fertilizers may lead to high concentrations of nutrients in the rhizosphere, resulting in inhibition of root 
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growth and rhizosphere processes.334, 392, 69 Maximizing the efficiency of the root/rhizosphere in nutrient  

 

mobilization and acquisition (Figure 1)353 by crop demands spatially and temporally at an optimal level 

of nutrient supply in the rhizosphere r requires synchronizing root-zone nutrient supply. The main 

strategies of root/rhizosphere management are: (1) manipulating root growth in terms of both 

morphological and physiological traits; (2) intensifying rhizosphere processes in terms of acidification 

and carboxylate exudation; and (3) synchronizing root-zone nutrient supply with crop demand by 

integrated soil–crop system management.690, 106 

For decades globally, green agriculture revolution uses of insecticides, fungicides and pesticides to 

increase the productivity which has negative impacts of biodiversity with the demand for alternative soil 

amendment called biofertilizer (cultures of microorganisms packed in a carrier material). Biofertilizer 

contain live or latent cells of efficient strains of phosphate solubilizing, biocontrol microbes,140,595 

nitrogen fixing or cellulolytic microorganisms used for the application to seeds, soil or composting areas 
197,71 which are helpful for the availability of nutrients that can be easily assimilated by plants and 

improving soil fertility by fixing atmospheric nitrogen and promote root growth by producing hormones, 

antimetabolites, soil mineralization and decomposition of nutrients.311, 76 

     

Figure 1 |   The efficiency of the root/ rhizosphere management can be regulated to an optimum status by 

controlling nutrient input where there is a strong root system and efficient rhizosphere processes in increasing 

nutrient acquisition and crop production and adapted from Evert-Jan and Aniek.

Biofertilizer are cost-effective and can be used as a supplement to chemical fertilizers.Microorganisms 

like bacteria, fungi and blue-green algae 372 are used as biofertilizer. Biofertilizer have paramount 

significance in sustaining agricultural productivity and healthy environment 71 and are characterized into 

various categories like: nitrogen fixing biofertilizer, phosphate solubilizing biofertilizer, phosphate  

mobilizing, biofertilizer for micro-nutrients and plant prowth promoting biofertilizer. Rhizobium spp. is 

the nitrogen fixing bacteria formed in the roots of leguminous and some nonleguminous plants.213 Plants 

show high plasticity in root growth and development in response to varied environmental conditions.239. 

354 In Figure 1, root size can be determined by soil nutrient concentrations whereas root distribution and 
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proliferation are highly dependent on the localized supply of nutrients in the soil. It was reported that  

 

more aerenchyma tissues in the cortex of the roots can also be an important trait that contributes to  

efficient Nitrogen (N) uptake with lower carbon input in root growth.472 ,409 Thus, a deeper root with 

more aerenchyma tissues is important for efficient capture of soil resources. This root architecture may 

also be efficient in the uptake of deep water. Root response can be induced by nutrient supply intensity 

on the whole as well as spatiotemporal resource variation, especially availability of the water and  

nutrients.132,409,44. Thus,  higher phosphorus availability was found in surface soil strata, a shallow root 

system with enhanced adventitious roots is relevantly important for crops to absorb phosphorus,354  

Figure 19. 

Maximizing Rhizosphere Efficiency | 

The rhizosphere efficiency can be enhanced through optimizing nutrient supply. 353 Rhizosphere 

processes reflect dynamic changes in rhizosphere biology and chemistry for the interactions between 

plants and soils and are bottlenecks controlling nutrient transformation, availability, and efficient use by 

plants (Figure 1).This approach can modify rhizosphere processes and efficiency by regulating root 

development and thus carboxylate exudation, proton release, and acid phosphatase activity in the 

interface between roots and the soil. Rhizosphere acidification can enhance P mobilization and 

acquisition from soil by plants.237, 690The form of N supply, to a great extent, controls the uptake ratio of 

cations and anions and thus influences root apoplastic pH and rhizosphere pH. Ammonium supply can 

induce release of protons from roots and thus cause rhizosphere acidification but nitrate supply can 

induce hydroxyl secretion by roots and thus cause rhizosphere alkalinisation. The success of an 

introduced inoculant also depends on the quality of the inoculant 505, 511 wherein critical for successful 

nodulation are the number of viable rhizobia per unit of inoculant and the number of introduced rhizobia 

that result in root infection (Figure 18). The mobility of rhizobia in soil is limited under real field 

conditions, inoculation methods must ensure that sufficient rhizobia are present around the seeds for 

successful nodulation.193 Soybean demand for Nitrogen is determined by the yield potential of a crop in a 

given environment (Figure 2). If the N demand of soybean can be matched by the indigenous rhizobia 

population, inoculation with even efficient rhizobia strains may not show any improvement in yield. 
661,591, 605 , 606 The highest probability of meeting the goals for agricultural systems occurs when science is 

applied to define a suite of practices from which farmers can select, using adaptive management (Figure 

5). This will implies application of fertilizer best management practices (BMP) called 4R addressing the 

right fertilizer source, at the right rate, the right time, and in the right place 502 which  provide the 

foundation for a science-based framework to achieve sustainable on‐farm nutrient management practices. 

The definition of the normative “right” is provided by the principles of sustainable development: 

optimizing the sustainability performance of agriculture, using indicators selected by its stakeholders. 

Universal scientific principles of nutrient cycles, soil fertility, and plant nutrition manifest themselves in  

specific management practices that vary with climate, soils, access to technology, local economies, and 

culture. 

Plant Growth Promotion (PGP) by Endophytic Bacteria |  
After water, nitrogen is the major limiting compound for crop production. Direct PGP mediated by 
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endophytes bacteria is mostly based on providing essential nutrients to plants and production 

and/or regulation of phytohormones.679,188,366 Many plants can obtain nitrogen through a process  

 

known as BNF (biological nitrogen fixation). Nitrogen fixation is regulated by the concentration  

of oxygen and the availability of nitrogen. BNF by legumes is based on a symbiosis with root-

nodule nitrogen-fixing bacteria 251 while other agriculturally important plants such as maize, rice, 

sugar cane 547 and wheat can benefit from the association with diverse endophytic diazotrophs 

(Figure 3).The best studied endophytic diazotrophs include members of Azoarcus, Burkholderia, 

Gluconobacter, Herbaspirillum and Klebsiella.265 The ability of endophytic diazotrophs to fix N2 

in planta (Figure 20) was demonstrated in several studies (monitoring the expression of 

nitrogenase 185 genes in nitrogen-fixing cells at the endophytic stage155,509,673 and by isotope 

analysis.547 Research reports affirmed that plants can get up to 70% of the required nitrogen 

through BNF mediated by endophytic diazotrophs.26

                 

Figure 2 | 4R Robert 502 and Precision Agriculture for optimizing the symbiotic nitrogen fixation (SNF) response of 

legumes to inoculation with rhizobia and adapted from Raizada and Thilakarathna. 478 , 592 

The principal role of IAA (indole-3-acetic acid) in PGP was confirmed only for rhizobacteria, 

using mutational studies.461,580  N starvation can also derepress the biosynthesis of the plant 

hormone IAA and was  detected in the culture supernatant of G. diazotrophicus.162, 59 This 

possibility is further supported by the observation that when Nitrogen was not limiting, both wild 

type G. diazotrophicus Pal5 and its in vitro production of IAA and its possible involvement in 

PGP has been reported for many other endophytic bacteria.206, 514,269,366 Spaepen and 

Vanderleyden581 reported microbial production of auxins and its role in the interaction with plants. 

Many IAA-producing endophytes possess ACC (1-aminocyclopropane-1-carboxylate)-deaminase 

activity which is involved in lowering the level of plant ethylene.344 Elevated levels of ethylene 

caused by some stresses are known to inhibit root elongation and lateral root emergence. 258  

Glick200 report that, bacterial IAA activates ACC-synthase of plants resulting in the production of 
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ACC, the ethylene precursor. ACC-deaminase activity was described for plant growth-promoting 

endophytic strains of Burkholderia 592,188 Herbaspirillum 514 and Pseudomonas.344 Other 

phytohormones produced by endophytic bacteria include ABA (abscisic acid),  110 cytokinins548 

and GBs (gibberellins).548 

 

Inoculants Production | 

Production process of the inoculum is key to a final high-quality product because of the direct 

relationship between the population density of mother culture and the quality of the final products  and 

the inoculum is formed of one strain. The complex relationships among the microorganisms interacting in 

the rhizosphere has fostered the study on inocula composed of more than one microorganism which have 

showed promising results both in legumes and non-legume plants.353,58,587 In legumes, comprised the co-

inoculation of rhizobia with arbuscular mycorrhizal fungi (AMF) 273, 653  dual inoculation of rhizobium 

and phosphate solubilizing bacteria 8 an inoculum formed of rhizobium together with a plant growth 

promoting rhizobacteria (PGPR) and a phosphorous solubilizing bacteria (PSB). 

In non-legumes, nutrients uptake comparable to chemically fertilized plants have been reported with dual 

inoculations involving AMF and free-living N-fixing bacteria 3, 53 , 338, 653 also under dry conditions.34  

Better nutrient efficacy was reported also in the case of PSB and KSB mixture inocula.221 , 634 In the 

formulation of inoculant consortium for  biofertilizer production, research reports affirmed that  certain 

bacterial groups appear to associate more frequently with AM fungi or to be inhibited by them by several 

mechanisms including the fungal release of stimulatory or inhibitory compounds 272, 174 , 373 , 614 , 648  which 

could result in  a higher or limited colonization of the roots, respectively (Figure 22).  Granular inoculant 

(gateway biofertilizer 446) was formulated for extreme stress environment and soil conditions (Plate 1). 

Granular inoculant contains plant growth promoting microorganisms (PGPM) consortium with different 

mechanisms of action of the various microorganisms present, sometimes overlapping also plantprotection 

mechanisms 633, 634 suitable for Soybean cultivation and cereal. Liquid inoculants, 438 though easier to 

distribute, have shorter shelf life.58 ,586 Legume biofertilizer containing elicitors of nodulation are already 

marketed 359,360 but other rhizobial metabolites related to the nodulation process (nod factors) were 

successful in enhancing the performance of N-fixing bacteria inoculants on soybean (Figure 18).407,  652 

Soybean  Production Challenge | 

Soybean is widely grown in the middle belt or the savannah zone of Nigeria 437 but, its production has 

presently expanded beyond the traditional production areas of the middle belt to cover other Northern and 

Southern parts of the Nigeria that were otherwise considered unsuitable or marginal for soybean 

production.17 The highlighted constraints of Soybean   cropping system in Southern parts of the Nigeria 

are soil related constraints such as low pH, nutrient deficiencies (phosphorus, potassium, molybdenum 

and sulphur) 333 and  toxic levels of some metals like aluminum,  iron, and manganese 516 have the 

potentials to reduce the yield of the crop566 , 254 will requires biofertilizer with board spectrum formulation 

that could manage the highlighted constraints like gateway biofertilizer (Table 6). Soybean yield has been 

characterized with high instability within and between species at different sites and among seasons 476 , 402 

,357, 19  and the use of stable genotypes for high seed yield is an important objective for sustainable 

soybean production.13, 688 that was why the soybean cultivar (TGx 1440–1E) was selected for the filed 

cultivation. Cultivation of Soybean  require the  knowledge of the genetic variability and the adequate 

evaluation of breeding materials under different environments with table genotypes are less dependent 
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upon good environments to perform well, and this makes their yield more predictable. 113, 119, 129, 46 over a 

wide range of climatic conditions. Broad adaptation provides stability against the variability inherent in 

an ecosystem of crop development like soybean with the soil amendment of biofertilizer application 

impacts of endophytes bacteria. Research reports affirm specific adaptations may provide a significant 

yield advantage in particular environments.642 Denis and Gower 138 suggested that plant breeders should  

 

consider genotype environment interaction (GEI) for crop yield. Multi-environment testing makes it 

possible to identify cultivars that perform consistently from year to year (temporal variability) and those 

that perform consistently from location to location (spatial variability). Temporal stability is desired by 

and beneficial to growers, whereas spatial stability is beneficial to seed companies and breeders. 284 

RHIZOSPHERE ENGINEERING 

The rhizosphere (which means root, Greek word236, 225)  is the part of soil which is most affected by the 

mutual relationship of plant and microbial communities and differentiated from bulk soil,220  improve the 

plant nutrients availability and biological activity through plant driven carbon as rhizodeposits.322  The 

extent of rhizosphere in the soil can be depended upon the root system and microbial community and 

climate impacts called “rhizospheric effect R/E”, “rhizospheric effect R/E” can 2 to 20 showed normal 

range.657 The plant release compounds and microbial activity are a help to determine the spread of 

rhizospheric influence in the soil. Rhizosphere can be categories into different layers which spread from 

plant root to bulk soil.382   The rhizosphere can be influenced by the root development and root release 

compounds into the soil (Figure 1). 

    

 Figure 3 | Determinants of legume crop nutrition, growth and yield and efficacy of biofertilizer, adapted from   

Malusà et al.,270  



International Journal of Agricultural Extension and Rural Development Studies 

Vol.9, No.1, pp.38-139, 2022 

Print ISSN: ISSN 2058-9093,  

                                                                                                          Online ISSN: ISSN 2058-9107 

45 
@ECRTD-UK-https://www.eajournals.org   |   Journal level DOI:  https://doi.org/10.37745/ijaerds.15 

 
 

Rhizodeposits and microbial influences, the rhizosphere divided into three layers that spread from root 

out layer to adjacent soil.382 The endorhizosphere are the most intense rhizospheric activity zone at the 

outer layer of the plant root surface; the rhizoplane is the intermediate zone or actual root-soil interface 

zone which inner layer directly surrounded to the root including the root epidermis and mucilage and out 

layer to ectorhizosphere and the ectorhizosphere which is outer most layer of rhizosphere up to bulk soil 

(Figure 4). The application biofertilizer in soils cultivation seem to be the easiest way of engineering 

 

Figure 4 |The plant colonization by endophytic bacteria plays crucial role in the rhizosphere development and 

adapted from Reinhold-Hurek and Hurek 492 and Compant.112

rhizosphere. 139 A vast array of soil amendments is employed for upsurging the plant productivity which 

also proves to be an important tool for shaping the rhizospheric microbiome (Figure 26). Biofertilizer soil 

amendment is employed for getting a biased rhizosphere- rhizosphere engineering (Figure 4). 

Plants Impact | Rhizosphere Development 
In the rhizosphere, plant root plays most active role in designing the soil and rhizospheric environment 

and plant community assimilates the photosynthates and shifted them toward the root and various plant 

parts which can be further use for plant physiological and metabolic requirements.115, 219,322  Rhizosphere 

community (Figure 26)   help to design the plant root system and releasing various low and high 

molecular weight carbon compounds which are the source of food for microbial communities which 

influences the rhizosphere biology and signalling. 274 The resultant impacts of the application of 

biofertilizer to soybean  cultivation is to engineer the rhizospheric functions for microbial colonization 

within root and rhizosphere, properties and amount of root released compounds, plant and microbial 

interaction, signalling and plant resistance factors 220 and releasing of the various carbon compounds321 

known as rhizodeposits which having various forms of organic substances exudates from the plant 

root.274 ,466  In Figure 4,  plant colonization by endophytic bacteria plays crucial role in the rhizosphere 

development and adapted from Reinhold-Hurek and Hurek492 and Compant.112 The rhizospheric zone can 

accelerate the microbial activity in root zone with more exudation of organic compounds from plant 

communities with the response of various factors as plants, soil and climatic factors.322 All the 
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rhizospheric biota, their activity, and various rhizospheric processes are affected by the plant root system 

and their amount of carbon exudates  developed  within their community.  

Microbes Impacts | Rhizosphere Development 

Soil more diverse in its biological habitat interacts with plant. Soil is consisted of millions of bacteria, 

widespread fungal hyphae, number of nematodes, protozoans, earthworms and other arthropods.  All the 

rhizospheric community has oligotrophic in nature so it occurs near the root surface where carbon found 

in abundance and influences the plant nutrients dynamics through root and microbial activity through  

 

secretion of more variable compounds into the rhizosphere 627. 465, 322 Microbes release some carbon 

compounds used by the plant as a nutrient source, biocontrol agent 595 and signaling compounds for soil 

biotic community. The extent of release of these organic substances can determine the rhizospheric 

volume because more availability of exudates can create a more diverse and wider rhizospheric activity 

zone (Figure 3) with biofertilizer is applied during soybean cultivation. The rhizospheric microbial 

community benefited the soil ecosystem by serving functions of decomposing of organic matter, nutrients 

availability through solubilization and mobilization, root pests’ control and rhizospheric signaling.274,465 

Various pathogenic microbes, denitrifying bacteria, protozoan, and nematodes are deleterious to 

rhizospheric processes during Soybean   cultivation (Plate 6). The rhizospheric microbial community 

functions and structure have been influenced by soil types and host plant and soil environment conditions 

anchored by rhizodeposits.595,218 Soil and seedling inoculation with the biotic community has positively 

influenced crop performance such as legumes inoculation with rhizobia species gave an opportunity to 

reduce plant external nitrogen demand due to nitrogen fixation 409 , 631,100 and  mostly vary with soil type, 

plant type and environmental conditions.302  Cultivation Soybean  with biofertilizer with reduce the 

agricultural pests.  The gateway biofertilizer contents biocontrol agents (Trichoderma, Pseudomonas595 

and Bacillus) which induce the plant systemic resistance against the pathogenic attack 467 and affirmed by  

Atungwu.38 Ryan et al.,518 reviewed that the biotic community help to the production of certain types of 

the stress hormone, enzymes and another antibiotic which help to plant withstand under various stress 

conditions. Soil erosion accelerated by unsustainable agricultural activities can break down the soil 

structure which that negatively coincided with rhizospheric development.270   

The temperature above and below the optimum temperature can alter the behaviour of plant root exudation 

and microbial activity.169 The change in soil water holding capacity might be cause for alteration of soil 

biology, plant root development, physiology of exudation, microbial mobilization and activity.220 Soil pH 

and heavy metal influence the plant and microbial physiology through soil acidification and redox reactions 

which can be altering the rhizospheric processes.479 Biofertilizer improvement of the soil microbiota can 

help to improve plant productivity and provide environment safety (Table 6) with the resultant impacts to 

change soil pH, increase the nutrients availability to plant especially N, P, Ca, Mg, Fe and Zn.382 The 

healthy soil biology can also be improved through supply of organic residues, crop residue management, 

apply compost/ manure, reduced tillage, minimum compaction, minimum use of pesticides along with 

growing cover crop  or rotate the crop or intercrop for synergistic rhizosphere shaping.332, 700 ,469, 67 

Rhizospheric Biota Management Holobiont Approach | 

Soybean  research breeding community should focus on improving the rhizospheric biodiversity with 

targeted functioning for crop plants 408  since plants and soil biota can shape the rhizosphere  in 
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collaborations 83 fulfilling the requirements of agricultural sustainability.101 For example, root exudation 

and carbon allocation into rhizosphere have the source of energy for root symbionts.643  Biofertilizer  

application will enhance carbon excreting crops in the rhizospheric biota and their activity with specified 

plant microbiome providing an opportunity for altering plant features, suppression of diseases 385 and 

plant flowering time.454 For example, a Bacillus species  genetically altered for nitrogen fixation 

mechanism for production of higher concentrations of plant hormones.298  A combined three-strain 

consortium such as Bacillus spp., Pseudomonas, Rhizobium or Bradyrhizobium are improved nitrogen 

fixers could provide great opportunity of a diverse and complex natural rhizospheric biological 

functioning.6 The reduction in denitrification and Nitrogen losses from the soil through decreasing  

 

microbial activity by plants can improve the nutrient use efficiency (NUE).96,568 The integrated 

development of plant and their rhizospheric microbiome (Figure 2) can be an important step toward 

rhizospheric exploitation for better plant nutrient use efficiency.52  Water use efficiency (WUE) and root 

nutrient uptake will increase the crop yields in the changing climate.6  Colonization of the plant’s 

interior by bacteria generally starts with their establishment in the rhizosphere extensively 

reviewed by Lugtenberg et al. 350 and Lugtenberg and Kamilova.351 A number of mutational 

studies showed that attachment of bacterial cells to the root is a crucial step for subsequent 

endophytic establishment in the root surfaces 147 maize depends on LPS (liposaccharide).47 A 

similar study showed that EPS (exopolysaccharide) is necessary for rhizoplane and endosphere 

colonization of rice plants by Gluconacetobacter diazotrophicus.388 ,493 

Nitrogen Fixation  
Nitrogen (N) constitutes about 2% of the total dry matter of a plant and is essentially required for plant 

growth, the synthesis of nucleic acid, proteins, and enzymes.50 N deficiency leads to reduced growth, 

yellowing of leaves, and reduced branching in legumes. The dinitrogen gas (N2) that represents about 

80% of the atmosphere is not accessible to plants. Plants can only take up soil-available N in the form of 

ammonia and nitrates through their roots (Figure 18). The ammonium form is directly assimilated into 

amino acids and stimulates root branching to increase the surface for the uptake of nutrients as well as 

results in higher amino acid, chlorophyll contents, sugar, starch and the nitrate has to be converted into 

ammonium before it can be used.62 Nitrate improves the uptake of more nutrients through lateral root 

elongation and has a more direct effect on different signalling pathways.429 The process in which inert N2 

gas is converted to a metabolically tractable form in the soil is called nitrogen fixation (Figure 18). The 

manufacturing of synthetic N fertilizer through the industrial process is an expensive process as it needs 

six times more energy than required to produce either phosphorus (P) or potassium (K) fertilizers.79 Crop 

yield has been significantly decreased due to the poverty of farmers who are unable to apply costly 

synthetic fertilizer demands for crops cultivation. Biological nitrogen fixation (BNF), the process in 

which elemental nitrogen is converted to ammonia by bacteria is an alternative source of N for plants 

(Figure 22). These nitrogen-fixing bacteria are ubiquitous in nature and function under different 

environmental conditions.

The input of nitrogen into soil through BNF ranges from 0 to 60 kg /ha year 491 with an estimated 

contribution of 175 million metric tons annually covering 70% of all annual fixed nitrogen on the 

Earth.342There are generally two categories of nitrogen-fixing microorganisms; (a) symbiotic and (b) non-

symbiotic bacteria. The most common symbiotic N2 fixing bacteria able to infect legumes include 
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Rhizobium, Bradyrhizobium, Ensifer, Azorhizobium, and Mesorhizobium, etc. while Frankia nodulates 

non-leguminous trees and shrubs. These rhizobia infect the root hair, stimulate root hair curling, and leads 

to the formation of infection thread (Figure 4). The bacterial cells enter the plant cells through infection 

threads (Figure 22) and result in the formation of a nodule wherein the rhizobia reside and fix nitrogen for 

plants.23 The non-symbiotic diazotrophic bacteria include Arthrobacter, Azospirillum, Azotobacter, 

Enterobacter, Mitsuaria, Pseudomonas, etc. which fix atmospheric nitrogen in the free-living form.213  The 

nitrogen-fixing bacteria improve the soil NH+  concentrations, rhizobacterial population levels, soil 

nitrogenase activity 185 as well as the growth and N uptake in plants.379 

Table 1. Comparative analysis of microorganisms as single inoculant and efficiency (%) when co-inoculated in the 

soil in absence or presence of biofertilizer in stimulating soil fertility and structural parameters. 

 

N.B | 

N = Nitrogen, P = phosphorous, K = potassium, OM = organic matter, AF = aggregate formation,  

GP = glomalin protein, AS = aggregate stability. N/A Positive effect of inoculant. 

 

Similarly, the application of biofertilizer produced from rhizobia Bradyrhizobium strains) and free-living 

PGPR (Streptomyces griseoflavus) improved the growth and yield of several plants such as cowpea, and 

soybean.242BNF is carried out by a nitrogenase complex that consists of two components (i) dinitrogenase 

reductase (an iron protein) which provides high reducing power electrons and (ii) dinitrogenase which 

uses the electrons to reduce nitrogen to ammonia and has a metal cofactor. 185There are three different 

forms of nitrogenase classified based on metal cofactor. (a) Mo-nitrogenase whose cofactor contains 

molybdenum, (b) V-nitrogenase which contains a prosthetic group with vanadium, and (c) Fe-nitrogenase 

contains only iron. Symbiotic as well as free-living diazotrophs use nif genes for the fixation which 

include structural genes that are involved in the biosynthesis of iron-molybdenum cofactor, iron protein 

activation, donation of electrons, and regulatory genes required for the functioning of the enzyme.185 The 

No. Microorganisms N P K OM AF/GP AS References

Single inoculant

1 Bacillus megaterium √  √  √  √  √  √  Ortiz et al ., 442

Bacillus thuringiensis √         ARATI Biopesticide ®    26

Pseudomonas   Putida √  Patten and  Glick  461

2 Bacillus megaterium √  √  √  

Arbuscular mycorrhizal fungi Ashrafi et al.,   36

3 Bacillus megaterium √  √  √  √  √  √  Mengual et al. ,  390 

Enterobacter spp √  Sheng and He, 552

4 Rhizophagus irregularis √  √  Leifheit et al. ,  327

Natural soil microbes √  √  √  √  √  √  Soni and Sharma, 576 

5 Piriformospora indica √  √  Kumar et al ., 310 

Pseudomonas R81 √  Patten and  Glick, 461

Co-inoculant

1 Bacillus megaterium + AM fungi + compost 1 -3 2 Wang  et al .,  654   Bai  et  a l.,  44

2 Azospirillum brasilense + Pantoea dispersa + organic olive residue 13 -29 67 8 Mengual et a l.,381

3 Ps Putida + AM Fungi (Rhizophagus intraradices) 12 248 Ortiz et al .,  442

4 Bacillus megaterium + AM fungi 7 -42 16 Zheng  et al.,   697

5 Azospirillum brasilense + Pantoea dispersa 8 133 84 1 Mengual et al, 391

6 Rhizophagus irregularis + natural soil microbes 1 Leifheit et al.,  327

7 Piriformospora indica + Pseudomonas R81 21 29 12 Zhang and Smith, 689

8 OTAI AG  and OBD-Plus (+) Otaiku et al. , 447, 448; Otaiku et al , 449 

Single/co-inoculant + Organic fertilizer

1 Bacillus megaterium + AM fungi + compost 1 −3 2 Wang, 650

2 Azospirillum brasilense + Pantoea dispersa + organic olive residue 13 −29 67 8 Mengual et al. , 391

3 Bacillus megaterium + sugar beet residue 13 25 14 −6 −14 Walpola  and Arunakumara, 647

4 Bacillus thuringiensis + sugar beet residue 18 42 −21 0 42 Mengual et al ., 390 

5 Enterobacters + sugar beet residue 19 24 −3 −6 61 Mengual et al. , 390 



International Journal of Agricultural Extension and Rural Development Studies 

Vol.9, No.1, pp.38-139, 2022 

Print ISSN: ISSN 2058-9093,  

                                                                                                          Online ISSN: ISSN 2058-9107 

49 
@ECRTD-UK-https://www.eajournals.org   |   Journal level DOI:  https://doi.org/10.37745/ijaerds.15 

 
 

nif genes are found in the form of 20-24 kb cluster with seven operons that encode 20 different proteins in 

diazotrophs.199 

The amino acid sequence of nifH is highly conserved and generally used to study the evolution of nitrogen-

fixing bacteria and widely used to analyze the diversity of diazotrophs in the soil. 184 Investigation of 

diazotrophs community structure using metagenomics based on nitrogenase sequences identified a key 

group of diazotrophs including Anaeromyxobacter, Azoarcus, Bradyrhizobium, Frankia, Geobacter, 

Nostoc, and Pelobacter based on nifH phylogeny421 can be evaluated using sequence analysis of the marker 

gene nifH.398 Besides the ability of PGPR to fix N2 to ammonia, they also have a great impact on nitrogen 

nutrition of plant by increasing the uptake of nitrate (NO3) 
62  and by stimulating NO3

- transport systems  

 

or indirectly as a consequence of stimulated lateral root development (Figure13). It has been reported that 

two putative nitrate transporter genes, that is., NRT2.5 and NRT2.6 appeared to be strongly upregulated in 

response to the inoculation of Phyllobacterium brassicacearum in Arabidopsis thaliana.291 Plants can 

produce nitrification-inhibiting compounds which are known as biological nitrification inhibitors (BNIs) 

and significant increase in plant biomass, chlorophyll content, and nutrient uptake.87,62The exposure of 

pasture grasses, sorghum, and wheat to more NH+ showed an increase in the synthesis and release of BNIs. 

Application of BNI promoted the root branching along with increased nutrient uptake providing a dual 

strategy to enhance fertilizer efficiencies.339  

Microbial Inocula | 

Microbial inocula are one of the valuable bio-resources that could be helpful in restoring degraded lands 

and the significant reasons why broad spectrum inoculants are inserted into the agrowastes biodegraded 

in biodigester for the production of the biofertilizer applied to the soybean  cultivation. The reasons for 

lower response than co-inoculation could be that single microbial inoculum is not likely to be active as it 

faces competition of resources from indigenous microorganisms in order to survive in soil environment. 

The mixture of bacterial or fungal inocula may create synergistic effects while organic manures can meet 

their nutrient demands to make them successful under field conditions (Table 1). These associative 

interactions could be successful and may play a crucial role in restoring the productivity of degraded soils 

with the lacking evidence to support these hypotheses (Figure 14). 563 Singh 562  proposed that successful 

restoration of degraded soil using microbes required a combined knowledge on microbiology, ecology, 

biochemical mechanisms and field engineering (Figure 3). Research reports affirmed the use combination 

of bacteria or fungi inocula with organic amendments to reinstate parameters of degraded soils. 383 , 390 , 

391, 698  Leifheit et al.327 used fungal inoculum with organic residues to increase soil aggregation and their 

stability in pot experiment while Mengual et al., 390 , 391 found increase in soil P availability, total N and 

other microbiological and biochemical parameters with co-application of bacterial inocula (Figure 27). 

Hydrolytic enzymes released by soil inoculants are main drivers of carbon, N and P cycling hence they 

play a key role in hastening the nutrients cycling in soils for plant growth.84, 85 

Cyanobacteria fix atmosphere N2 in degraded soils and release extracellular polysaccharides, which are 

metabolized by the associated soil microorganisms influence soil fertility, decrease soil pathogens and 

therefore improve crop growth.562 Biological N2 fixing bacteria encourage the growth and persistence of 

other soil microbial groups in the rhizosphere by providing Nitrogen and  bacteria exude extracellular 
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polysaccharides that promote soil aggregations.135,546 Bacterial strains  mobilize the fixed or unavailable 

P, K and Fe in the soil including phyto-hormones (Auxin/Indole Acetic Acid) which improve plant 

defense against various pathogens.350, 205  These inocula also produce aminocyclopropane-1-carboxylate 

deaminase that promotes the root elongation (Figure 14), shoot growth, and enhances rhizobial 

nodulation as well as N, P and K uptake in various crops.199,205 Plant growth promoting bacteria (PGPB) 

induce systemic resistance and produce antifungal metabolites (HCN, phenazines, pyrrolnitrin,2,4-

diacetylphloroglucinol, pyoluteorin, viscosinamide and tensin) and also biocontrol agent in various 

diseases and environmental stresses.73, 205 The formulation of gateway biofertilizer (Table 2) contains 

ectomycorrhizal and AM fungi, which  increase the soil nutrient and water transport through soil 

exploration by their hyphal network/pipelines and production of organic acids to mobilize the fixed 

nutrients.22, 54,403, 86 AM Fungi can mobilize N, P, K, Fe and other nutrients in the soil and transfer these 

nutrients to the host plants 570 through translocation process by hyphal network. AM fungi can reduce  

N and P losses 35 through leaching and N2O emission 68 and enhanced nutrient interception of AM fungi 

rooting systems. Due to these activities, microbial inocula drive nutrient cycling and at the same time 

also determined whether these nutrients are made available to plants. By doing so, these microbial 

inocula can achieve satisfactory results in the restoration of degraded soil. Seneviratne et al. 545  affirms 

that application of biofilm based fertilizers developed from N2 fixer bacteria increased N2 fixation and 

soil organic carbon within few months in tropics which leads to sustainability of agro-ecosystem and 

environment. 

 

THEORETICAL FRAMEWORK - WICKED PROBLEM  

 

What is Wicked Problems? | 

Wicked problem are multidimensional challenges that are difficult to resolve due to incomplete or 

contradictory information, differing views on the nature of the problem, or complex interactions with 

other issues like soil amendments, climate change, agriculture etc as a ‘wicked problem. What makes a 

problem a wicked problem are: significant conflict over the values at stake in and the very definition of 

the problem at hand, and the absence of any institution, structure or process that provides a natural social 

or political location in which the problem can be nominated for attention, sized up in a process of 

deliberation and design, and used as the platform for directing coordinated action across many different 

independent organizations. The notion of wicked problems is an approach to understanding the dynamics 

of a major proposed change with multiple and conflicting inputs and multiple possible outcomes, all of 

which play over time against, or occasionally with, each other.445 Wicked problems occur at the interface 

of human/environmental interaction and are characterized by the fact that solutions create a ‘plethora of 

new problems,273 ,531 and the failure to reach an agreement on the desired outcome further exacerbates the 

original wicked problem, therefore transforming it into a ‘super-wicked’ problem.325  329, 330 The values of 

any problems,  are in the continuum and spatial to improve things on as many dimensions as possible. 

Wicked problem has two traits, uncertainty and complexity, all encapsulated in the typology of 

agriculture.445 Scholars on frameworks (Otaiku 444 ; Folke178; Walker and Salt,644) argue that, change does 

not necessarily occur in a linear fashion. There are discontinuities and tipping points. Crises can promote 

innovation in complex systems. Rather than just sustaining what is, it is important to develop the capacity 
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to bounce back after adversity (resilience) and to adapt to change (soil resilience impacts of biofertilizer 

application on soybean   cultivation) and the co-evolutionary framework for managing disease-

suppressive soils.300  Adaptation and resilience are undoubtedly needed given the extent of the impact of 

human practices in agriculture. The participation of local populations is necessary for sustainability 

changes to occur, and this can be done more effectively from the bottom up than imposing changes 

decided at the top of the power structure (stakeholders). Values are in the continuum for any defined 

problems and thrives in chaos and methodologies across many different human activities (framework) 

encapsulate with Figure 5. 

 

Spatial PolySingularity | Metaphor 

Spatial polysingularity theory is post-modernism impacts of human mind creation with spatial 

objectivation beyond intended nor foresaw consequences in cyberspace-time continuum or non-linear 

dynamics framework for problem solving (Figure 1). Wicked problems solution should be ‘adaptive  

 

management’ 273 that involves feedback loops defined by the problems contexts -‘specific situation,  

that it addresses’, rather than the ‘disciplines’ involved incorporating knowledge from those who move 

knowledge to action.  It is integrated with collaboration for multidisciplinary decision value creation 

framework 273 construct that encapsulate drawbacks of “wickedness theory” affirmed by Termeer et 

al.,603 

 
Figure 5 | The framework 444 “Where = Technologies and Ideas” and “how = Collaboration” called Spatial 

polysingularity, the construct provide a means for integration of descriptive, narrative elements, qualitative and 

quantitative information object of research via internrt of things (IoTs) powered by artificial intelligence.662 

What Is a Metaphor? 

A metaphor is defined as a word or phrase applied to an object or concept that it does not literally denote 

in order to make a comparison with the other object or concept under consideration.443 Metaphors are 

especially useful in understanding concepts in social science and theory development. 245 Scholars and 
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practitioners rely on metaphors to gain a deeper understanding of various domains.406 Metaphors can be 

used to perform a variety of analyses 459 as they can facilitate and further our understanding 111 trigger 

new avenues for analysis, and surface new relationships. 

Research Wicked Problems Construct | Spatial Polysingularity 

Ahlfors et al.,7 asserted that, instruction should be a process of “extracting the appropriate concept from a 

concrete situation. A more systemic and holistic approach should replace the reductionist, disciplinary 

worldview of academic research 184 into the trans-disciplinary research approach oriented to solve wicked 

problems, comprising phases of problem identification, structuring, investigation, and bringing results to 

fruition. 216 Many of tomorrow’s breakthroughs will occur at the intersections of diverse disciplines as  

 

accentuated by the ‘spatial polysingularity’ framework define as ‘things only make sense in context,  

determined by its fundamental parts.273 Spatial polysingularity is a recursive function of divide and 

conquer construct, determined by its simplest inputs (retrospective thinking). A function is a process that 

turns an input into an output so that, we can construct outputs (value). Spatial polysingularity philosophy 

analyses the problem solved by the sub-problems of various scales using holism and reductionism. 

Holism - The whole is greater than the sum of its parts; 503 reductionism - a whole can be understood 

completely if [we] understand its parts, and the nature of their sum.503 Recursion is the idea that the 

behaviour of something is determined by its fundamental parts. 470,331,543,574 Spatial polysingularity 

application to a problem must have three distinct properties:  

i. It must be possible to decompose the original problem into simpler instances of the problem. 

ii. Once each of these simpler sub-problems has been solves, it must be possible to combine these 

solutions to produce a solution to the original problem. 

iii. As the large problem is broken down into successively fewer complex ones, those sub-problems must 

eventually become so simple that they can be solved without further subdivision. 

This is essentially the same as one of the fundamental principles of science: If we can predict how 

something behaves in all experimental setups, then we know what it is. So long as we believe that a 

function (value from the context) is what it does. The variable that controls the termination condition is 

called loop value (depends on the solution of the previous problem). Value, not result, drives 

competitiveness for innovation adaptive cycle of development (Figure 5). Value based management 

makes strategy happen by developing close links between strategy, operation, innovation with 

shareholder value as the principal measure of success or failure. Conceptual and theoretical framework 

are the cognitive tools needed to make assertions and supporting knowledge claims (Figure 5) and guide 

the profession toward action.507 Researchers engaged in pragmatic problem solving and product 

development placed a higher premium on viability, workability, and impact, while contributions seeking 

algorithmic models of complex phenomena were associated with simplicity, predictive power, and 

parsimony.301  

Scenarios can catalyse and guide appropriate action today for a sustainability transition. 597  

The collective activity of individuals and their modifications 651 to the environment are responsible for 

intelligence using the internet of things (IoTs conceptual framework to drive methodology and rigor in 

inquiries (Figure 7). A theoretical framework usually precedes the conceptual framework and includes a 
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general representation of the investigated topic. Theoretical (Figure 5) and conceptual (Figure 6) 

frameworks are both part of the methodological toolbox for spatial polysingularity. Together, they are 

referred to as analytical framework. Analytical framework = theoretical + conceptual framework 

(secondary data review, analysis plan, methodology, tools). 

The Spatial Polysingularity Construct  

Analytics |  

a. Value (research outcomes) of talented people (human capital) goes beyond predefined tasks: building 

brands, relationships, products, reputations, and other intangibles (high value).  

b. Collaboration - It refers to the capacity of human communities to evolve towards higher order 

complexity and harmony, through such innovation mechanisms as differentiation and integration,  

 

 

competition and collaboration. The collective activities of individuals and their modifications to the 

environment are responsible for intelligence. 

c. Technologies and ideas -Sustainability of research outcomes are vital to any methodologies of 

research or techniques in products development because all knowledge development is in the 

‘continuum’, the first principle of wicked problems and what (Niggli et al., 425 called concept of  

eco-functional intensification. 

d. Spatial polysingularity thrives on chaos and methodology to solve the wicked problem,  

like soil amendments, soybean cultivation with ecological agriculture etc. Collaborate with the 

Stakeholders and the use various brainstorming techniques to build on each other’s ideas  

(Figure 7). Human Capital [Brainstorm to reach to quantity and encourage wild ideas. In fact,  

it is important to move beyond current understanding of the problem views and solutions]. 

Use Scenarios [Prototypes to represent the problems in a catchy way which can fuel ideas 

generation]. Take feedback on each solution that have been built and continuously iterate it  

until you find an optimal solution.  Because these problems are difficult to define and address, a  

visual explanation of the problem can also help to gain a wider view of the problem. To achieve a visual 

understanding, several methods and tools [Infrastructure] can be used for example develop 

stakeholder’s map, customer-journey map, and rapid personas, application of internet, internet of things 

(IoTs), blockchain and artificial intelligence for agriculture. Thinking outside the box to  expect  

different results,  stakeholders need concrete reasons,, definitely a new paradigm able to explain, 

objectively, the complexity of the problem 163,177 suggest that organizations need both to learn (develop 

insights, knowledge, and associations of past actions) and to adapt (make incremental adjustments where 

required). Stakeholders resort to what Rittel and Webber 501 called ‘good enough’ measures that seem 

neither right nor wrong, and which do not necessarily result in any quantitative change to the problem 

(Figures 5 and  6). 

 

Research Objective |   Biowaste Recycle to Biofertilizer (Figure 5). 

Scenario (A) | Soybean   biofertilizer field application and cultivation.  

Infrastructure (I) | Anaerobic Digester (design, fabrication and development)  

Visit: YouTube https://www.youtube.com/watch?v=pG2ODAx3ICYBiowaste Recycle to Biofertilizer | 

Gateway fertilizer Plant, Abeokuta, Nigeria. 

https://www.yukti.io/brainstorming-techniques/
https://www.yukti.io/how-to-conduct-brainstorming-session/
https://www.yukti.io/why-prototyping-is-an-important-stage-of-design-thinking/
https://www.youtube.com/watch?v=pG2ODAx3ICY
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Human Capital (H) | Ayodele A. Otaiku Ph.D Thesis (Researcher). 

Stakeholders (S) |   Farmers, Academic researchers, Beneficiaries and others. 

 

The key ways in which scientists and ecological modellers can contribute to the search for solutions to 

wicked problems in collaboration with stakeholders are described. Modelling is identified as a tool that 

scientists can bring into the deliberative process to facilitate dialogue and evidence-based decision-

making within a stakeholder forum (Figure 5). Any solution to a wicked problem like agriculture (soil 

amendment like biofertilizer) 445 will significantly affect a wide range of stakeholders, and cannot be 

separated from human ethics, values and social equity. Experience with participatory approaches that 

include stakeholder’s shows that ecological metabolomics modelling 522 can lead to applied outcomes 

that may inform environmental management and policy, thus helping to solve wicked problems. The 

division of responsibility is essential, especially when addressing a problem like agriculture (farm 

inputs), with many choices, perspectives, needs, and alternatives to consider. 

 

Research Objective |   Biowaste Recycle to Biofertilizer (Figure 5). 

Scenario (A) | Soybean   biofertilizer field application and cultivation.  

Infrastructure (I) | Anaerobic Digester (design, fabrication and development) visit:  

You Tube  https://www.youtube.com/watch?v=pG2ODAx3ICY 

Biowaste Recycle to Biofertilizer | Gateway fertilizer Plant, Abeokuta, Nigeria. 

Human Capital (H) | Ayodele A. Otaiku Ph.D thesis (Researcher). 

Stakeholders (S) | Farmers, Academic researchers, Beneficiaries and others. 

Human Capital | 

Building on the potential of the human mind to learn and to expand its diversity of thought and 

imaginative processes, those looking to solve the cognitive processing shortcomings that perpetuate 

wicked problems, including, formulation of biofertilizer, climate change, also seek to create new models 

for learning, capable of breaking down the barriers and biases that prohibit freely shared understanding 

and develop frame for smart agriculture. Figure 5 framework, seek new models to use specific 

functionalities of human thought, like reflexivity, to improve learning capacity, in order to more fully 

‘reflect upon our actions, intentions, and motives’ while, at the same time, noting the fallibility of the 

human mind in matters of egocentrism and related traits, in order to avoid error and enhance cognitive 

processing. Knowledge clusters have the advantage of stimulating and levelling social interaction and 

personal exchanges of information and innovation, which constitute another means of observation and 

learning.471,450 ,330,167 At the organizational level, many organizations seek out knowledge clusters in order 

to develop their competitive advantage in today’s business environment with the understanding that, at 

present, wealth accumulation most often comes from knowledge rather than from manufactured items 602 

,375 and affirmed by learning theorists, is that previous models based on linear rationality do not represent 

the optimal approach to a complex or even wicked problem.343   We postulate that innovation, comes 

most frequently from the human mind at moments of pressure, emotion, and imaginative play (Figure 6). 

The role and use of heuristics, skill development, and sense-making or interpretation, such as the use of 

scenario-planning or strategic mapping, are vital in responding to a wicked problem like development of 

smart agriculture framework.  

https://www.youtube.com/watch?v=pG2ODAx3ICY
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Figure 6 | Actionability (forward arrow for collaboration) and abstractness (backward arrow for research 

objective) of the spatial polysingularity construct, adapted from Van Kleef. 628The cycle of sustainability 644   

is the adaptive cycle symbol (right). 

 

 
  
  Figure 7 | Human capital context for the research design called research-to-value/outcome. 

Scenario (A) | Field Case Study - Soybean   cultivation 

Modern scenario methods are well-suited to these tasks (factors limiting biological nitrogen fixation in 

soybean listed, Table 9). These tasks can help to organize scientific insight into an integrated framework, 

gauge emerging risks, and challenge the imagination. They can provide a means for integration of 

descriptive and narrative elements, and qualitative and quantitative information (Figure 8). The IoTs 

(internet of things) communication with non-scientific audiences, and can engage diverse stakeholders as 

actors in scenario design and refinement (Figure 5). Though their subject is the future, scenarios can 

catalyse and guide appropriate action today for a sustainability transition 597 like application of biofertilizer 

field application and evaluation of soybean  cultivation with focus on the development of a for smart 

agriculture (Figure 23) for regenerative agriculture (Figure 27).  
 

MATERIALS AND METHODS 

BIOFERTILIZER PRODUCTION  

Biofertilizer Production Machines | 
Dryer - An open-air dryer designed and fabricated for the biofertilizer production. The dryer is used twice 

in production, both at the wet phase of the production and after the digestion period.  
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Biodigester -The anaerobic digester (designed and developed) are cubical concrete designs (Plates 5 and 6) 

for biodegradation with the aid of microbial inoculants (Table 2).The digested organic materials releases 

methane gas (hollow bored on the digesters to enable the passage of methane gas) and reduces the organic 

products to a digestible size through biodegradation digesters to enable the passage of methane gas) and 

reduces the organic products to a digestible size through biodegradation.446 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 
Figure  8 | Schematic for the spatial polysingularity construct for execution of the research objective and these 

accentuates the critical thresholds of 12 pillars of Global Competitive Indexes by Taranenko, 601 
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Smasher -This machine cuts the materials into smaller pieces to enable it mix thoroughly in the mixer. 

The slasher is designed to run mechanically and powered by electricity. 

Mixer -This machine mixes the biowaste material (s) poured into mixed with the OBD Plus® and OTAII 

AG ® microbial inoculants (Plate 3). The machine is referred to as sigma mixer and powered by 

electricity. Classification of carrier materials for the production of biofertilizer (Table 3). 

Granulator / Grinder - Improved hammer mill machine pulverizes the biodegraded organic material 

into granules. This machine is designed as hammer mill and powered by electricity. 

 

Shaker -This is a machine designed and developed for sieving granules of the organic material into 

desired sizes. This machine has a lot of perforated small holes at the feeder stock to enhance the shaking 

processes (Plate 1). 

Sealer - The hand sealing machine is used to seal the biofertilizer bags after bagging the product which 

marks the end of production processes, before it is transferred to the store. 

Biowaste Materials | 

The animal waste -The animal wastes (poultry, cow dung, pig) are used in the production of biofertilizer 

with no heavy metals or pollutant.

 

 
 

Figure 9 | The construct value of research outcome from the theoretical trans-disciplinary research framework. 
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 Farm product and waste -The farm wastes (cassava peel, beans shell, yam peels, potato peels), shea 

cake and wood ash. 

Biofertilizer Production Processes | 
Microbial inoculant (Table 2) formulation protocol adapted (Figure 11) mixed with the slashed dried agro- 

wastes which is then loaded into the anaerobic biodigester (Plate 1) . Microbial inoculant a powdery 

material (plant extracts carrier) impregnated with strains of micro-organisms capable of rapidly breaking 

down organic matter (Figure 13) into nutrient-rich-biofertilizer within four (4) weeks (Plate 1). 

Biofertilizer bag in 25 kg and inclusive with micronutrients (Plate 1). The first production stage is to 

ensure that the biowaste are dried through the open air drier.  

Depending on the size of the materials they may be required to run through a slasher to cut them into 

smaller pieces and hence; if the size is considerable small after drying, they are transferred to the mixer 

where microbial inoculants will be applied and ensure thorough mixing to enable good and adequate 

biodegradation of the biowaste materials. Having mixed the product thoroughly in a mixer, they are 

transferred to the anaerobic biodigesters for biodegradation (four weeks). The biodegradation processes 

reduce size and loss of weight of the organic waste’s material by a factor of 3:1. After digestion period 

(biodegradation) there is high tendency for the product to become wet again and therefore require a re-

drying under control heat (hot air) because not to kill the microbial inoculant. Then, the products are off 

loaded form the biodigester to the open-air dryer for the second drying (reduce biofertilizer moisture to 

10%). After the second drying, the products are transferred to the slasher for granulization and 

pulverization powdery substance or to a very small grain size. This process leads to sifting through the use 

of an electric shaker to sieve the product to remove impurities. Bagging is the last manufacturing process 

after shaker process because the product is collected from the shaker to the bagging unit, where they are 

bagged and sealed (Plate 1)

Microbial Inoculant Development | 
Biofertilizer (microbial-based fertilizer) are considered to be crucial components of sustainable 

agriculture (Figure 3), with long lasting effects on soil fertility.367, 55, 565 The term biofertilizer (Table 1) 

can be defined as formulations comprised of living microbial cells, either a single strain or multiple 

strains (mixed or consortium), that promote plant growth by increasing nutrient availability and 

acquisition 497 term itself has evolved over the last 30 years receiving many interpretations.158  

Macik et al 361  asserted  that the greatest misconception occurs when including microbial inoculants 

with other beneficial applications (biopesticides and phytostimulators) as biofertilizer. Likewise, plant 

growth-promoting bacteria or rhizobacteria (PGPB/PGPR) and biofertilizer should not be considered an 

interchangeable term, since not all PGPB/PGPR are biofertilizer.497 Nonetheless, it is worth mentioning 

that biofertilizer can also provide other direct and indirect benefits for plant growth, such as 

phytostimulation, abiotic stress tolerance and biocontrol.173,555 Multi-omics technologies (Figure 11) 

enhanced the understanding of the complexity of microbiomes, characterization, the structure and 

function of microbial communities,287  soil microbial communities and their influence on plant nutrient 

acquisition and other PGP traits.519 , 617 , 618 Microbial consortia inoculation (Table 2) was used for the 

production of gateway biofertilizer (Plate1). 
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The negative effects of AMF on nodule development or non-significant effects on crop yield was 

reported. 26 ,387 Despite the promising beneficial effects of developing biofertilizer consisting of microbial 

consortia, it is unknown how these inoculants would establish across a range of agricultural field settings 
175 defined as a wicked problem in agriculture because even if inoculated microbes colonize their new 

environment initially, their persistence over time is not guaranteed. Our approaches to develop suitable 

bioinoculants at commercial scale from screening potential candidate microorganisms, designing the 

inoculant and adaptation of formulation protocol (Figure11) based on host soil micro-organism.  

 

Microbiological Analysis |  

Bacteria Characterization and Identification | 

Sample Preparation for Microbiological Analysis 

Morphological characteristics of bacterial isolates were examined by Gram’s staining according to the 

method by Salle.525 Biochemical tests, including triple sugar iron agar test, Methyl Red (MR) test, 

utilization of citrate, nitrate reduction test, gelatin agar test, and starch hydrolysis test were studied by 

Cruickshanrk et al.,122 ,105 The bacterial and fungal isolates were characterized based on their cultural, 

biochemical properties and microscopic appearances as described by Cheesbrough.104  Various 

biochemical tests were performed on isolates for characterization according to Burgy’s manual books. 

Morphological, Physiological and Biochemical Characterization 

There are great potential for use of PGPB as biofertilizing agents for a wide variety of crop plants in a 

wide range of climatic and edaphic conditions. Plant growth-promoting bacteria (PGPB) are of great 

agronomic importance. There is widespread distribution of PGPB that flourish in different geographical 

habitats. 

Isolation of Bacteria  

The collection, transportation and conservation of the samples, the methodologies proposed by Cline 108 

and Sosa 579 were used. The beneficial effect of rhizobacteria lies on different mechanisms, such as: 

production of growth promoting substances, siderophores and antibiotics; as well as resistance induction 

in the plant and nitrogen fixation.616 Consequently, the isolation of diazotrophic bacteria, their 

identification through reliable methods and the evaluation of their capacity as plant growth promoters, 

Single biofertilizer slurry consisting of 1g of biofertilizer and 9 mL of 10 mM phosphate buffer (pH 6.8) 

was used as a common inoculum source for most probable number (MPN) assays. One-gram root pieces 

were homogenized in 10 mL of sterile water and serial dilutions were prepared. These dilutions were 

used to inoculate N-free combined carbon medium and N-free malate medium and incubated at 30 ± 1 

°C. The vials showing bacterial growth and acetylene reduction activity were used to inoculate plates of 

the same solid media to obtain pure colonies.The bacterial isolates were grown in Luria Bertani medium 

with shaking at 30 ± 1 °C 671 and studied for mean generation time 217 and Gram reaction.639  The 

morphological and cultural characteristics of the bacterial strains were studied by light microscopy.202 

Total aerobic bacteria, total Coliform bacteria and E. coli were analyzed in surface plate method using 

TSA (Tryptic Soy Agar) and Sorbitol MacConkey Agar medium (oxoid, UK) followed by biochemical 

tests.207  Other bacteria including Bacillus sp., Pseudomonas sp., Azotobacter sp., Rhizobium sp., 

Klebsiella sp. were identified using selective agar medium followed by API immunoassay analysis.9 

Phosphate solubilizing fungi and Phosphobacteria was identified using surface plate method on 



International Journal of Agricultural Extension and Rural Development Studies 

Vol.9, No.1, pp.38-139, 2022 

Print ISSN: ISSN 2058-9093,  

                                                                                                          Online ISSN: ISSN 2058-9107 

60 
@ECRTD-UK-https://www.eajournals.org   |   Journal level DOI:  https://doi.org/10.37745/ijaerds.15 

 
 

Pikovskaya’s agar (PVK) and yeast malt agar plate. In addition, total fungal count, and Nitrogen fixing 

fungi, was determined Sabouraud Dextrose Agar (SDA) in surface plate method followed by 

microscopy.506 Also, Salmonella sp., and Shigella sp., was detected using surface plate methods on 

Salmonella-Shigella (SS) agar (Oxoid, UK) followed by biochemical test. Phosphate estimations were 

done by the ascorbate method.20 Iron was estimated by the bipyridyl method.483 Phosphate-solubilizing 

microorganisms (PSMs) may play an important role in developing sustainable phosphate fertilizer 

systems 590,499 ubiquitous in soil and the plant rhizosphere. Various microorganisms have been isolated 

which solubilize phosphate in pure culture conditions, mainly by decreasing the pH of the medium, either 

by proton extrusion and/or by secretion of organic acids.309 Bacterial abundance was determined using 

the MPN method.224
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Figure 10 | Intrastructure - Anaerobic digestion is a multi-stage process of biowaste recycle to biofertilizer. 

Gateway Biofertilizer Plant, Turkey Project, Nigeria |  https://www.academia.edu/video/jEepAj 

Bio-waste Conversion to Biofertilizer Production | https://www.academia.edu/video/lBboEl 

Visit: YOU Tube |   https://www.youtube.com/watch?v=pG2ODAx3ICY 

 

Plate 1 | Gateway biofertilizer 446 production machine  Model OTAIKU Y2K09 designed, fabricated and developed 

at Gateway Biofertilizer Plant, Kotopo, Eleweran, Ibadan Road, Abeokuta, Ogun state, Nigeria 

produced Gateway biofertilizer (GF1) and Gateway biofertilizer (GF2) and see Table 6. 

https://www.academia.edu/video/jEepAj
https://www.academia.edu/video/lBboEl
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Detection Methods | 

Detection of IAA Producing Microorganisms 

Indole-3-Acetic Acid (IAA) production by agricultural microbes was determined using Salkowski’s 

method 156 and optical density (OD) of the test solution was measured at 530 nm by a UV 

spectrophotometer (Shimadzu, CPS-240A, Japan).401, 647 Moreover, isolates from the rhizosphere are 

more efficient auxin producers than isolates from the bulk soil.533 Some bacteria need longer period for 

optimum IAA production.355 

Fungi | 

Sample collection  

100g of the soil were taken and packed into labeled sterilized bottles.186 , 78 The leave and fruit samples 

were collected by cotton swabs from the leaves and fruits of different plant families, and were placed in 

sterile plastic bags.489 , 576 

Isolation of Fungi 

The soil fungi were isolated by the soil dilution method. One gram of the soil sample was suspended in 

10 mL of sterile distilled water to make serial dilutions (10ˉ¹ to 10ˉ⁵). One mL of each dilution was 

placed on Potato Dextrose Agar (PDA) containing 1 % streptomycin. The plates were incubated at 28˚C 

in the dark. The plates were observed for one week.186,490  The leaves and fruit samples were placed and 

shaken in flasks filled with 100 mL of distilled water, then (0.2mL) of the sample was taken from the 

flasks and transferred into PDA medium with streptomycin. The cultures were incubated at room 

temperature in an incubator for three to five days. The fungal colonies were observed, and the pure 

cultures were maintained. 186 , 267, 262 

Macroscopic and Microscopic Examination of Isolated Fungi  

The fungal morphology was studied macroscopically by observing the colony features (color, shape, size 

and hyphae), and microscopically by a compound microscope with a digital camera using a lactophenol 

cotton bluestained slide mounted with a small portion of the mycelium.186  

 SOIL TESTS FOR MACRO AND MICRONUTRIENTS 

There are about 20 nutrients required for plant health. Three of them, carbon, hydrogen, and oxygen (C, 

H and O) are considered part of the protoplasm, and the remainder are considered to be mineral elements. 

When fresh plant material is dried down, the dry matter remaining will be roughly 10% to 20% of the 

fresh weight. More than 90% of the dry weight will consist of carbon, hydrogen, and oxygen. If only 

10% to 20% let’s say 15% of a plant’s fresh weight is dry matter and all but 10% of the dry matter is 

represented by carbon, hydrogen, and oxygen, it follows that all the  other mineral elements that make up 

the plant account for only 1.5% of the dry weight (0.15 x  0.10 = 0.015). Three main elements are 

nitrogen, phosphorus, and potassium (N, P, K) and are required in abundance. They must be readily 

available through soil medium or fertilizer. The secondary elements are sulphur, calcium, and magnesium 

(S, Ca, Mg). Soil pH has a significant effect on nutrient availability. High pH (>7.5) greatly limits the 

solubility of many elements (Zn, Cu, Mn, Fe), while low soil pH can lead to deficiencies of P or Ca and 

toxicities of Al, Fe or Mn. Similarly, low soil temperature, poor aeration, or the presence of a hardpan 

can limit the plant’s ability to obtain nutrients by limiting root growth and health. In general, 

determination of soil pH can aid in the diagnosis of nutrient deficiencies. Soil pH affects the availability 

of mineral nutrients. Low pH (<5.5) may result in deficiencies of Ca, Mg, P or Mo and perhaps excesses 
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of Mn, Fe or Al. High pH (>7.5) may immobilize Mn, Zn, Fe or Cu, making them unavailable to the  

 

plant up to 4 ppm Boron (B) in the soil without adverse impacts on yield. The long- term effect of excess 

soil boron (>4 ppm) may be reduced photosynthesis from leaf necrosis that can affect 50% of the total 

area. 

 

        

Figure 11 | Envision to Lunch (Figure 12) biofertilizer development workflow from potential candidate 

microorganisms to commercial applications with four novel approaches: single-strain inoculant obtained using 

emerging culture-based methods (culturomics), synthetic microbial communities (SynComs) obtained from a 

bottom-up approach, whole microbiomes recovered from natural or engineered ecosystems (top-down approach), 

and prebiotics obtained from root exudates 125 and adapted from BioRender (https://biorender.com/)
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Characterisation of location and experimental site 

A field experiment was conducted at the research field of Gateway Organic Fertilizer Plant, Eleweran, 

Abeokuta, Ogun state, Nigeria Latitude 70 121 N and Longitude 30 251 E in the late cropping season of 

2010 (Plate 1). The collected soil samples were air-dried and sieved through 2mm sieve. Particle size 

distribution was determined using the hydrometer method.78  

Analytical Methods  

The textural class of the site was determined using the USDA textural triangle. Soil pH was 

determined in water with the aid of pH meter using 1:2 soil: solution ratio.381 Organic matter (Figure 

13) was determined by using chromic acid digestion method.646 Organic carbon was determined using 

Walkley and Black’s method as described by van Reeuwijk.629 Total nitrogen was determined using 

macro Kjeldahl method.261 Available phosphorus was extracted using Bray-1 method 439 and read with 

spectrophotometer. Exchangeable cations were determined using ammonium acetate (NH4 OA) 

buffer.102 Boron test use some modification of the hot-water extraction procedure originally developed 

by Berger and Truog (1939) although the Mehlich 3 extractant is receiving more interest.558 Soil tests 

for cations Mg and K+ 209 and Ca48 typically estimate the quantity of water-soluble and exchangeable 

forms by replacing the cations on the soil's exchange site with a counter ion such as Na+ (Morgan) or 

NH4
+ (Modified Morgan and Mehlich 3). Sodium and potassium were determined with the aid of 

flame photometer while Calcium and Mg were determined using Atomic Absorption Spectro 

-photometer (AAS). The available iron, zinc, copper and manganese were determined by atomic 

absorption flame photometer after extracting the soil with Diethylene Triamine Penta Acetic acid 

(DTPA) as described by Lindsay and Norvell.336 

Despite its success on the human microbiota, multiple combinations in culturomics (that is., various growth 

media, culturing conditions, atmospheres, and times of incubation) have yet to be extended and developed 

for the soil and plant- associated microbiome. Sarhan et al. 532   suggested a “plant-tailored culturomic 

technique” that combines culturomics with plant-based media (Figure 11) used containing nutrients of 

animal origin (that is, nutrient agar, R2A, and LB) to isolate plant associated microbes, whereas plant 

materials or dehydrated juices powders should be used instead. In fact, P-solubilizing Bacillus circulans 

and N2- fixing Azospirillum brasilense have been successfully grown on plant-only-based culture media.675 

, 404 Thus, ensuring inoculant survival and function.502 , 617 Microbial consortia (Table 2) can consists of two 

or more strains that are either closely 317, 271 or distantly 480 , 157 related that provide an overall additive or 

synergistic biofertilization effect. One of the most common applications is the co-inoculation of rhizobia 

and AMF on legumes, as a number of studies report a synergistic effect on plant growth promotion and 

classificsation of carrier materials for the production of biofertilizer (Table 3). 663.36 , 281  In addition, online 

platforms such as KOMODO (Known Media Database, http://komodo.modelseed.org) that includes 

>18,000 strain–media combinations and >3,300 media variants/compound concentrations can be used as a 

guide for developing suitable lab media for growing microorganisms.431 Therefore, new culturing methods 

to discover novel isolates with biotechnological applications are key for biofertilizer development (Figure 

11).  
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Biofilms consist of associated microorganisms, either from a single or multiple species, adhering to the 

biotic or abiotic surfaces in a self-produced matrix of extracellular polymeric substances (EPS).481 This 

matrix provides the structure and protection by which microbes have the ability to chemically link with 

each other by quorum sensing (QS) and work as one unit.641 In soils, microbial communities such as 

bacteria and fungi (Table 3) can form biofilms on abiotic surfaces such as ore (minerals), water-air  

interfaces, and dead organisms.494 Biofilmed biofertilizer (BFBFs) (biofertilizer containing microbial 

communities capable of forming biofilms) have emerged as a new inoculant strategy to improve 

biofertilizer efficiency and sustain soil fertility.458  

The idea behind BFBFs is that biofilm formation will create a more suitable environment for biofertilizer 

to compete with resident organisms and to cope with the heterogeneity of biotic and abiotic factors in soil 
625 where, several studies have shown that biofilmed biofertilizer augmented P-solubilization,596 N2 

fixation 649  siderophore production 498 and Zn solubilisation.622 Kopyci´nska et al., 305 studies highlighted 

the role of biofilm formation, by exopolysaccharides (EPS) production, in Rhizobium leguminosarum 

during Zn stress where the EPS-deficient R. leguminosarum mutants were more sensitive  

to Zn exposure, whereas cell viability and root attachment were significantly higher in EPS producing 

strains. Multi-species biofilms were more resilient in comparison to single-species biofilms. 649 , 635 

Natural rhizobacterial biofilms are often in mixed communities with interspecies interactions (Table 2 

and Figure 22). This assembly is usually more advantageous than single planktonic cells, with optimal 

and maximal use of nutrients and resources 422 like the fungal–bacterial biofilms have been shown to 

enhance nutrient uptake and environmental stress tolerance compared to mono - or mixed-cultures of no 

biofilm-forming microorganisms.227  Inspired by the concept of personalized diagnosis in medicine, 

Schlaeppi and Bulgarelli 538 proposed a similar strategy in agricultural systems and  adapted as eco-

strategy (Figure 5)  consists on customizing tools such as microbial inoculants into farming practices 

(Tables 1 and 2 respectively) as the protocol for the smart agriculture framework development. Bell et 

al.,65 affirmed a customizable field-scale microbial inoculant that, with appropriate implementation, could 

have long-lasting effects (Figure 26) and could be adopted by farmers in humid tropics.  In Sub-Sahara 

Africa considering that soil conditions might change dramatically over short distances 464 product 

development strategies of   one formulation applied for all fields” seems unrealistic (Figure 21). One 

strategy is the on-farm production of mycorrhizae-based inoculants in which studies have shown their 

effects on potato 148 , 201 and eggplant 148 growth and nutrition. 
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Table 2 | Biofertilizer Production Inoculants Composition/Information on ingredients:  CFU Count per ml … > 6 x 109   

 

 

GF1 = Gateway Biofertilizer   |   GF2 = Gateway Biofertilizer 

S/N Micro-organisms GF1 - Micro-organisms Charaterization GF2 - Micro-orgamisms Charaterization References

Microbial Inoculants  Commercial OBD-Plus (+) OTAI AG Otaiku et al ., 447 ; 448 , Otaiku et al ., 449 

1 Nitrogen-Fixing Bacteria Azotobacter spp Azotobacter spp Sangeeth et al ., 526  ; Zheng  et al .,  697 

Rhizobium spp Azospirillium spp Panwar,and Singh 2000 455

Micro-organisms Bacillus spp Clostridium spp Diep and Hieu,145  ; Minamisawa et al ., 397

Cyanobacteria spp Bacillus spp Badr et al .  43 ; Han et al . 222

Azospirillium spp Esherichia spp ; Cyanobacteria Pettigrew, 462 

2 Fe (iii)- reducing Bacteria Desulfuromonas acetoxidans Geobacter metallireducens Lovley et al., 349  

Shewanella putrefaciens Desulfuromonas acetoxidans Devereux et a l., 141 ; Babauta et al. , 42

Geobacter sulfurreducens Geobacter spp  Babauta et al ., 42

3 Arbuscular Mycorrhiza fungi Glomus spp Glomus spp Schweiger et al ., 542 ;  Tiwari, 613

Mycorrhiza (AMF) Mycorrhiza (AMF) Thompson, 609

4 Phosphate Solubilizing Fungi Aspergillus niger Aspergillus niger Wang et al ., 651  ;  Zeroual et al., 686

Aspergillus terreus Aspergillus terreus Mehrvarz et al .,384

Actinomycetes spp Actinomycetes  spp Adesemoye et al .,  3

Penicillium spp Barea et a l., 53

5 Potassium Solubilizing Bacteria Pseudomonas putida Pseudomonas putida Han and Lee , 221 ; Vassilev et al.  634 

Enterobacter hormaechei Bacillus mucilaginous Sheng and He , 552

6 Phosphate Solubilizing  Bacteria Rhizobium spp Rhizobium spp Boraste et al ., 76   

Pseudomonas fluorescens Agrobacterium spp Idriss et al.,   253  ; Khan et al .,  296

Paenibacillus glucanolyticus Richardson et al ., ; 500 ;  Sangeeth et al ., 526

7  Cyanobacteria Blue-green algae Blue-green algae Mandal et al. ,  372 ;  Singh,  562

8 Sulphur Oxidising Bacteria Thiobacillus thioxidans, Xanthobacter Bacillus, Pseudomonas, Streptomyces Santra et al ., 529

9 Sulphuroxidation fungi Fusarium, Aspergillus  Penicillium  , Aspergillus niger Grayston et al. ,212 ;   Zhen et al .,  696

10 Sulphur Reducing Bacteria (SRB) Desulfovibrio desulfurican Desulfomonile spp. Jones et al. ,275  ; DeWeerd et al .,143 ;  Cravo-Laureau et al .,116
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Table 3 | Classification of carrier materials for the production of biofertilizer. 

 

        

Figure 12 | DEVELOP - Conversion of microbial inoculants into biofertilizer  https://www.academia.edu/video/jEepAj (anaerobic biodigester production, 

Plate 1) following the initial stages (ENVISION) of bioprospecting and in vitro testing, selected inocula and/or prebiotics require a proper formulation to 

N/S Categories of Carrier Material  Carrier Materials      References

1 Natural materials Peat, lignite, coal, clay, and organic soil. Paliya et al. ,452 ; Shravani,556

2 Inert materials Talc, vermiculite, perlite kaolin,bentonite, silicate,  Saravanakumar et al., 530

 rock phosphate, calcium sulphate and zeolite.

3 Synthetic polymers Polyacrylamide, polystyrene, and polyurethane. Herrmann and Lesueur , 235

4 Natural polymers Xanthan gum, carrageenan, agar agar, and agarose. Thirumal et al., 608

5 Organic materials Charcoal, biochar, composts, farmyard manure, sawdust, maize straw, Roychowdhury et al , 515  Wang et al ., 650

vermicompost, cow dung, corn cob, and wheat husk. Hassan et al. , 226   ; Rodrigues et al. , 504

6 Agro-industry by-product Sludge ash, jagerry. Paliya et al. , 453 ; Shravani , 556

7 Biowaste  (Agriculture) Gateway biofertilizer (animal dung and wood ash based + inocula) .  Otaiku, 446 ; Soretire et al .,578 ; Onyenaliand Olowe , 441

8 Biowaste  (Agriculture) OBD-Biofertilizer  ((animal dung and wood ash based + inocula) . Otaiku et al., 447;  448 ; Otaiku et al. ,449 ; Wang , 650
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ensure shelf life and protection. SCALE | Field study finally, product pre-commercialization steps include in planta trials under controlled (growth 

chamber/greenhouse) and uncontrolled (field) conditions (Plates 2 and 3), Production scale-up to a commercial scale, proper biosafety screening tests 

(example, toxicity and pathogenicity), and compliance with existing regulations and adapted from BioRender (https://biorender.com/). 

 

 

Table 4 | Factors limiting biological nitrogen fixation in soybean cultivation. 

 

 

Locally produced inoculants (Table 2) often have low costs and are applied shortly after production, without the need of shipping and 

storage.149 Yet, it is important to consider how these products will be feasible or cost-effective on a global scale (Figure 21). A good starting 

point could be establishing an optimal range for biofertilizer performance, in which the inoculants would be introduced to conditions best 

N/S Factors  Effect  Effect  References   Recommendations

1 High soil temperature Reduces the survival of rhizobia Munevar and Wollum, 411 Surface mulching; placement

in soil and inhibits nodulation and N2 -fixation. Michiels et al ., 394 of inoculum in deeper soil layers; select heat-tolerant strains.

2 Soil moisture Reduces rhizobial numbers, limits migration of rhizobia, Hunt et al ., 246 Optimization of soil moisture;

 reduces nodulation and Nitrogen fixation. Smith Read,570 select moisture-stress tolerant strains.

3 Soil acidity Reduces the survival of rhizobia in soil,  Zahran, 685 Use of acid-tolerant legume

inhibits nodulation and Giller, 193 cultivars and rhizobia; liming

N2 - fixation and leads to P fixation. De Freitas et al.,  131 of soil to pH at which Al and

Increases aluminum toxicity and calcium deficiency. Singh et al ., 565. Mn are no longer toxic.

4 P deficiency Inhibits nodulation, N2 -fixation and rhizobial growth. Gates and Muller, 191 Addition of P fertilizers,

Cassman et al ., 97 Amelioration of soil acidity, inoculation with effective

Shridhar, 557 mycorrhiza, and selection of P-efficient cultivars.

5 Salt stress Reduces nodule formation, respiration Tu, 623 ;  Delgado et al .,137 Select salt-tolerant strains.

and nitrogenous activity. Shiraiwa et al .,  554

6 High soil N level Inhibits root infection, nodule development Abdel-Wahab et al ., 2 Breed cultivars which are less sensitive to mineral Nitrogen.

and  nitrogenous activity. Imsande, 256  ; Arreseigor et al ., 32 

7 Herbicides, fungicides Inhibits rhizobial growth; reduces Schisler et al. ,  535 Test the particular rhizobial inoculum and 

and insecticides nodulation and Nitrogen -fixation; deforms Mallik and Tesfai, 368 its behavior in respect of the product used before application; 

root hairs and inhibits plant growth. Isol and Yoshida,  257 separate   placement of rhizobia and  fungicides.

8 Competition from native organisms Suppression of inoculation by native rhizobia. Dowlig and Broughton, 150 Targeted research.

https://biorender.com/
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resembling the soils they were isolated from. Here, different formulations can be designed for particular soils and (or) plant-root systems with 

the incorporation of certain aspects of precision farming (Figure 23). Thus, identifying areas in a particular field that might be more suitable to 

one formulation or another (Table 3). P. putida has been previously studied for their ability to solubilize phosphate and thus promote growth 

of leguminous.51Multiple lines of evidence show that root exudates 125 could be used as compounds to stimulate the growth of beneficial 

microbiota, rather than introducing microbes by inoculation (Figure 22). 

 

A similar approach was proposed by Arif et al.,30 affirmed that particular soil amendments could act as “prebiotics” to promote microbial 

functions (Figure 26). Qiu et al. 475 affirmed that synthesized compounds can be added to crops to attract or favour particular microbes (Table 

1) these “plant prebiotics” could be used in combination with microbial inoculants to enhance biofertilizer efficiency (Figure 14). By acting as 

signalling molecules, these compounds could potentially attract introduced microbes to the rhizosphere, thus giving them an advantage over 

other microorganisms for early colonization (Figure 4). Biofertilizer formulations (powders and granules, Table 3) are challenging for non-

sporulating bacteria, as desiccation disrupts cell membranes, causing cell death and overall loss of viability during rehydration and can lead  

to major setbacks for product commercialization (Figure 12). 

SOYBEAN   FIELD CROP CULTIVATION  

Soybean  yield potential (Plates 2 and 3) has been defined as the maximum yield of a crop cultivar grown in an environment to which it is 

adapted, with nutrients and water non-limiting, and pests and diseases effectively controlled.165  Maximizing legume (biomass) and seed yield 

within the constraints imposed by agronomic management and the environment because larger biomass crops require more Nitrogen (N), N2 

fixation will be increased as biomass yield is increased. This approach assumes a capacity for N2 fixation sufficient to satisfy increased N 

demand of larger plants (Table 4). Soybean  reviewed reports 266 , 231 much of the breeding has been conducted in moderate to high N soils, 

breeding for symbiotic nitrate tolerance 232, 230 ,575 althousgh plants were grown in low N soils for matching plant genotypes and rhizobia for 

selective 117 and indiscriminate (promiscuous) nodulation307 was reported. Optimizing legume nodulation through specific nodulation traits 

(mass and duration), and depending on the circumstances, for promiscuous or selective nodulation 142, 307,117 were reported. Continued 

improvements in the effectiveness of legume inoculants and the matching of strains with host genotypes should be research 82 using Figure 5 

framework for the scope to select rhizobia for specific environmental niches, 273 that is, acid tolerant strains for acidic soils.240 , 247 
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The future soybean  field trials should consider host strain specificity important and to identify highly effective combinations of host cultivar 

and rhizobial strain.416,417,419,18 An extension of this strategy (Table 2) is to develop cultivars of soybean  that bypass the naturalized soil rhizobia 

and nodulate only with highly effective inoculant strains.117 To avoid the need for inoculation, scientists in the soybean  breeding program at the 

International Institute of Tropical Agriculture (IITA) sought to exploit locally used cultivars, such as Malayan and Orba, grown by small farmers 

in Nigeria for more than 30 years with low inputs and without inoculation.420 IITA hoped to establish soybean  as a widely grown crop in west 

Africa in which promiscuous nodulation was combined with the yield, quality and disease resistance traits of improved United States cultivars 

resulted to N2 fixation and yield may be limited by then low effectiveness of the naturalised soil bradyrhizobia. 315 Vasilas and Fuhrmann 632 

showed that Forrest soybean nodulated with highly effective strain USDA 122 fixed 29% more N2 and produced 31% more grain than plants 

nodulated with the naturalised soil bradyrhizobia.   
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The future soybean  field trials should consider host strain specificity important and to identify highly 

effective combinations of host cultivar and rhizobial strain.416,417,419,18 An extension of this strategy 

(Table 2) is to develop cultivars of soybean  that bypass the naturalized soil rhizobia and nodulate only 

with highly effective inoculant strains.117 To avoid the need for inoculation, scientists in the soybean  

breeding program at the International Institute of Tropical Agriculture (IITA) sought to exploit locally 

used cultivars, such as Malayan and Orba, grown by small farmers in Nigeria for more than 30 years with 

low inputs and without inoculation.420 IITA hoped to establish soybean  as a widely grown crop in west 

Africa in which promiscuous nodulation was combined with the yield, quality and disease resistance 

traits of improved United States cultivars resulted to N2 fixation and yield may be limited by then low 

effectiveness of the naturalised soil bradyrhizobia. 315 Vasilas and Fuhrmann 632 showed that Forrest 

soybean nodulated with highly effective strain USDA 122 fixed 29% more N2 and produced 31% more 

grain than plants nodulated with the naturalised soil bradyrhizobia. 
 

Design and Treatments 

A field trial of 4 x 3 factorial treatment structure was laid out in Randomized Complete Block Design 

(RCBD) replicated three times. Three sources of organic fertilizers (Gateway biofertilizer 1 (GF1), 

Gateway biofertilizer 2 (GF2) and Sunshine fertilizer (SF)) at four application rates (0, 5, 10 and 15) t/ha 

and NPK 20:10:10 as a check (30kg N/ha) were applied on soybean cultivar (TGx 1440 - 1E). GF1 

consisted of cassava peels and rumen content with OBD Plus inoculants and GF2 had Swine waste, cow 

dung and wood ash with OTAI  AG inoculants  (Table 6, Plate 1) while Sunshine consisted only of 

poultry manure  [macronutrient composition 3.5g/hg (Nitrogen); P(%) 1.0; K(%) 1.2].The land was 

cleared and stumped manually. It was ploughed and harrowed before planting. The net plot size was 2m x 

2m, with two seeds planted per hole. Biofertilizers were incorporated into the soil 2 weeks before 

planting at the rate of 0, 5, 10, and 15 t/ha, with basal application of inorganic fertilizer. Soybean variety 

TGX 1440-1E was planted by seed drilling with a spacing of 0.5 m between rows. Weeding was done 

manually two weeks after planting, and all other cultural practices were observed apart from the 

treatments applied. 

Sampling and Data Collection 

Pre-planting soil sample was collected randomly with soil auger on each plot, this was air dried and 

passed through 2 mm sieve. Data were collected at 8 weeks after planting (WAP) on the number of 

nodules per plant, nodules dry weight, plant height, number of leaves per plant, shoot and root dry 

weight. 

Table 5. Soil profile of soybean field trial.                         Plate 2 | Biofertilizer applied to soybean cultivation. 
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Statistical Analysis 
Data collected were subjected to analysis of variance (ANOVA), General Linear Mixed Model (GLMM), 

with model parameters evaluated using Restricted Maximum Likelihood (REML) algorithm. Significant 

means were separated using Duncan’s Multiple Range Test at 95 % confidence level. The statistical 

package used for the analysis was SAS.534 Reproductive growth parameters (number of pods/plant, pod 

weight/ plant and seed weight/plant) were also determined following standard protocol. Nitrogen fixed 

was determined at 8 WAP by ureide assay by Herridge and People.233 

    

         Plate 3 | Soy bean cultivation, using gateway biofertilizer (GF), Abeokuta, Ogun state, Nigeria.  

RESULTS 

Growth Response |  

Fertilizer sources had no significant (P > 0.05) effect on vegetative growth parameters, except plant 

height at 8 WAP. GF 2 had significantly taller plant, which was not significantly different from GF 1 and 

SF. This is an indication that omission of phosphorus from soybean nutrition can drastically reduce shoot 

dry matter yield of soybean as suggested by Bekere et al .64 Significantly, smallest height was observed 

when CF was applied. Significant (P < 0.05) interaction of sources x rates of application was observed on 

all growth parameters except shoot and root dry weight (P > 0.05) at 8 WAP (Table 7). Increasing 

application rates did not result in any significant difference on the number of leaves for all the 

biofertilizer sources except GF 2 that had significantly (P < 0.05) higher number of leaves (120) at 15 

tons/ha application rate (Figure 18). This may be due to microbial population 358 and organic colloids 

during decomposition 77 and moisture/water relations. Similar trend was observed on the plant height. 

However, GF1 had a curvilinear response (P < 0.05) with the tallest plant (48.2cm) observed at 10 tons 

/ha application rates. 

Parameter Values

pH 6.4

Sand % 81.2

Silt % 12.8

Total Nitrogen (g kg-1) 1.2

Available P(mg kg-1) 6.28

Exchangeable Ca (Cmol kg-1) 11.35

Na (Cmol kg-1) 1.42

Mg (Cmol kg-1) 0.81

K (Cmol kg-1) 0.8

% Base Saturation 99.79
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Yield Responses |  

Biofertilizer sources had a significant (P < 0.05) effect on yield components examined at 8 WAP (Figure 

15). However, there was no significant (P > 0.05) effect of biofertilizer sources on pod weight/plant. GF 

1 had significantly (P < 0.05) higher number of pods and seed weight/plant. There were no significant 

differences among other sources on seed weight and number of pods/plants. Significant interaction  

(P < 0.05) of sources x application rates was observed on number of pod and seed weight/plant. No 

significant interaction (P > 0.05) of sources x application rates was observed on pod weight/plant (Table 

7). It was observed that increasing application rates for all sources did not lead to any significant 

differences in the number of pods and seed weight/plant. Significantly higher number pods/plant (131) 

was observed when there was deficit of GF 1, while significantly least number of pods/plant (58) was 

observed when SF was applied at rate 10 tons/ha. No significant differences were observed on the seed 

weight/plant with increasing application rates (Plates 2 and 3).  

 

Nodulation Response | 

Soybean plants assimilate the N from three sources, N derived from symbiotic N2 fixation by root 

nodules (Ndfa), N absorbed from soil mineralized N (Ndfs), and N derived from fertilizer when applied 

(Ndff) Ohyama et al., 433 (Figure 14). Fertilizer sources had no significant (P > 0.05) effect on nodulation 

in soybean (Plates 2 and 3, Table 8). Percentage of nitrogen fixed was significantly affected by 

biofertilizer sources with GF 1 having significantly higher percentage of nitrogen fixed (54.1%), which 

was not significantly different from GF 2 (52.2%). The results affirmed by Kumaga and Ofori’s 308  

which states that among various factors that can contribute to soybean success, phosphorus and 

inoculation had quite prominent effects on nodulation, growth and yield parameters. Significant 

interaction (P < 0.05) of sources x application rates was observed on number of nodules and percentage 

of nitrogen fixed (Figure 16). No visible pattern was observed with increasing application rates of 

different sources on the number of nodules.  However, increasing application rates of different sources 

resulted in significant (P < 0.05) increase in percentage of nitrogen fixed except SF. Soybean  vegetative 

growth parameters, nodulation, amount of nitrogen fixed, yield and yield components were determined at 

8 weeks after planting (WAP), Figure 15. 

Fertilizer sources had no significant (P > 0.05) effect on growth parameters except on plant height, GF 2 

having significantly (P < 0.05) taller plant. The results attributed to the fact that there is a synergy result, 

thereby secreting different organic acids11 like carboxylic acid and thus lowering the rhizosphere pH 229 

in Figure 14. GF 2 had significantly (P < 0.05) higher number of leaves and taller (P < 0.05) plant with 

increasing application rate, which was not observed in other sources. Percentage nitrogen fixed increased 

significantly (P < 0.05) with application rates in GF1, which was not observed in others (Figure 17). 

Conversely, significant (P < 0.05) depression was observed on number of pod/plant with increasing 

application rate in GF1, with no visible pattern in pod weight/plant with increasing application rates. The 

increasing application rates of GF2 could give comparative performance of soybean as chemical fertilizer 

in the transitory zone of Nigeria. Soybean has the capacity to form a symbiotic association with 

Rhizobium japonicum and able to fix 20% of the atmospheric nitrogen throughout the world annually.180 

Soybean is a sulphur loving plant and like other oilseed crops, its sulphur requirement is more than that 

of many other crops for proper growth and yield.  
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The response of soybean to sulphur application has been reported by several workers.418,484 Phosphorus 

and Sulphur interactions in soils of poor fertility may be more important. Majumdar et al. 363 found that 

combined application of P and S @ 60 kg P2O5/ha and 40 kg S/ha respectively increased the number of 

pods plant/ha. The highest number of pods plant may be due to the fact that, the combined effect of both 

phosphorus and sulphur had positive effect on the reproductive growth and pod formation of soybean.The 

present studies  (Table 7) are in accordance with the findings of Tomar et al.615 and Majumdar et al.,363 

who reported greater increase in grain yield of soybean  with combined application of phosphorus and 

sulphur the highest biological yield of soybean  (5.307 t/ha) was recorded with the treatment combination 

of P3S2 (50 kg P/ha+20 kg S/ha. 

 

Pod Number | 

GF2 pod number reduction in crop productivity under a condition of limited nutrients energy for pod 

production similar to Smith et al., 571  Makinde et al., 364 and Daramola et al., 127 reported that availability 

of adequate nutrients could improve crop growth and yield parameters, the GF2 phosphorus was too 

much for the nodulation. Amongst the many factors that can subsidize to the success of soybean, 

phosphorus has significant implications on growth and yield attributes, Table 6 and affirmed by 

scholar.308

 

 
Figure 13 | Ohyama et al., 433 adapted three sources of Nitogen assimilated in soybean plants. Organic nitrogen 
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available for mineralizationin soil with the nodules on legume roots a close-up shows a few nodules on roots of a 

soybean plant with one nodule sliced open to expose the red color of its oxygenated leghemoglobin. A scanning 

electron micrograph shows a single plant cell within a soybean  nodule stuffed with the Bradyrhizobium japonicum 

bacteria specific to the symbiosis with soybean  and adapted from R. Weil; SEM courtesy of W. J. Brill, University 

of Wisconsin and Leghari et al..318 

Similar reports affirmed sharp increase in  soybean  crop yields is partly due to the balanced fertilization 

and good cultural practices.400   Whereas, increasing application of phosphorous  to 975 kg P2O5/ha has no 

increase in seed productivity, but has an impact on quality of seed.438,441 GF1 produce the highest pod and 

similar to the report of Tahir et al.,599 where 94% pod per plant was reported with the application of 

inoculant + Phosphate + Nitrogen and implies that, the lowest level of P used (30 kg P2O5/ha ) when 

combined with inoculant and  chemical fertilizer was sufficient to induce increase in soybean  pod  

 

production in the study area and reducing cost of production. Sharma et al.,551 reported that pods plant of 

soybean were greatest with 75 kg P/ha and Rhizobium + farm yard manure + phosphate solubilizing 

bacteria. The use of broad spectrum inoculum (Table 6) is consistent with that of Singh et al.,564 who 

reported that there was no significant difference between pod yield of non-inoculated and inoculated 

soybean seeds with the use of B. japonicum only. Soybean  N2-fixation has an economic value in terms of 

the N that it supplies to the plant from the air which otherwise would need to come from soil and/or 

fertilizer sources. There is also an economic value in the residual benefits for soil N fertility and increased 

productivity of subsequent crops.620 In most soils, the savings were equivalent to 40–60 kg N/ha. Duong 

et al., 152 reported that 240 kg N/ha would have been required to produce an equivalent grain yield to the 

inoculated treatment. The combined application of bacterial inoculant and P fertilizer to soybean and 

common bean increased biomass production and grain yield compared with the singular use of N and P  

or (Brady) rhizobial strains. Economic analysis shows that the increase in grain yield with inoculation 

translated into higher marginal rate of return (MRR) and profitability for soybean and common bean 

small farms. The emphasis given to Rhizobium in biofertilizer research shows its high specificity to only 

legumes (common bean 47%; lucerne 23%; soybean 14%; desmodium (a leguminous pasture species) 

9%; and other minor legumes 7%; in that order) unlike mycorrhiza, that works in 80% of all plants.432 A 

wider use of rhizobium inoculants in marginal areas depends on the ability to develop strains which are 

tolerant to high temperatures, soil acidity, drought and salinity.432  

 

DISCUSSION 

 

The broad interest in soybean is largely due to the high protein content of the grains, about 40%, 

representing an important protein source for human and animal diets. Currently, inoculation with efficient 

strains allows the soybean  plant to obtain its entire N needs from BNF.247, 249 ,700 Today, concern has 

been expressed in terms of whether BNF is capable of meeting increased N needs of newly released more 

productive cultivars as well as if it is capable of allowing maximum grain yields. 638, 650,320,114 

Biofertilizer from Anaerobic Digestion |  

Anaerobic digestion (AD) is defined as a waste treatment in which liquor or slurried organic wastes are 

decomposed biologically under strictly anaerobic conditions (Plates 4 and 5). AD is a natural process in 
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which microorganisms (Table 2) break down organic matter (Figure 13), in the absence of oxygen, into 

biogas [a mixture of carbon dioxide (CO) and methane] and digestate (a nitrogen-rich fertilizer). The 

biogas can be used directly in engines for Combined Heat and Power (CHP), burned to produce heat, or 

can be cleaned and used in the same way as natural gas or as a vehicle fuel. The digestate can be used as 

a renewable fertilizer or soil conditioner (Plates 2 and 3) called biofertilizer (Table 6). The purpose of this 

pre-treatments is inoculation of agrowaste feedstock because anaerobic digestion is a complex biological 

process (Figure 10) and its performance is influenced by microbial diversity (Table 2) balanced active 

inoculum is essential for the possible degradation to be carried out (Plates 4 and 5). Under anaerobic 

conditions, organic forms of nitrogen (N) are converted into ammonium-N (NH-N), that is, readily 

available nitrogen. The readily available nitrogen (RAN) content of cattle slurry is typically 50% and pig 

slurry c. 60% of total-N.24 It might be anticipated that a measurable increase in the proportion of readily 

available N would occur in these materials, as a result of the digestion process (Figure 10) to nutrient 

impacts, a number of benefits are claimed to accrue as a result of AD, including a reduced risk of odour 

nuisance and a reduction in viable pathogenic organisms.577 Ezigbo 167 reported that, the rate of bio-

degradation is affected by the following factors: Moisture content-Bio-digestion occurs faster in the 

presence of moisture while lack of water makes the survival of degrading organisms difficult; Surface 

area-this plays an important role in bio-degradation and finer the particles, the faster the digestion rate;  

pH- bio-digestion occurs best at a medium to slightly acidic pH; temperature: high temperature favours 

bio-digestion while low temperatures slow it down. 

 

             
 Plate 4 | Anaerobic digester Old design do not                 Plate 5 | Anaerobic digester New design to capture the 

biogas produced, 2009, UNDP Project.                                  biogas produced, NESREA Port Harcourt, 2012. 
   

https://www.academia.edu/video/jEepAj        https://www.academia.edu/video/lBboEl 

Gateway Biofertilizer Plant, Turkey Project, Nigeria.          Bio-waste Conversion to Biofertilizer Production.  

 

Recent research results indicate that 55-95% of the N (nitrogen) in animal diets is excreted through faeces 

and urine.433 High proportions of P (phosphorus) and K (potassium) in animal diets are also excreted. 

Animal manures and slurries are therefore rich in plant nutrients. This is also the case for many other types 

of anaerobic biodigester (AD) feedstock, making digestate a valuable biofertilizer (Figure 10). By making 

https://www.academia.edu/video/jEepAj
https://www.academia.edu/video/lBboEl
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the best possible use of digestate as a biofertilizer, nutrients are returned to the land through natural cycles 

to replace the input of inorganic fertilizer. Biogas is an extremely useful source of renewable energy, whilst 

digestate is a highly valuable biofertilizer.352 Biofertilizer should not be misunderstood for organic 

fertilizers such as compost, animal manure and plant manure or extracts.95 ,371 When the beneficial microbes    

improve crop accessibility to nutrients 154, 410 or replenish soil nutrients 557, 604 if the overall nutrient 

condition of crop and soil has been improved, such substances containing the beneficial microorganisms 

are considered as biofertilizer. 636 The carrier materials (Figure 3) sustain the microbial inoculants and 

allow the product to be stored for longer period.76 , 486 , 487 The beneficial microbes may be rhizospheric; 

colonising the surface or intercellular spaces of the plant roots, or endophytic (Figures 18 and 26); and, 

where they colonise the tissue or apoplastic space within the host plants.213, 370
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Table 6 | Biological and Physio-Chemical Analyses of Composition of Biofertilizer (Gateway) formulation and Production.  

S/No Biofertilizer Formulation  Gateway BioFertilizer 1 (GF1) Gateway BioFertilizer 2 (GF2) Micro-organisms Characterization References 

A. Biofertilizer  Production Batch  2010  GF1 Batch  2010  GF2

B. Biowaste Materials  Poultry manure, Cow dung, Cassava peel ,Wood Ash Poultry manure, Swine waste, Cow dung, Wood ash Otaiku et al .,447; 448  ; Otaiku et al .,  449 

C. Technology : Anaerobic Biodigester  Digestate Digestate

D. Microbial Inoculants :    OBD-Plus OTAI AG Otaiku et al. ,447  , 448  ;  Otaiku et al. , 449 

E. Field Crops Trials  : External validity Soybean Cultivar TGx 1440–1E Soybean Cultivar TGx 1440–1E

Institutions  | FUAAB September 2010, November. 2010

F. Physio-Chemical Analyses 

Macronutrients

1 Nitrogen ( N)  % 5.79 6.6 Rhizobium spp ;  Azospirillum spp Hungria et al ., 248 ;  James, 265 ;  Kueneman et al .,307

2 Phosphorus (P ) % 1.3 1.5 Pseudomonas spp.  Bacillus spp  De Freitas et al . 131 ; Zaidi et al . 680  ;   Battini et al . , 60 

3 Potassium ( K)  % 2.89 2.3 Bacillus mucilaginosus  ; B. megaterium Han and Lee, 221 ;  Sheng and  He ,552 ;  Pettigrew, 462

4 Calcium (Ca) 1.66 3.8 Azospirillum spp. Giri and Mukerji, 197 ; Khan, 295  ;  Cohen  et al ., 110

5 Magnesium (Mg)  PPM 3.24 7.4 Azospirillum spp. Giri and Mukerji ,197 ; Khan, 295 

6 Sulphur (S)  PPM 1.97 4.5 Thiobacillus spp. ; Gluconacetobacter  spp. Banerjee et al . 49  ;  Divito and Sadras, 146 ;  Cravo-Laureau  et al ., 116

7 pH (H20) 6.6 6.8 Graham  et al. ,208

8 Organic carbon  51.28 52.83

9 Organic  matter 89.74 92.46

10 Soil organic matter (SOM) 88.2 90.87

11 C/N 2:01 2:07

Micronutrients

11 Molybdenum (Mo) PPM 1.21 1.25 Parker and Harris, 457

12 Boron (B) PPM 0.009 0.01 Pseudomonas putida Patten and  Glick,  461

13 Copper (Cu) PPM 2.43 2.5 Arbuscular mycorrhizal fungi (AMF)  Bacillus spp Liu et al.  340 ;   Vlamakis et al. ,  641

14 Manganese (Mn) PPM 39.62 40.8 Arbuscular mycorrhizal fungi (AMF) Liu et al. .340  ; Singh et al. , 565. 

15 Zinc (Zn) PPM 45.25 46.6 Acinetobacter spp ;Bacillus spp. Triveni et al ., 622 ;  Kohler et al. , 303 ; Yazdani and Pirdashti , 699

16 Iron (Fe) PPM 295.25 304.06  Geobacter metallireducens  Pseudomonas putida       Lovley et al ., 349 ;  Park et al . ; 456 ;  Sharma et al .  550  ; Jones et al ., 275  

Physical Properties

State Soild Soild

Specific  Gravity 0.018 0.015

Moisture content 10.26 10

Colour Brown Brown

Odour Non

Essential Nutrients:

PGPR Volatile organic compounds (VOCs) 2, 3 butanediol 2, 3 butanediol Pseudomonas corrugata Lugtenberg et al ., 351 ;  Trivedi and  Sa .  621

Rhizosphere micro-organisms Volatile organic compounds (VOCs Volatile organic compounds (VOCs Bacillus spp. ;  Pseudomonas putida  Zaidi et al.,  680  ;   Diep and Hieu ,145

Plant hormone  Auxins, Cytokinins (CKs), Auxins, Cytokinins (CKs), Bacillus subtilis ; Azospirillum spp Ali et al. 16   ;  Ferguson et al. ,171

Phytoremediation practices  Gibberellins (GAs), and Ethylene (ET), Gibberellins (GAs), and Ethylene (ET), Acetobacter diazotrophicus,    Elshanshoury, 161

Mineral imbalance and Salinity  IAA, abscisic acid (ABA) ; Glomalin IAA, abscisic acid (ABA) ; Glomalin Trichoderma spp. ; Arbuscular mycorrhizal fungi Kohler et al. . 303 ;   Miransari. 397  ;  Rodrigues and Rodrigues , 504 

Biotic and abiotic stresses Mediating interactions between metals  Mediating interactions between metals  Azospirillum lipoferum  Zheng  et al ., 697 

Rhizobiaceae Colonization and growth  Colonization and growth  Arbuscular mycorrhizal fungi (AMF)  Bacillus spp  Miransari , 397 ;  Filion et al. , 174

Rhizobiaceae Enhanced nodulation, dry weight of nodules,  Enhanced nodulation, dry weight of nodules,  Pseudomonas sp. and Bacillus sp  Graham et al.,  208  ;  Kyei-Boahen, 117 ;   Ricci et al., 498

Rhizobiaceae Nitrogen fixation and yield Nitrogen fixation and yield Rhizobium spp. Pulver et al. ,  474  :  Revellin et al. , 495 

Rhizobiaceae Production of phytohormones  Production of phytohormones  Rhizobium spp. Vance, 630 ;   Cruz and Ishii, 112 ;  Douds et al. , 149  ; Drouin  et al.,  151

LOCATION | Gateway Organic Fertiliser Plant, Abeokuta, (Latitude 7 degree  10`N, Longitude 3 degree 15`E)  Ogun state, Nigeria 

1 Calculator for Plant nutrient - http://www.endmemo.com/sconvert/perg_kg.php

2 Organic matter = 1.71 x organic carbon 

3 SOM= organic carbon x 1.72
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Figure 14 | Effect of sources of treatments application on the agronomic parameters of soybean  at 8 WAP. 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of leaves

Plant height (cm)

Root dry weight (g)

Shoot dry weight (g)

Number of pods/plant

Seed weight/plant  (g)

Pod weight/plant (g)

Fertilizer Treatments

P
a

ra
m

et
er

s 

Number of

leaves

Plant height

(cm)

Root dry weight

(g)

Shoot dry weight

(g)

Number of

pods/plant

Seed

weight/plant  (g)

Pod weight/plant

(g)

GF1 89 44.1 32.6 37.2 103 0.45 2.6

GF2 101 46.2 34.7 46.7 91 0.42 2.6

SF 83 45 30.5 42.7 77 0.37 2.4

CF 94 42.3 31.2 43.4 72 0.41 2.6

Effects of  Treatments Application on the Agronomic Parameters  8WAP |  Soybean Cultivation
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Means with the same letter in columns are not significantly (P < 0.05) different according to Duncan’s Multiple Range Test. GF1- Gateway 

fertilizer 1; GF2- Gateway fertilizer 2; SF- Sunshine fertilizer; CF- Chemical fertilizer; WAP-Weeks after planting. 

 
Table 7 | Interaction of sources x rates of treatments application on agronomic parameters of soybean  at 8 WAP. 

 
 

Means with the same letter in columns are not significantly (P<0.05) different according to Duncan’s multiple Range Test. GF1- Gateway 

biofertilizer 1; GF2- Gateway biofertilizer 2; SF- Sunshine fertilizer; CF- Chemical fertilizer; WAP- Weeks after planting.  

        Table 8 | Effect of sources of treatments application on nodulation and nitrogen fixation at 8 WAP.  

 

 

 

  

  

Means with the same letter in columns are not significantly (P < 0.05) different according to Duncan’s Multiple Range Test GF1- Gateway  

Biofertilizer 1; GF2- Gateway biofertilizer 11; SF- Sunshine fertilizer; CF- Chemical fertilizer; WAP- Weeks after planting. 

 

Treatment Number of leaves Plant height (cm) Root dry weight (g) Shoot dry weight (g) Number of pod/plant Seed weight/plant (g) Pod weight/plant (g)

GF1 0 74b 44.0abc 26.43 34.09 131a 0.41ab 2.6

GF1 5 97ab 41.2c 34.15 45.69 102abc 0.46ab 2.7

GFI 10 94ab 48.2ab 26.03 35.82 111abc 0.46ab 2.6

GFI 15 89ab 41.9bc 43.66 33.01 68bc 0.46ab 2.7

GF2 0 100ab 46.6abc 37.03 48.58 84abc 0.45ab 2.6

GF2 5 98ab 46.0abc 38.16 53.04 96abc 0.42ab 2.6

GF2 10 87ab 44.4abc 26.66 34.87 105abc 0.42ab 2.5

GF2 15 120a 48.7a 36.95 50.35 76bc 0.40ab 2.5

SF 0 74ab 41.5c 31.11 42.38 72bc 0.38ab 2.3

SF 5 83ab 45.7abc 26.63 38.22 94abc 0.41ab 2.5

SF 10 72ab 45.9abc 26.35 33.91 58c 0.37ab 2.5

SF 15 102ab 45.2abc 38.04 56.27 85abc 0.32b 2.3

CF 98ab 42.4abc 29.21 39.57 79bc 0.50a 2.7

  NS   NS NS

Treatment Number of nodules Nodules dry weight (g) Nitrogen fixed (%) 

GF1 24 0.29 54.1 

GF2 25 0.33 52.2 

SF 22 0.22 40.1 

CF 16 0.18 39.2 

  NS NS   
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GF1 0 GF1 5 GFI 10 GFI 15 GF2 0 GF2 5 GF2 10 GF2 15 SF 0 SF 5 SF 10 SF 15 CF

Root dry weight (g) 26.43 34.15 26.03 43.66 37.03 38.16 26.66 36.95 31.11 26.63 26.35 38.04 29.21 0

Shoot dry weight (g) 34.09 45.69 35.82 33.01 48.58 53.04 34.87 50.35 42.38 38.22 33.91 56.27 39.57 0

Number of pod/plant 0 0 0 0 0 0 0 0 0 0 0 0 0

Seed weight/plant (g) 0 0 0 0 0 0 0 0 0 0 0 0 0

Pod weight/plant (g) 2.6 2.7 2.6 2.7 2.6 2.6 2.5 2.5 2.3 2.5 2.5 2.3 2.7 0

Soil Amendments Treatment of Soyabean Cultivar, Humid Tropics, Nigeria   

Root dry weight (g) Shoot dry weight (g) Number of pod/plant Seed weight/plant (g) Pod weight/plant (g)
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 Figure 15 | Soybean vegetative growth parameters, nodulation, amount of nitrogen fixed, yield and yield components were determined at 8 weeks  

  after planting. 
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                   Figure 16 | Effect of sources of treatments application on nodulation of soybean at 8WAP.  

BIOLOGICAL NITROGEN FIXATION (BNF) | Soybean  cultivar (TGx 1440–1E) 

Biological nitrogen fixation (BNF) remains one of the strategies for sustainable production of soybean  in the transitory zone of Nigeria 

especially among the resource poor farmers. Effective BNF could be carried out in soybean  if it adequately supplies assimilates to  

bradyrhizobium bacteria, serving as the substrate for organically produced protein, while the bacteria produces reducing agents through 

oxidative phosphorylation for effective assimilation of atmospheric nitrogen (Plates 2 and 3). A threshold growth of soybean must be attained 

 

 

      Figure 17 | Number of nodules and nitrogen fixed (%) at 8 WAP.  
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for survival and growth of symbiont (Table 2). This trial corroborated this findings, where application of different sources of fertilizer led to 

significant growth in soybean, particularly that of GF 2 (Table 7 and Figure 17). O’Hara,430 reported had indicated nutritional constraints to 

soybean growth and bacterial activity, especially the essential macronutrients (N, P, K), Figure 20. It was in recognition of this, that a starter  

 

dose of fertilizer is recommended to sustain the growth of soybean  prior to the commencement of BNF.When chemical fertilizer is applied 

(during cultivation) it is ensure that, it is not applied to rhizospheric zone  (Figure 18) close to root since it suppresses nodulation factor in 

soybean.589 Comparatively higher concentration of nitrogen in GF 1 and GF 2 could have aided the sustenance of soybean growth at the 

beginning of its phenology (Plates 2 and 3, Figure 20). 
 

  Table 9 | Socioeconomic and policy constraints to the use of Rhizobium inoculation technology and possible intervention measures. 

 

BNF is dependent on nodulation of soybean (Figure 18).407 Adequate establishment of nodulation would occur if nodulation factor that 

ensures bacteria-host specificity are not suppressed. Proximity of nitrate in the root growing zone could compromise BNF. The fertility status 

of the soil with regard to nitrogen availability for this ecological zone together with the sustained releasing property of biofertilizer precluded 

the adverse effect of nitrogen on nodulation in soybean in this trial (Plate 3). One could assume that environmental factors could have 

accounted for the non-significant effect of different sources of organic fertilizer. It was reported that growth and survival of bradyrhizobium is 

dependent on temperature 573 soil pH 208,457 and soil water status. Similar report affirmed our results, trial was established in the late cropping 

Socioeconomic and policy Effect References Recommendations

1 Limited farmer awareness Low adoption and use of inoculants  Odame, 432 ; Woomer et al.,661 Private sector involvement

of and access to inoculants in farming systems  Funtowicz and Ravetz, 183 

2 Poor quality control of inoculants Low viability of Rhizobium  Odame, 432 ;  Walpola  and Arunakumara, 647 Cold storage, use of modern technologies, 

inoculants and uncertain per-formance Van Dam and Bouwmeester, 627 and more research

3 Lack of trained personnel Limited awareness by farmersof the Kannaiyan,  285 : Odame, 432 Raise farmer awareness about legume

existence of BNF (in-cluding inoculants) Woomer et al. , 661 ;  Graham, 209 root nodules; familiarize farmers with Rhizobium inoculants

4 Fear over possible human Limited adoption and use of  Hassani, 227 Involvement of farmers in the process

and livestock health risks of Rhizobium  inoculants to increase Tilman  et al.,  612 ;   Panke-Buisse et al. , 454 of development of inoculants; participa-

inoculants by farmers legume productivity Youssef,  675 ; Philippot et al ., 465 tory approach

5 Absence of policy or weak Forestalls widespread adoption  Macik et al ., 361 Include the issue of bio-fertilizers in

policy support and insufficient weak development of the Vassilev et al. , 633 ; Pulver et al ., 474 governments’ effort towards addressing

biotechnological framework production and marketing of inoculants Otaiku 444 : Kinkel, 300 the problems of low and declining soil fertility

6 Limited scientific expertise, Limited production of inoculants and Brenner, 81 ;   Kamst et al. , 283 Linkages between Universities in SSA

applied BNF brain drain, low quality inoculants Walpola and Arunakumara,  647  with those in the North with expertise in

and poor research funding Wongphatcharachai,660 ;  Cassman,96 Rhizobium science; government policy support
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season in the lowland. The prevalence of comparatively higher temperature and minimal precipitation could have reduced the activity of  

 

 

                                      
Figure 18 | Symbiotic phenotype features of five important soybean  (Glycine max) inoculated with Bradyrhizobium japonicum strain developmental 

stages (A - E). Soybean growth at five important developmental stages, including the branching stage, flowering stage, fruiting stage, pod stage and 

harvest stage. (F- J) Nodulation phenotypes were examined at five developmental stages after inoculation with 113 - 2.(K)q. PCR analysis of the transcript 

levels of Lbc1 (Glyma 10g34280) at five developmental stages. Bars, 4cm (A, B); 5cm (C - E); 3cm (F - J); d, days and adapted from Yuan et al., 
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bradyrhizobium bacteria; a slow growing bacteria 160, 395 and consequently non-significant effect of 

biofertilizer sources on nodulation. Other factors adduced could be the insufficiency of nitrogen to 

sustain both bacteria and crop growth, resulting in the growth of soybean at the expense of bacteria 

growth and its effect on nodulation. The consequence of which might be that BNF might be inadequate to 

translate to higher grain weight/plant, since assimilates were being partitioned to sustain vegetative 

growth (Figure 19). Apart from the presumably nutritional and other environmental constraints that could 

be encountered by bradyrhizobium to ensure nitrogen fixation, it was observed that BNF declines with 

the development of soybean 683 Figure 18. Other option left would be remobilisation of nitrogen from 

vegetative structures for reproductive growth 524 provided sufficient vegetative growth was observed at 

the initial stage of soybean growth (Figure 20). Growth response  of soybean  to GF 2 at increasing 

application rates could have indicated the presence of other essential nutrients like P and K which were 

higher in it compared to other nutritional sources, which are necessary for rhizobia growth, nodulation 

and the metabolic process of nitrogen assimilation (Tables 2 and 6). 

 

Senescence and Remobilization of Nutrients | 

Avice et al.,41; Masclaux-Daubresse et al.,378 research reported that the link between growth and the 

ageing process is nutritional in nature, by which resources (most of the time, only N is considered) are 

recycled from obsolete body parts to newly developing structures (Figure 19). Legumes research reports 

affirmed demonstrate that the N being remobilized from vegetative parts to fill seeds arises from a 

common N pool translocated throughout the plant.536 When the N demand cannot be met by uptake from 

the rhizosphere alone (Figures 18 and 19), N, and potentially its associated nutrients, is withdrawn from  

older tissues (sequential senescence i.e., acropetal senescence occurring during the vegetative stage) the 

detailed catabolic pathways involved are not yet fully characterized. The mechanism of autophagy, 

consisting of the allocation of unnecessary or damaged cytosolic components (such as organelles and 

macromolecules) for degradation and recycling by the vacuole 393 has been recently characterized during 

senescence.Such a mechanism might explain how nutrients other than N may also be mobilized, as 

numerous proteins contain elements such as Zn, Cu, Mn, Fe or N (Figure 20). Scholars affirmed that 

drought-induced senescence is associated with numerous morphological, physiological and molecular 

modifications in several species including nutrient remobilization from senescing organs (mainly leaves, 

and to a much smaller extent nodules in legumes) to young tissues (leaves or seeds), thus compensating 

for the nutrient uptake deficit that results from low soil water content.170,561   

 

The effect of drought specifically on nutrient remobilization from leaves need details research. 653 

accelerated senescence under many types of stress, including drought, affects nutrient translocation 

processes, inducing the remobilization of N from vegetative to reproductive plant parts, and shortening the 

maturation time, which tends to favour proteins over starch accumulation in cereal grains (Figure 18). 

Decreased mineral content in seeds can therefore result from reduced root uptake and translocation and/or 

insufficient remobilization from leaves (Figure 19). In order to discriminate between experiments that used 

moderate (coupled with maintained yield) or severe drought (associated with a yield reduction) and 

associated mechanisms (Figure 20, balance between C and mineral nutrients transported to the seeds), In 

most species (except for soybean ), a severe drought leads to an increased N concentration in grains which 
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may be the result of a balance in favour of leaf N export relative to C, as opposed to a moderate drought 

that will less strongly affect photosynthesis.The seed contents of other macronutrients like P, K, Mg, and  

 

sometimes Ca, are reduced most of the time (or remain unaffected) by severe drought (Figure 20) .The 

situation is more variable for Zn, Fe, Mn or Cu for which seed contents can be decreased or increased by 

severe or moderate drought, not only as a function of species (Table 2) and the requirements for soybean 

cultivation (Table 10). In a hypothesis that parallels the one for N content, seed micronutrient contents are 

a result of a balance between C export from leaves and starch deposition in grains, and micronutrient leaf 

remobilization (Figure 19). 

 

SOYBEAN PEST MANAGEMENT   

Soybean Cyst Nematode (SCN) |  

Many farmers don’t know their fields are infested with SCN. The effect of SCN on soybean yield is 

directly related to the numbers of nematodes (Plate 6) feeding on the root system. Seeing adult females 

on the roots of soybean plants is the quickest and most accurate way to diagnose SCN infestation in the 

field and resilience in the soil. Hence, the nematode can be managed to minimize SCN reproduction and 

maximize crop yields with the application of biofertilizer because of its biocontrol properties.446 Growing 

non-host crops in rotation with SCN-resistant soybean  varieties is the cornerstone for management of 

SCN. The life cycle of SCN has three major stages: egg, juvenile, and adult will requires slow release 

fertilizer (gateway biofertilizer) 446 to be able to eradicate SCN with life cycle of 4 weeks soil 

temperatures at or above 75° F. Atungwu et al, 38 reported using gateway  organic fertilizer on 

herbivorous and non-parasitic nematodes associated with telfairia occidentalis hook. 

Above-ground symptoms 
Visible symptoms can include stunted plants, mid-season yellowing, and premature senescence. 

However, symptoms of an SCN infestation are not always visible above-ground. Injury usually is more 

severe in light, sandy soils and in dry growing seasons (Plate 6), but it also occurs in heavier soils and 

growing seasons with average to above-average rainfall. SCN damage is not always confined to smaller 

areas within a field. When fields are infested with SCN throughout, areas of stunted plants are not 

obvious. 

 

Below-ground symptoms 
Root symptoms of SCN often go unrecognized. It is difficult to recognize if roots are stunted and have 

fewer nodules unless they are compared to uninfected soybean plants. Symptoms of SCN infection 

include: dwarfed or stunted roots; fewer nitrogen-fixing nodules and increased susceptibility to other soil-

borne plant pathogens. Inoculation with N-fixing bacteria (Azospirillum and Azobacter) allowed half-rate 

N-fertilizer application and increased sesame seed yield and oil quality.438 , 441 Similar effects were shown 

for Azospirillum vinelandii inoculated Brassica carinata cv. Peela raya.426 

NUTRIENT   MANAGEMENT  

Nitrogen Use Efficiency (NUE) and Plant-Microbe Interactions 

Scholars 204 ,326 asserted that NUE for the N harvest index (NHI), defined as N in grain/total N uptake, is 

an important consideration in cereals. NHI reflects the grain protein content and thus the grain nutritional 
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quality.438 , 441 Studies reported on identifying the genetic basis for grain composition showed that 

breeding progress has been limited by an apparent inverse genetic relationship between grain yield and 

protein or oil concentration in most cereals 560 oilseed rape 80, 260 It is possible, however, to identify wheat 

lines that have a higher grain protein content than predicted from the negative regression to grain yield.278   

 

It has also been demonstrated that both grain yield and grain protein respond positively to supplemental 

N fertilizer, and such a paradox suggests that studying the interactive effect of genotype and N 

availability should provide insights into the genetic and physiological mechanisms that underline the 

negative yield–protein relationship in the future with the impacts of biofertilizer on Soybean cultivars in 

humid tropics.  

 

 
Figure 19 | Proposed model for leaf remobilization of macro and micronutrients towards seed filling under normal 

conditions or during severe drought illustrating the involvement of vacuolar sequestration capacity, coupled under 

severe drought with increased monocarpic senescence and reduced photosynthesis. NA: nicotianamide, PC: 

phytochelatin and adapted from Ourry et al..451 
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Plate 6 | https://soybean researchinfo.com/soybean -disease/soybean -cyst-nematode-scn/ 

 

Another aspect of grain filling in relation to N availability concerns the period before anthesis (Figure 

18), which, for example in maize, is known to be critical for translocation of carbon assimilates and 

kernel set 423 in the N status of the plant around two weeks before anthesis appears to be a determinant 

for the number of kernels, since it is strongly dependent on the amount of N available during this period 

of plant development.66 There is a paucity of data on both the physiological and molecular control of this 

process in relation to N availability and its translocation during this critical period of ear development.544 

 

                 
Figure 20 | General patterns of macro and micronutrient contents of leaves resulting from their allocation from root 

uptake before senescence followed by their remobilisation (net loss) as a function of relative leaf lifespan. 

According to the macro or micronutrient considered, senescence and/or nutrient deficiency induce high (Type I), 

variable (Type II) or low remobilization (Type III) from the leaves to the seeds and adapted from Ourry et al., 451 

 

Research on specific microbial strains key contributors to plant nutrition, or about how nutrient availability 

(Figure 20) affects the composition of the rhizospheric microbiome is an emerging new science.263 Three 
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mechanisms are usually put forward to explain how microbial activity can boost plant growth: (1) 

manipulating the hormonal signaling of plants (2) repelling or outcompeting pathogenic microbial strains 
386 and (3) increasing the bioavailability of soil-borne nutrients. The growth of soil microbes is usually 

carbon-limited, so the high amounts of sugars, amino acids, and organic acids that plants deposit into the 

rhizosphere represent a valuable nutrition source.45  How can we merge the progress in the individual areas 

of research to obtain an integrated view? The solution is trans-disciplinary research (Figure 21). Nitrogen-

fixing rhizobia, where decades of research have endeavored to define the optimal inoculation practice, 

searching for the right combination of plant genotypes and rhizobia strains to suit specific climates and 

soils.337 Regarding the taxonomy of nitrogen-fixing symbioses, it should be mentioned that nitrogenase 

genes are present in diverse bacterial taxa 214 and that non-leguminous plants have been documented to 

host N2-fixing bacterial strains perhaps implying that other plant–microbe combinations (not just legumes 

and rhizobia) could be similarly optimized to promote nitrogen fixation.414  Agriculture wicked problems  

 
445 requires a spatial polysingularity construct (Figure 5), to understand at which temporal and spatial scale 

the biological system operates. The temporal scale (soybean) is an intrinsic property of each biophysical 

process and therefore sets specific limits on the methodology and farm technique to apply. The spatial scale 

(nitrogen fixation) to investigate is chosen by the modeler based on the biological question to address, since 

we can chose to describe the same microbial community as a single metabolic unit or as a population of 

individual organisms (polysingularity). These choices are critical since they will determine at the same 

time the degree of complexity of the model and the requirements for the integration of experimental data594 

the in results of the field trials (Plates 2 and 3). 

   

Figure 21 | Ohyama et al., 433 adapted three sources of Nitogen assimilated in soybean  plants for the case study for 

combining modeling and experimental approaches (Figure 9). A major goal in biology is to integrate 
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computational predictions with experimental data (Figure 25) to generate predictive models of biological systems. 

The temporal scale is phenomena under study (soybean), the choice of the physical scale of themodel/experiment 

is chosen by the scientist (nitrogen fixation). The physical scale will have a strong impact on the choice of 

experimental technique, while the temporal scale will mostly influence the experimental design (this is represented 

by thicker/thinner arrows) in trans-disciplinary approach (Figure 5). The experimental and theoretical methods 

have to be planned together to ensure that the reciprocal results are compatible and can be integrated (Figuire 7). 

This will allow further improvements (Figure 8) in both experimental design and model development adapted from 

Jacoby et al., 63 

Photosynthesis and Nitrogen Use Efficiency | 

N nutrition drives plant dry matter production through the control of both the leaf area index (LAI) and 

the amount of N per unit of leaf area called specific leaf N (SLN). There is therefore a tight relationship 

between N supply, leaf N distribution, and leaf photosynthesis and, as such, an effect on radiation use 

efficiency (RUE), to optimize light interception depending on N availability in individual plants or in the 

entire canopy.190 The photosynthetic NUE (PNUE), which is dependent on the level of CO2 saturation of  

 

Rubisco, is another factor that needs to be taken into consideration when C3 or C4 crop species are 

studied. At low N availability, C3 plants have a greater PNUE and NUE than C4 plants, whereas at high 

N, the opposite is true.521 Hence, identifying the regulatory elements controlling the balance between N 

allocation to maintain photosynthesis and the reallocation of the remobilized N to sink organs such as 

young developing leaves and seeds in C3 and C4 species is of major importance, particularly when N 

becomes limiting (Figure 19). However, the complexity of the ubiquitous role of the enzyme Rubisco in 

primary CO2 assimilation,365  in the photorespiratory process, and as a storage pool for N needs further 

investigation to optimize NUE and particularly PNUE under low fertilization input in both C3 and C4 

species.521, 324 The physiological impact of plant N accumulation with respect to an increased 

photosynthetic activity requires critical consideration as a supplemental investment of N in the 

photosynthetic machinery may be detrimental to the transfer of N to the grain and thus to final yield.  

The recent finding that the synthesis, turnover, and degradation of Rubisco are subjected to a complex 

interplay of regulation renews the concept of the importance of N use and recycling by the plant.238 

Influence of nitrogen nutrition on plant development | 

During plants growth, it is well known that N availability influences several developmental processes 

(Figure 19). According to the species, the number of leaves and their rate of appearance, the number of 

nodes 572 ,362, 520 and the number of tillers 619 are reduced under N-limiting conditions and similar to the 

soybean   trial where GF 1 had significantly (P < 0.05) higher number of pods and seed weight/plant with 

lower biological nitrogen fixation (Figure 17). In both in spring wheat 376  and in rice 362 grain number 

decreases under N deficiency conditions, a process occurring during the period bracketing anthesis, 

which is highly dependent on both the intensity and the duration  of the N stress (Nitrogen use efficiency, 

grain composition, and grain filling, Figure 1). The availability of N for yield determination is also 

important through its direct influence on the sources (leaf area), and consequently the sinks (reproductive 

organs) accentuated. Hence, Figure 19, the reduction in photosynthesis of the canopy following N 

starvation is due to the reduction of the leaf area (radiation interception efficiency, RIE), rather than a 

decrease of RUE.328 
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Soybean is the most important pulse crop in the world. The magnitude of soybean  yield losses due to 

nutrient deficiency (Figure 20) also varies among the nutrients.16 Deficiencies of N, P, Fe, B and S may 

cause soybean  yield losses up to 10 %, 29-45 %, 22-90 %, 100 % and 16-30 %, respectively, depending 

on soil fertility, climate and soybean   factors (Appendix 1, Table 10). Yield is also limited by nutrient 

toxicities, which are more common with micronutrients (Table 6). The broad-spectrum microbial 

inoculants Table 2 encourage the proliferation of beneficial introduced or indigenous microbial populations 

that facilitate nutrient uptake (rhizobia and mycorrhiza, Figure 3), promote plant growth directly, or 

suppress plant pathogens. Biofertilizer applied in the field trials create conditions most beneficial to plant 

growth by amending the soil, breeding or engineering better plants, by manipulating plant/microorganism 

interactions (Tables 2 and Table 6 ; Figure 27).  Symptoms of nutrient deficiency vary with variety, growing 

conditions, and plant age. Similar symptoms may be caused by other abiotic or biotic stresses (Table 9). 

Scholars reported how to identify nutrient disorders observed in soybean.172,389,118  

Biofertilizer Impacts on Soybean   Cultivation 

Inoculation of soybean  with rhizobia inoculants  (Table 2, Plates 2 and 3)  helps to improve soybean  

yield with low stress risk and are cheaper than inorganic N fertilizers 511 Soybean  is increasing in 

importance in many developing countries, where poverty limits fertilizer use (Table 9).194 , 607 Giller 193  

 

reported, there are three situations where introduction of rhizobia are necessary to ensure effective 

nodulation and SNF (Figure 2): (1) in the absence of compatible rhizobia; (2) when there is a low 

population of compatible rhizobia resulting in slow nodulation; and/or (3) ineffective or less effective 

indigenous rhizobia than the selected inoculants for a particular legume host variety. Inoculants may be 

especially required when soybean is introduced into a new geographic area, as compatible rhizobia may 

not be available in the soil (Figure 3). 

Inoculant Formulation | 

It was found that a higher percentage of nodules were occupied with inoculant when applied as high titres 

on seed and soil compared to seed-only treatments or low titres on seed and soil, showing the importance 

of optimizing the inoculant formation (Table 1) and development (Figure 10).  Combined application 

(Table 2) of different rhizobia strains into a single inoculant has also been shown to improve nodule 

occupancy compared to individual rhizobia.436 Significantly (P < 0.05) higher number of leaves, plant 

height, higher number of pods and seed weight/plant was observed by gateway biofertilizer applied 

because host strain specificity soil rhizobia was considered during the biofertilizer development to 

nodulate under environmental stress compared other soil amendments. 
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Figure 22 | Soybean co-inoculation of rhizobia and AMF as a number of studies report a synergistic effect on plant 

growth promotion. 663, 281   

Exploiting Rhizosphere Microbial Cooperation | 

The plant and its leaf, root, and endophyte microbiota  (Figure 26) make up the plant holobiont.513  As  

for other eukaryote hosts, microbiota are major drivers of host evolution by contributing to their growth, 

behaviour, and adaptation to the environment (Figure 22). Inside the rhizosphere (Figure 26), the soil 

zone under the influence of plant roots, some root microbiota microorganisms, called plant growth-

promoting rhizobacteria (PGPR), promote plant growth by improving plant nutrition (via siderophore  

production, phosphate solubilization, or nitrogen fixation), by modulating plant hormonal pathways (via 

auxin production, deamination of 1-aminocyclopropane-1- carboxylate), or by protecting plants against 

 

Figure 23 | Internet of things (IoT) - connected smart agriculture sensors enable the IoT and adapted from 2021 

World Economic Forum.662
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pathogens and parasites.626 PGPR are defined as mycorrhiza-helper bacteria (MHB). In the rhizosphere, 

microorganisms benefit from 20% to 50% of photosynthetic carbon 220 directly transferred by plant roots 

or released through mycorrhizal hyphal networks.279 In exchange for C input into the hyphosphere, 

mycorrhizal fungi (Figure 22) retrieve iron, nitrogen, or phosphate resources from the soil surrounding 

plant roots.176, 273  The higher concentration of nitrogen in GF1 and GF 2 could have aided the sustenance 

of soybean growth at the beginning of its phenology promote plant growth directly, or suppress plant 

pathogens. 

 

Nodulation and Nitrogen Fixation Correlation | 

Scholars studies have reported poor correlation between nodulation parameters compared to grain 

yield/grain-N content.248, 528,10,11 For example, in Nigeria, some inoculants significantly affected 

nodulation and nodule occupancy in soybean , but did not affect grain yield.528 In Brazil, Hungria et al. 
248 demonstrated that rhizobia inoculants affected grain yield, but did not influence nodulation parameters 

(nodule number, nodule dry weight and nodule occupancy). In southern Spain study, several introduced 

strains resulted in very low nodule occupancy (1-18%) under field conditions compared to indigenous 

Bradyrhizobium, yet surprisingly nodulation and N yield traits showed significant improvements.10 In the 

field study conducted in Ethiopia, Argaw 29 found that nodule number and nodule dry weight of soybean 

were highly correlated with grain yield, especially with late maturing genotypes. In Nigeria soybean 

cultivar (TGx 1440–1E) trial where GF2 had significantly taller plant, which was not significantly 

different from GF 1 and SF. This is an indication that omission of phosphorus from soybean nutrition can 

drastically reduce shoot dry matter yield of soybean as suggested by Bekere et al .64 

 

 

Stress Impact |  

Nodulation is a luxury for a stressed soybean   plant (Table 10). Nodulation is reduced in plants 

experiencing stress (Figure 18). 407 This likely helps the plant to conserve its resources for combating the 

stress and for all-important seed development. To date, a number of stress-related factors (Table 9) have 

been found to inhibit nodule formation locally in the root, including ethylene, salicylic acid and various 

reactive oxygen species.171 Acidic soil conditions also reduce nodulation, with low pH also causing 

elevated soil Al3+ levels that negatively affect root growth. 

Inoculants Adapted to the Local Environment | 

Research studies suggested that locally adapted rhizobia strains are capable of performing better  

under environmental stress conditions (low/high temperature) 306 compared to introduced rhizobia 691, 477 

Zhang et al. 691 showed that strains selected from a northern adapted climate were more effective under 

cool conditions, a finding that shows the benefits of testing strains under similar environmental conditions 

as their origin. In Iran, local rhizobia originally isolated from a high temperature environment resulted in 

greater soybean yield traits under hot field conditions compared to inoculants isolated from a moderate 

temperature environment. 477 Identification of thermotolerant soybean rhizobia strains are especially 

important in Okereke et al. 435 semi-arid regions, which have high soil and air temperatures, stresses that 

lead to poor nodulation and SNF. 247 Selection of adapted rhizobia strains (Table 2) for various 

environmental stress factors will enable higher SNF (Figure 2) and grain yield in soybean compared  

to the currently available inoculants.247  
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Effect of Soybean Genotype | 
Several studies from around the world demonstrate that soybean survive after introduction to soil, 

nodulate plants under various soil conditions, and be compatible with farmer practices.241 The N2Africa 

project which works across a diversity of field sites has observed that survival of rhizobia in inoculants 

depends on the carrier material (Table 3) as well the type of rhizobia strain (Table 1). Several studies 

from around the world demonstrate that sub-sequent to inoculation, traits such as nodulation, nodule 

occupancy, SNF and soybean  yield can be affected by the soybean  genotype 474 , 126 ,434 ,10 , 374 and strain-

by genotype interactions.488, 29, 699 Field study conducted in Nigeria, local soybean  cultivars did not 

respond significantly to inoculants from the United States compared to U.S. bred cultivars 474 and the 

locally bred cultivars were more promiscuous than the U.S. bred cultivars in this study, plants were 

nodulated with local soil rhizobia strains rather than the foreign inoculants. Southern Spain study, the 

nodule occupancy of several introduced strains was dependent on the soybean genotype, again 

highlighting the importance of considering the host genotype for efficient SNF.10 Zimmer et al. 699 

reported that protein content and protein yield of soybean were significantly affected by inoculant-by-

host genotype interactions and affirmed by a report on oil seed research with liquid biofertilizer with 

inoculant.438 ,441 , 640 

Soil pH | 

Youseif et al.,674   reported that at least some soybean rhizobia can tolerate a wide range of soil pH 

conditions ranging from pH 5-11.  Soil pH is a major factor that drives Bradyrhizobium survival.195 

During nodule occupancy by fast growing soybean rhizobia was greater under moderate pH conditions 

(6.8 -7.9) compared to acidic pH (5.1-5.4). 250,  667, 10 Based on rhizobia collected from nodules in Egypt, 

it was found that even some fast growing rhizobia can tolerate low soil pH (pH 4).675 Soil pH favours or 

inhibits the distribution or population of soil rhizobia, which is highly dependent on the species.335, 4, 660  

 

Soybean -compatible rhizobia in Soil fertility  

(N, P, K) | 

Soil N concentrations were shown to be significant factors affecting the survival, abundance, and 

diversity of soybean rhizobia in the soil case study (Table 5). Available soil N is shown to have either 

positive/negative or neutral effects on survival, abundance, and diversity of soybean inodulating rhizobia 

in soil.666 , 660 Nitrogen fertilization may not have significant effects on soybean rhizobia diversity (based 

on the Shannon diversity index) when a soil contains a limited rhizobia population and diversity.234 Our 

meta-analysis of the soybean  literature clearly showed that inoculants only succeeded when at least 

minimal soil N was present. Available soil P has been reported to be one of the possible determinants of 

the geographic distribution of soybean rhizobia.223 Based on canonical correspondence analysis (CCA) of 

12 soybean nodulating rhizobia groups in China, it was observed that available P in soil influenced 

soybean  rhizobia diversity compared to the available N, potassium, and organic matter.335 Scholar’s 

studies reported, available soil P was shown to have a slight influence on the distribution of soil 

rhizobia.666 Available soil K is shown to have a weak impact on soybean  rhizobia diversity and 

abundance in soil.335 Yan et al.,666 and affirmed by the biofertilizer formulation for the soybean  field 

application (Plates 2,and 3 and Table 6). 
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Application of Fungicides, Herbicides and Insecticides | 

Insecticides, herbicides, and fungicides can have negative effects on soybean rhizobia in soil. Based on 

122 rhizobia strains tested for tolerance against different agrochemicals, it was observed that rhizobia 

were least tolerant to fungicides, followed by herbicides and then insecticides.151  Application of 

pesticides can have negative effects on soil rhizobia diversity, their activity, and plant-microbial 

interactions.179 , 252 Seed treatment 318 with fungicides is a common practice, but it can negatively affect 

soil rhizobia populations in soybean  fields, resulting in low SNF and yield reduction.495, 91 The negative 

effects of fungicide-treated seeds on rhizobia were even greater in fields where rhizobia were newly 

introduced. The type of fungicide used has also been shown to be important. Studies reported, that the 

fungicide Captan had less influence on native soybean rhizobia compared to Carbendazim, when applied 

as seed treatments.288 

Carbendazim is a biochemically specific inhibitor and persists in soil compared to Captan. A study 

reported, that seeds treated with Mancozeb reduced the survival of B. japonicum on seeds compared to a 

mixture of Carbendazim and Thiram fungicides, resulting in poor nodulation.377 Quinolate Pro 

(carbendazim and oxine copper), Vitavax 200 FF (carboxin and thiram), and Monceren (pencycuron) 

were also shown to be compatible with soybean  seed inoculation, whereas Germipro UFB (carbendazim 

and iprodione), Apron 35J (metalaxyl), and Tachigaren (hymexazol) negatively affected soybean  

rhizobia survival and nodulation 495 and thus were not compatible with soybean  seed inoculation. 

Similarly, nodulation and nodule activity were also influenced by the type of pesticide used.368 , 678 The 

concentration of fungicides is a critical factor as seeds treated with fungicides at high concentrations 

negatively affect rhizobia and SNF.368 In a study reported, reduced nodulation and nitrogenase activity 

was reported above 100 mgml- of Thiram as a seed treatment.74 Hence, special attention has to be paid 

when soybean  seeds are treated with different fungicides in order to minimize negative effects on 

nodulation, SNF and the soil rhizobia population (Figure 2). Interestingly, it was found that some 

fungicides, which were applied as either a seed treatment (thiophanate-methyl) 319 or foliar application 

(pyraclostrobin) 276 increased the number and activity of soybean nodules. 

 

Research Framework | Smart Agriculture  

Spatial polysingularity theory is the impacts of human mind creation with spatial objectivation 

(actualization of the subject or materialize of values and judgments) beyond intended nor foresaw 

consequences in cyberspace-time continuum or non-linear dynamics for value.  

It is the dynamic process leading to improved outcomes and constant improvement on the subject 

via spatialization (Figures 5 and 23). 

 

Scenario | 

Design of a sensor network 687 which connects agriculture and internet of things (IoT) can be established 

among agricultural experts, farmers and crops regardless of their geographic locations 356  and this system 

offers considerable reliability, interoperability, low cost, management and  monitoring and control system 

model based on IoT (Figures 23 and 25). IoTs, with its real-time, accurate and shared characteristics, will  

bring great changes to the agricultural supply chain and provide a critical technology for establishing  

a smooth flow of agricultural logistics.664 Sensors and Radio Frequency Identification (RFID) chips aids 

to recognize the diseases occurred in plants and crops. RFID tags send the EPC (information) to the 
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reader and are shared across the internet (Figure 25). The farmer or scientist can access this information 

from a remote place and take necessary actions (Figure 24). Automatically, crops can be protected from 

coming diseases.134 Some of the most outstanding technologies  (Figure 23) that are combined with IoT 

to develop agricultural solutions are wireless sensor networks, cloud computing, middleware systems, 

and mobile applications.159, 523 The  trans-disciplinary research construct (spatial polysingularity) 

encapsulate the IoT-based agro-industrial and environmental applications (Figure 25) and value streams  

namely  execution, collaboration , converged technologies, monitoring, control, logistics, prediction and 

actionability for valuecreation in agriculture illumination Agriculture 6.0 [artificial intelligence and 

regenerative agriculture].Tzounis et al. 624 presented IoT technologies and their utility in agriculture, as 

well as their value to future farmers. The scenarios that can be studies instantly and real time are:  

 

Fertilization - The most commonly used fertilizers in agriculture contain the three primary plant 

nutrients: nitrogen, phosphorus, and potassium. Smart fertilization system (Figure 24) based on IoT and 

artificial intelligence (AI) and designed the NPK sensor to integrate the colorimetric mechanism by using 

Light Dependent Resistor (LDR) and Light Emitting Diodes (LEDs based on fuzzy rule-based system to 

analyze measured data (Figure 25) and to determine proportions of N, P, and K in the soil (Figure 20). 

Pest Control - Sensors can collect data automatically, such as the presence of a pest, or 

a trap trigger that indicates that a pest has been captured 677 and proposed an intelligent high-resolution 

model for pest detection. Results showed that the proposed method greatly improved the recall rate, 

reaching 202.06%. 

Herbicides application - Arakeri et al.,27reported a system based on IoT, image processing, and machine 

learning to identify weeds and to selectively spray the right amount of herbicides. Self-driving farm robot 
676 uses lasers to kill 100,000 weeds an hour, saving land and farmers from toxic herbicides. But not 

weeding will cost half crop, killing profitability.  

Monitoring and Evaluation - Kurihara et al.,314 reported the technical details and functionality of the 

UAV based hyper-spectral imaging system and high quality hyperspectral imaging dataset. In the field 

monitoring, sensors in the field collect data and transmit them to the processing centre, which uses the  

 

corresponding software applications to analyze the operating data (Figure 24) using GPS controlled robot 

system for remote monitoring and control of field data and field activities.There is no single universal 

architecture of the IoT applications, and different researchers have proposed various architectures (Figure 

25)36 and agricultural IoT-based applications.282 , 313 , 415 ,624 

 

Human Capital | 

The average age of farmers in the last decades has been alarmingly increasing around 58 years old in the 

USA and Europe, 60 years in sub-Saharan Africa, or 63 years in Japan 164 and about to change now with 

European policies, for example, are being set to support a generational renewal, facilitating access to 

initial investment, loans, business advice, and training.164 A generational renewal in a rural development 

context goes beyond a reduction in the average age of farmers; now empowering a new generation of 

highly qualified young farmers to bring the full benefits of technology in order to support sustainable 
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farming practices.453 Market analysis report that, the factors that would facilitate the adoption of 

sustainable farming technologies include better education and training of farmers, sharing of information,  

easy availability of financial resources, and increasing consumer demand for organic food.210 Agriculture 

5.0, deep training needs 450 to be delivered to users, ideally young farmers eager to learn and apply 

modern technologies to agriculture and granting a generational renewal still to come. 

 

Infrastructure |  

From Figure 5, IoT influences and drives agriculture 624 to generate such a big amount of valuable 

information (Figure 23).682 Agricultural robotics vehicles have four main capabilities when performing 

agricultural tasks: detection, guidance, mapping, and action.103 Agricultural robotics research covers a 

wide range of applications, from automated harvesting 57 weed management and control 589  autonomous 

spraying for pest control 203  environmental conditions monitoring, and animals health  helping improve 

operational reliability while enhancing soil health and productivity. Diedrichs et al., 144 established a 

prediction engine as part of an IoT compatible frost prediction system that gathers environmental data to 

predict frost events (Figure 25). 

Agriculture 5.0 implies the use of robots and some forms of artificial intelligence (AI) for precision 

agriculture principles and using equipment that involves unmanned operations and autonomous decision 

support systems.682 Agriculture is currently developing robotic systems to work in the field and help 

producers with tedious tasks 61 , 69 , 549  and robotic applications for agriculture are growing 

exponentially549 which others promising solutions for smart farming and profitability where the cost of 

technology decreases with time, and agricultural robots will be surely implemented in the future as the 

alternative to bring about higher production 210 where venture capital funding in AI has increased by 

450% in the last 5 years. 413 Food and Agriculture Organization of the United Nations (FAO) estimates 

that, in 2050, there will be a world population of 9.6 billion.692 

Agriculture 5.0 implies the use of robots and some forms of artificial intelligence (AI) for precision 

agriculture principles and using equipment that involves unmanned operations and autonomous decision 

support systems.682 Agriculture is currently developing robotic systems to work in the field and help 

producers with tedious tasks 61, 69 , 549  and robotic applications for agriculture are growing 

exponentially549 which others promising solutions for smart farming and profitability where the cost of 

technology decreases with time, and agricultural robots will be surely implemented in the future as the  

 

 

alternative to bring about higher production 210 where venture capital funding in AI has increased by 

450% in the last 5 years.413 Food and Agriculture Organization of the United Nations (FAO) estimates 

that, in 2050, there will be a world population of 9.6 billion.692 

Stakeholders (S) | Collaborate 

One of the best thing about design thinking (Figure 7) is that, it thrives on collaboration (Figure 5). 

Collaborate with the stakeholders and use various brainstorming techniques to build on each other’s ideas 

(Figure 21). Human Capital [brainstorm to reach to quantity and encourage wild ideas. In fact, it is 

important to move beyond current understanding of the problem views and solutions]. Use Scenarios 

[prototypes to represent the problems in a catchy way which can fuel ideas  
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generation and execution for value co-creation].Take feedback on each solution that have been built and 

continuously iterate it until you find an optimal solution (Figure 6). Agriculture problems are difficult to 

define 445 and address, a visual explanation of the problem can also help to gain a wider view of the 

problem (Figure 8). To achieve a visual understanding, several methods and tools [Infrastructure] can be 

used for example stakeholder’s map, customer-journey map, and rapid personas, internet, internet of 

things (IoTs), Figure 25.

 

     

                         

Figure 24 | The architecture for managing a spatial data infrastructure to create, collect, and analyze 

heterogeneous geospatial value sets from multiple sources and time series using web services accentuate in 

Figure 5.346 Demonstrates that there are various possibilities to integrate statistical modeling techniques and 

spatio-temporal data for area-specific crop management (Figure 2).
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Figure 25 | The architecture of IoT architecture and how to improve decision-making in the agricultural industry 

and help the sector’s digital transformation and adapted from López-Morales et al.,346  

Nitrogen Fixation Soil  Microbiome |    

Biological nitrogen fixation (BNF) is one of the most important phenomena occurring in nature, only 

exceeded by photosynthesis.365, 630 One of the most common limiting factors in plant growth is the 

availability of organic matter (Figire 13). Predominantly, members of the plant family Leguminosae have 

evolved with nitrogen fixing bacteria from the family Rhizobiaceae. In summary, the plants excrete 

specific chemical signals to attract the nitrogen fixing bacteria towards their roots. They also give the 

bacteria access to their roots, allowing them to colonize and reside in the root nodules, where the 

modified bacteria (asteroid’s) can perform nitrogen fixation (Figure 22).The efficiency of BNF depends 

on climatic factors such as temperature and photoperiod 554 the effectiveness of a given soybean  cultivar 

in fixing atmospheric nitrogen depends on the interaction  (Figure 26) between the cultivar’s genome and 

conditions such as soil moisture and soil nutrient availability 583, 277 and the competitiveness of the 

bacterial strains available (Table 1), relative to indigenous and less effective strains, plus the amount and 

type of inoculants applied (Table 2), and interactions with other, possibly antagonistic, agrochemicals 

that are used in crop protection.90 The selection of an appropriate strain of B. japonicum since specific 

strains can be very specific to soybean cultivar, and subject to influence by specific edaphic factors 243,17 

or application of broad spectrum inoculants (Table 2). Soybean meets 50-60% of its nitrogen demand  

through BNF, but it can provide 100% from Nitrogen fixation. 524 B. japonicum, is a gram negative, rod 

shaped nitrogen fixing member of the rhizobia and is an  N2-fixing symbiont of soybean .279  
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The first step in rhizobial establishment in plant roots is production of isoflavonoids as plant-to-bacterial 

signals; the most common in the soybean - B. japonicum symbiosis being genestin and diadzein 485 which 

trigger the nod genes in the bacteria which, in turn, produce Nod factors, that act as return signals to the 

plants and start the process of root hair curling, leading to nodule formation (Figure 18). The nod‐

DABCIJ genes, conserved in all nodulating rhizobia 582, 283 are organized as a transcriptional unit and 

regulated by plant-to-rhizobia signals such isoflavanoids.92,539,540 Nodulation and subsequent nitrogen 

fixation are affected by environmental factors. It has been observed that, under sub-optimal root zone 

temperatures (for soybean  15-17 ºC), pH stress and in the presence of nitrogen, isoflavanoid signal levels 

are reduced; while high temperature (39 ºC) increases non-specific isoflavanoid production and reduces 

nod gene activation, thereby affecting nodulation.44 Seed germination and seedling establishment is 

enhanced in soybean , common bean, maize, rice, canola, apple and grapes, accompanied by increased 

photosynthetic rates,689 foliar application to green‐house grown maize resulted in increases in 

photosynthetic rate, leaf area and dry matter.297  Soybean  is very sensitive to Chlorine, but not greatly 

affected by Na+, because of its ability to restrict movement of Na+ to leaves (Figure 19) and affirmed by 

Dabuxilatu and Ikeda.124 Apart from B. japonicum, which produces nod factor, other rhizobacteria, such 

as Bacillus thuringiensis NEB17 reside in the rhizosphere of higher plants, 211 forming a phyto-

microbiome, much like the human microbiome, now realized to be so important in human health. 299 

Bacillus thuringiensis NEB17 is symbiotic with  B. japonicum, produce bacteriocins. Bacillus species 

were first reported to produce bacteriocins in 1976. The low-molecular-weight bacteriocins of gram-

positive bacteria have bactericidal activity, mainly against certain other gram-positive bacteria.598 

Bacteriocins are ribosomally produced peptides which affect the growth of related bacterial species. The 

most studied bacteriocin is colicin, produced by members of the Enterobacteriaceae. 473 Due to their 

commercial importance as natural preservatives and as therapeutic agents against pathogenic bacteria, 

these antimicrobial peptides have been a major area of scientific research.598 , 259 Initially, attached to the 

root-hair tips of soybean  plants, rhizobia colonize within the roots and are eventually localized within 

symbiosomes, surrounded by plant membrane (Figure 26). This symbiotic relationship provides a safe 

niche and a constant carbon source for the bacteria while the plant derives the benefits of bacterial 

nitrogen fixation, which allows for the use of readily available nitrogen for plant growth. 

 Nodulation Effectiveness and Promiscuous Soybean    

The inoculation with bradyrhizobia is not used by farmers in most soy bean cultivation. Promiscuity 

defined (i.e. the ability to soybean to nodulate with a wide range of indigenous bradyrhizobia) and 

ecological aspects and on the quantitative limitations of the soil populations concerning whether the 

restricted range of suitable strains in the soil are sufficient to form ancient nodules on soybean .In the 

inoculants used for the biofertilizer production electiveness of the strains was addressed (Table 2). 

Research reports suggests that responses to inoculation are possible in soybean   cultivation 440 ,527 in 

soybean  growing areas of the moist Savanna in Nigeria. B. japonicum (IRj) strains obtained from 

soybean, all isolated in 1979 from Ibadan (derived Savanna) in Nigeria. Kueneman et al., 307 reported for 

selection of promiscuous soybean genotypes, that is, ‘the promiscuous soybean  crop should be grown by 

farmers in the growing area without bradyrhizobial inoculants'' which did not respond either to N 

fertilizer nor to bradyrhizobial inoculation became the line of choice for farmers was reported. The 



International Journal of Agricultural Extension and Rural Development Studies 

Vol.9, No.1, pp.38-139, 2022 

Print ISSN: ISSN 2058-9093,  

                                                                                                          Online ISSN: ISSN 2058-9107 

102 
 

@ECRTD-UK-  https://www.eajournals.org   |  Journal level DOI:  https://doi.org/10.37745/ijaerds.15 
 

soybean   genotypes was able to meet its N requirements through the indigenous rhizobial community.  
  

 

                    

Figure 26 | Rhizobia then invade the root through the hair tip where they induce the formation of an infection thread 

as shown in This thread is constructed by the root cells and not the bacteria and is formed only in response to 

infection. The infection thread develops from the inner primary cell wall, which grows inwards in the form of 

invagination enclosing bacterial cells.

Promiscuity' in the strict sense, only indicates the ability to form nodules with a wide range of 

bradyrhizobia and does not imply elective nodulation.307  In IITA (Nigeria) soybean   program were 

healthy in low-N soils and had presumably nodulated effectively with local bradyrhizobia. Observations 

of nodulation are made afterwards and further selection was made on the basis of nodule mass. The lack 

of correlation between nodule scores and symbiotic effectiveness is the weakness of the present criteria 

used by breeders for selection (field data architecture, need to be redefined based on Figure 25 for future 

research). Eaglesham 153 stated that, it may be safer to rely on effective inoculant strains than to breed for 

the ability to nodulate with indigenous strains of unknown potential (Table 2). The nitrate considerably 

reduced root-hair curling of Medicago sativa 610 and inhibited root-hair curling and formation of infection 

threads of soybean.The abortion of infection by N fertilizers could have a direct effect on the formation 

of root nodules 412 and the nodule number was reduced more after the combined N was added at early 

stages of nodulation (Figure 19). The inoculant in the study area, biofertilizer formulation has no 

Bradyrhizobium japonicum stains (Table 2 and Table 6, respectively). 

 

Yatazawa and Yoshida 667 found that the inhibitory effect of nitrate on the nodulation of soybean  was 

more severe when applied early during growth season.The reduced nodule number following application 

of combined N was attributed to a modification of rhizosphere (Figure 22) conditions prior to infection. 

Nitrate was shown to change the root cell wall composition or to reduce bacterial attachment and 

invasion to root hairs. 553 These effects consequently reduce nodulation (Figure 18) and affirmed the trial 
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study where the percentage nitrogen fixed increased significantly (P < 0.05) with application rates in 

GF1, which was not observed in others (Figure 19). Kwon and Beevers 316 found that in plants which had 

developed nodules in the absence of nitrate, the addition of 9 mmol/L nitrate led to inhibition of further 

nodule growth. Gibson and Harper 192 reported that the concentration of nitrate surrounding the roots 

appeared to be most important in the inhibition of nodule initiation whereas assimilated nitrate appeared 

to have a greater effect on nodule development. Latimore et al.,323 concluded that Nitrate inhibition of 

nodule development and impairment of the activity of developed nodules was frequently attributed to 

photosynthate deprivation of the nodules due to the priority of use of saccharides in Nitrate assimilation 

and growth. The increase in nodule mass (GF1) observed with low levels of N fertilizer could be 

attributed to their decreased numbers, that is, fewer nodules with less competition for photosynthates 

(Plates 2 and 3).  

The sensitivity of nodule development (Figures 19 and 22)) to N fertilizers appears to be a general 

phenomenon in soybean. Abdel-Samae1 similarly found that application of urea to field-grown  

soybean  had a suppressive effect on the nodule number and dry mass confirm the NPK application in the 

field study (Tables 7 and 8). Reduction in total nodule mass upon fertilizer application may be attributed to 

the restriction of primary root nodulation (Figure 18), a result consistent with the report by Dart and 

Wildon.128 Da Silva et al., 123 concluded that N added at low rates at the time of sowing stimulated nodule 

mass and, to a lesser extent, the nodule number (Table 8). When N was added after emergence, both method 

and rate affected nodulation patterns (Figures 15, and 16). Thus, foliar application of N fertilizers was less 

suppressive to nodulation and nitrogenase activity even at higher N levels than soil treatments.185 Report by 

Wolyn et al., 659 also indicated that the deleterious effects of N fertilizer on nodulation in secondary roots 

of common bean and soybean could be alleviated by foliar application.  Olowe et al.,458 report similar results 

on the application of foliar liquid biofertilizer to sunflower cultivation with improved oil seed quality. 

Integrated Plant Nutrient Management System | 

Secretion, quantitatively and qualitatively, of organic acids by beneficial microorganisms is mainly gene-

dependent but could also be influenced by the ecosystem environmental properties.696 For example, N and 

C soil content may have a direct impact on the nature of the organic acids produced, the nature of C source 

could affect the bio-solubilization process (Table 6 and Figure 13), and high C/P ratio seems to increase 

the production of organic acids (Table 8) while both C/N and N/P may affect the organic acid implication 

in P solubilization is often attributed to lowering the pH and cations chelating properties.697 , 63 The 

acidification of microbial cells perimeter leads to the release of P anion by substitution of H C2C and 

Ca.621, 63 In Figure 11, the effect microorganism’s development 696 , 121 hypothesized that the entophytes 

closely associated with AMF could be involved in nutrient bioavailability (Figure 20) . Successfully, 

isolated three endobacetria (Bacillus sp., Bacillus thuringiensis, and Paenibacillus rhizospherae) from 

Gigaspora margarita spores that exhibited multiple PGP properties including P solubilization, ethylene 

production, nitrogenase activity, and antagonism toward soil-borne patogens. Dual positive effects of 

AMF and their associative endobacteria with regards to facilitation of P uptake under P-limiting 

conditions were evidenced by Battini et al,60 In Figure 22, root-nodules are strong P sinks, with nodule P 

concentrations often exceeding those of roots and shoots also indicates the important role of P in the 

legume symbiosis processes. 251, 541, 56,428 ,510 Other traits related to extensive rooting system and their 

spatial distribution, hyper-nodulation, root exudates, rhizosphere acidification, and heterogeneity are 
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among the most important plant-related belowground traits that contribute to higher nutrient use efficiency 

(Figure 27).125  

 
 
Figure 27 | Conceptual illustration of the relationships between mineral P fertilizers and N2-fixing bacteria. 

Biological nitrogen fixation (BNF) is a process for which P is needed in relatively large amounts, especially by 

legumes for growth, nodulation and grain yield production. Positive interaction between P fertilizers and  

N2-fixing bacteria either symbiotic or non-symbiotic (to a lesser extent) would enhance the agronomical eco-

efficiency of P fertilizers. Such a positive relationship leading to enhancing use of available P and N would also be 

attributed to a number of traits related to plants (that is, above and belowground, especially rooting) and 

microorganisms (i.e., P-solubilizing, phytohormones-producing, and siderophores production, etc.) and adapted 

from  Bargaz et al., 55 

 

Regarding P, these traits may substantially contribute in alleviating the sensitivity of  nod factor NF plants 

to low P availability through ensuring large amount of P-dependent carbon and energy turnover required 

during the NF process.541 Exploiting beneficial microbial traits involved in higher P solubilization would 

positively influence P uptake in addition to multiple advantages attributed to the production of plant growth-

promoting substances which could indirectly influence the efficiency of BNF 309 in Figure 22. In Table 2, 

dual inoculation of soybean  plants (Plates 2 and 3) with both a P-solubilizing (Bacillus) and NF (rhizobium) 

strains improved symbiotic traits related to growth of nodules and roots, aboveground biomass, total N and 

grain yield (Table 8) and similar reports were affirmed by scholars.396 , 5 In Table 6, despite positive 

responses on improved growth, nutrient use efficiency (N and P), and stable yield, all were demonstrated 

due to microbial application and mineral supply, co-application of multipurpose microbial strains, host plant 

species, and nutrients sources may generates a highly intricate plant–soil–microbe interactions that need to 
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be profoundly deciphered in order to optimize the agronomical functions 585 that they were designed for 

(Table 8).  

Based on an intercropping cereal–legume study, Tang et al. 600 concluded that P fertilization is presumably 

driving soil microbial communities since it resulted in a higher abundance of bacterial and fungal 

communities (Figure 26). Research reports shows, the long-term N addition was reported to suppress the 

mutualistic benefits of the legume–rhizobia associations 94,256, 589, 655 could directly be attributed to decreased 

rhizobia abundance in soils and reduced selective pressure from legumes to maintain beneficial partners 

(Figure 22). Generally, it was reported that long-term N rather than P fertilization may decrease significantly 

the abundance of functional bacterial groups, such as NF bacteria, ammonia oxidizing bacteria, and AMF.70 

This important P uptake (Figure 27) would have relied upon plant-induced changes, especially root growth 

whose nutrient absorptive capacity could be augmented owing to associated non-symbiotic NF bacteria 

(such as Pseudomonas, Azospirillum, Azotobacter, Sinorhizobium, Bacillus, and Glucanobacter, etc.) with 

multifunctional abilities (Table 2) other than only improving both N and P nutrition.455 , 312 , 345, 136 

6.7 | Soil Restoration,  Soil Health and Bioremediation  

Gateway biofertilizer 446,397  contains broad specrum inoculant consortium (Table 2) 

 that can be used for bioremediation of contamination of soils with heavy metals,  

such as mercury (Hg), lead (Pb), cadmium (Cd), chromium (Cr), copper, nickel (Ni) and zinc, or 

toxic organic compounds, such as polychlorinated biphenyls (PCBs), polycyclic aromatic 

hydrocarbons (PAHs) and other halogenated compounds, decreases crop yield by causing stress-

induced ethylene accumulation and reduced nutrient uptake.296 , 529 Such a pollution represents an 

important loss of fertile land and a severe threat to human health and sustainable development. 

Bioremediation mediated by plants via the uptake and/or degradation of pollutants is called 

phytoremediation. By stimulating seed germination, plant growth and root biomass through the 

mechanisms discussed above, contamination-tolerant PGP rhizobacteria and endophytes can 

improve the remediation capacity of plants.468 , 296 Inoculation with B. subtilis strain SJ-101 of 

Brassica juncea growing on Ni-stressed sites resulted in high Nickel concentrations in the plant 

tissues and an increased plant biomass as a combined effect of bacterial IAA production, 

solubilization of inorganic phosphate and adsorption of Nickel.296  

Value | 
In Figure 5, Internet of Things (IoT) represents the idea of connecting physical objects  (spatial 

polysingularity) which have sensing, networking and computing capabilities, to other objects and 

services over the internet connected by different kinds of devices (Figure 24). This leads to big changes 

in terms of integrations in the existing network and methodologies; ensures that each device is accessible 

through the Internet. Benefits of IoT applications in agriculture ( Figure 25) include improvement in the 

use efficiency of inputs such as soil, water, fertilizers, pesticides, etc., reduced cost of production, 

increased profitability, sustainability, food safety, environmental protection.460 The evolution to 

Agriculture 5.0 (Figures 5 and 23 respectively) is in the agenda of most major farm equipment makers for 

the next decade, and therefore of-road equipment manufacturers will play a key role in this move if 

agricultural robots are considered as the next smarter generation of farm machines (Figure 25) big data 

has three dimensions: volume, refers to datasets whose size is beyond the ability of typical database 
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software tools to capture, store, manage, and analyse information; velocity, refers to the capability to 

acquire, understand and interpret events as they occur, and variety refers to the different data formats 

(videos, text, voice) and all encapsulated in Figure 25. Kunisch 313 inserted the concept of veracity, refers 

to the quality, reliability, and overall confidence of the data (external validity). Valorization is the ability 

to propagate knowledge, appreciation and innovation 282 and accentuated by Figure 10. In Figure 24, IoT 

connects all types of objects and devices in both agriculture and the supply chain, huge amounts of data is 

collected from a wide range of sources including sensors, unmanned aerial vehicle (UAV) , Agricultural 

Mobile Crowd Sensing (AMCS) reported by Sun et al.,.593  

These data (Figure 26) can be processed, analysed, and used for decision making in real-time.159 Data 

analysis is a critical enabler for successfully creating value from these data, and addressing issues such as 

food security and sustainability.658 Precision Agriculture (Figure 25), which consist of applying inputs 

(what is needed) when and where is needed, has become the third wave of the modern agriculture 

revolution (the first was mechanization and the second the green   revolution with its genetic modification 
693 The management of farm knowledge systems (Figure 23) due to the availability of larger amounts of 

data via agriculture technologies to increased net returns and operating profits is the paradigm shift today 

to  maintain the sustainability of farm production. 537 The adoption of these technologies involves 

uncertainty and trade-offs called spatial polysingularity (Figure 21). Agricultural robotics (Figure 23) 

vehicles have four main capabilities when performing agricultural tasks: detection, guidance, mapping, 

and action.103 Agricultural robotics research covers a wide range of applications, from automated 

harvesting 57 weed management and control 589 autonomous spraying for pest control 203 environmental 

conditions monitoring, and animals health helping improve operational reliability while enhancing soil 

health and productivity. 

Diedrichs et al., 144 established a prediction engine as part of an IoT compatible frost prediction system 

that gathers environmental data to predict frost events. Agriculture 5.0 implies, the use of robots and 

some forms (Figure 24) of Artificial  Intelligence (AI) 682 for precision agriculture principles and using 

equipment that involves unmanned operations and autonomous decision support systems (Figures 25).692 

Agriculture is currently developing robotic systems to work in the field and help producers with tedious 

tasks 61, 69 , 549 and robotic applications for agriculture are growing exponentially (Shamshiri et al., 549 ) 

which others promising solutions for smart farming (Figure 24 ) and profitability.where the cost of 

technology decreases with time, and agricultural robots will be surely implemented in the future as the 

alternative to bring about higher production 210 where venture capital funding in AI has increased by 

450% in the last 5 years.413  Food and Agriculture Organization of the United Nations (FAO) estimates 

that, in 2050, there will be a world population of 9.6 billion.692 

What to Learn from Metaphor? 

Collaboration (Figure 21) is defined as managing interdependencies and affirmed by scholars 369 , 120 , 567 , 

569 and driven by open innovation (Figure 5). Component compatibility and interoperability are important 

in building and managing wicked problems as an open innovation system.380 ,189 ,133 Understanding the 

necessity of proper alignment and coordination (problems definition) is another point emanating from the 

new metaphor (solutions to wicked problems 444) called value (Figure 5) and research outcome (Figure 

9). Feedback loops (Figure 6) are a way of ensuring the self-alignment of the system and the knowledge 
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flows, having a feedback system is essential.517 Feedback systems enhance the efficiency and 

effectiveness of an open innovation network (Figure 6). Metaphor can assist future researchers exploring 

the topics of the efficiency and effectiveness of open innovation by using analogies domains framework 

(Figure 5). Within an organization, open innovation schematic (Figure 8) involves the internal 

exploration of external knowledge and external exploitation of internal knowledge 670 known as 

stakeholders (Figure 5) and research outcomes (Figure 9). 

Biofertilizer Varietal Characteristics  

The carrier materials represents the principal portion of inoculants development (Figure 12). 

Carriers constitute the key for the  effective release of the different products, which are formulated 

(carrier and cells) or unformulated (only cells)  biological products can form aggregates that make them 

more resistant to environmental changes and can represent another type of inoculants (Table 3). The 

nutrition of bacterial cells applied to plants affects their plant growth promotion capacity by allowing the 

production of certain enzymes that can trigger plant growth based on their carbon/nutrient ratio 

(Appendix 1).The materials from which they are made define their effectiveness and the inoculants 

should be sterile, carriers should be chemically consistent and able to provide enough water holding 

capacity for microbial growth.59 A formulated microbial product is a product composed of one or more 

biological control agents mixed with ingredients that will improve its survival and effectiveness.535  Plant 

growth promoting rhizobacteria enhance growth of plants in  powder  formulations (dry or wet powders) 

depending on  the composition of the powders can be applied directly to the soil, suspended in  water or 

dusted onto seeds (mix the organism and the ingredients with the granules).681, 684 

Rhizobia act insides the nodules as symbiotic nitrogen fixation, which are symbiotic organs formed on 

roots of the host plant. The bacteria supply ammonium to plant and the carbon and energy needed for 

symbiotic nitrogen fixation are from the plant photosynthates. Lodwing et al.,347 found that the metabolic 

dependence between two symbiotic partners is complex than in single exchange of products of 

photosynthesis and ammonium. The extended period to maturity in plant inoculated with combined 

biofertilizers might be caused by the proper conditions provided by biofertilizer which produced plant 

growth promoting hormones thus increased root‟s absorbency and improved plant growth status then 

finally prolonged crop maturity 285 and affirmed by Kenndy. 292  Haque et al., 228 reported that increase in 

nitrogen might the factor to delay phonological stages including crop maturity as nitrogen enhance 

vegetative growth (Figure 19) and affirmed by Javahey and Rokhzadi 508 who reported prolonged 

phonological stages due to Nitrogen on sunflower.The maximum number of branches in a field trials  

might be attributed to the fact that the component bioferilizer such rhizobium fixed atmospheric nitrogen 

through nodules, hence increases plant height, branches per plant, and number of nodule.685 

PGPR has the ability to produce phytohormones, organic acids, siderophores, fix atmospheric nitrogen, 

solubilize phosphate.33 AMF enhance phosphate nutrition in legumes, which results in plant growth and 

nitrogen fixation.109 The results obtained in this investigation are in line with El-Mansi et al.,162 who 

reported the increase in branches by application of biofertilizers. The significant effect of biofertilizers 

application on pod length in pea might attributed to the PGPR which enhanced plant growth by 

synthetizing plant growth promoting hormones,139 facilitating nutrients uptake from soil 89 or preventing 

plant diseases. The results obtained are in line with that reported by Rather et al. 482 that, significant 

increase in pod length, number of pods per plant, number of seeds per pod, 100 grain weight of pea 
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increased by co-inoculation of rhizobium, Azotobacter and PSB. Negi et al., 424 reported that pod length 

was significantly increased under the influence of biofertilizers.285 The significant effect of biofertilizer 

on number of pod per plant might be due to the fact that, rhizobium is nitrogen fixing bacteria (NFB) that 

can transform inert atmospheric nitrogen to organic compounds.84 Also, increment in number of pod per 

plant might be due to the improvement of phosphate uptake and growth in leguminous by AMF. 168 Glick 
198 reported maximum number of pods per plant due to PGPR which stimulates growth by fixing 

atmospheric nitrogen, production of sideropheres which chelate iron and make it available for the plant 

root, solubilizing phosphorus and secretion of phytohormones. Zhang et al.688 reported an increment of 

number of pods per plant, number of seeds per pod in two soybean cultivars. Kazemi et al.289 affirmed 

that, the inoculated seeds of soybean  by biofertilizer induced significant number of pods per plant, 

number of seeds per plant, thousand grain weights and grain yield in soybean . The significant effect of 

biofertilizer on number of seeds per pod in treated plant might be attributed to provision of needed 

nitrogen and phosphorus (Table 6 and Figur 17) in the GF1 and GF2 biofertilizer formilation. Similar 

report was affirmed as the requirement for essential cell division, root and seed formation.196 

Elshanshoury 161 reported increased nutrient uptake like NO3
-  NH4

2+, PO4 
3+, K+ and Fe 2+ in inoculated 

plants (Figure 20). 

The yield attributes improvement including seed yield due to biofertilizer inoculation might attributed to 

the increased and balanced nutrients availability (N and P).The significant increase in potassium might be 

attributed to the fact that when microorganisms cultures are applied to the soil, they enhance organic 

residues decomposition hence releasing inorganic nutrients which become available for plant uptake.268 

The biofertilizer laboratories results agree with Kaihura et al., 280 ,75  , 587 who reported that farm yard 

manure increased soil N, P, K and Ca (feedstock for the production of the Biofertilizer, Plate 1). The 

effect of biofertilizer on available P was significant..446 The significant increase might be attributed to the 

fact that organic materials have the ability to cover sesquioxides then reduce P-solubulization and hence, 

increased P availability in soil solution 72 ,404 and Ipinmoroti et al. 255 reported increase of available P due 

to organic manure use results in higher build-up of N, P, K, Ca, Mg and organic carbon (Figure 20). 

CONCLUSIONS AND RECOMMENDATION 

 

Significantly (P < 0.05)  higher number of leaves, plant height, higher number of pods and seed 

weight/plant was observed by gateway biofertilizer (GF1 and GF2) applied because host strain specificity 

soil rhizobia was considered during the biofertilizer development to nodulate under environmental stress 

compared  other soil amendments. Biofertilizer interaction of rhizotrophic microorganisms can improve 

nutrients uptake in the soil like P, K, Ca, Mg and N and hence increase yields.463 Smart agriculture 

framework developed will help provide information about signal cascades and regulatory networks that 

may occur in plant-microbe interactions that accentuate trans-disciplinary research and affirmed by 

scholars.656, 335, 341  Also, easiness and crop performance can always be improved by altering formulation  

to make soil specific biofertilizer to the user (stakeholder) when regulators lack expertise in the field 

application and evaluation area (crop scenario), they could  tend to delay making a decision or ask for 

information that sometimes goes beyond what  it is needed (re-generative agriculture). Biofertilizer 

applied to soybean cultivation acts as integrated pest management by promoting natural pest regulation 

with co-inoculation of Rhizobium sp. with P. fluorescens in the Biofertilizer (Tables 2 and 6). 
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Among the organic sources for soybean performance GF 1 and GF 2 gave a comparatively higher growth 

response as a result of the constituent nutritional components that were able to sustain soybean and 

bradyrhizobia growth at the beginning of the crop phenology, though with no significant effect on its 

eventual performance. The yield attributes improvement including seed yield due to biofertilizer 

inoculation might attributed to the increased and balanced nutrients availability (N and P). Rhizobia can 

affect some plant physiological processes like photosynthesis, nodulation and nitrogen fixation in 

legumes by stimulating plant dry matter and grain yield. 130 , 286,215 Rhizobia affect soybean   

physiological processes like photosynthesis, nodulation and nitrogen fixation in legumes by stimulating 

plant dry matter and grain yield. To ensure sustainable soybean performance through increasing BNF 

higher application rates of GF 2 could be recommended to meet a short fall in nitrogen deficit as a result 

of a decline in BNF at the reproductive stage for a higher grain yield. The profitability of soyabean 

cultivation is the combine use of N2 fixation by root nodules and absorbed N from roots for the maximum 

seed yield of soybean. 
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Appendix 1 - Plant growth promotion and biofertilization 
Table 10 | Nutrient content of soybean cultivation Mengle 389 and Vitosh 637 

 

Carbon/Nitrogen Ratio |  
Residues with wide C: N ratios include hay, straw pine needles, cornstalks, dry leaves, and sawdust. 

C: N ratios of > 30:1 

Immobilization of soil N will be favored. 

C: N ratios of 20:1 to 30:1  

Immobilization and mineralization will be nearly equal. 

C: N ratios of < 20:1  

Favour rapid mineralization of N. Residues with narrow C: N ratios include alfalfa, clover, manures, 

biosolids, and immature grasses.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elements Content % Elements Content ppm

Nitrogen 4.25-5.50 Copper 0.00-30.00

Phosphorus 0.25-0.5 Manganese 20-100

Potassium 1.70-2.50 Zinc 20-50

Calcium 0.35-2.00 Boron 20-55

Magnesium 0.26-1.00 Molybdenum 1.0-5.0

Sulfur 0.15-0.50 Aluminum <200


