BIFUNCTIONALIZED ALLENES. PART XVIII. SYNTHESIS OF 2,5-DIHYDRO-1,2-OXAPHOSPHOLES AND 2-PHOSPHORYL-2,5-DIHYDROFURANS RV ELECTROPHILIC CYCLIZATION AND COINACE

DIHYDROFURANS BY ELECTROPHILIC CYCLIZATION AND COINAGE METAL-CATALYZED CYCLOISOMERIZATION OF PHOSPHORYLATED 3-(□-HYDROXY) ALLENES

Valerij Ch. Christov*, Hasan H. Hasanov and Ivaylo K. Ivanov

Department of Organic Chemistry & Technology, Faculty of Natural Sciences, Konstantin Preslavsky University of Shumen, 115, Universitetska str., BG-9712 Shumen, Bulgaria

ABSTRACT: A convenient and efficient regioselective synthesis of phosphorylated 3-(\square hydroxy)allenes by an atom economical [2,3]-sigmatropic rearrangement of the mediated propargyl phosphite or phosphinite which can be readily prepared via reaction of protected 1,2,4-triphenyl-1-(tetrahydro-2H-pyran-2-yloxy)-but-3-yn-2-ol with dimethyl chlorophosphite or chlorodiphenyl phosphine respectively is described. This paper discusses a reaction of phosphorylated 3-(\square -hydroxy)allenes with protected or unprotected hydroxy group involving 5-endo-trig cyclization. Reaction of dimethyl (4-hydroxy-1,3,4-triphenyl-buta-1,2dienyl)phosphonate with electrophiles that produces 2-oxo-2,5-dihydro-1,2-oxaphospholes due to the participation of the phosphonate neighboring group in the cyclization is described. On the other hand, but-(3E)-en-1-yl phosphine oxides were prepared by chemo-, regio-, and stereoselective electrophilic addition to the C^2 - C^3 -double bond in the allene moiety and subsequent concurrent attack of the external (chloride anion) nucleophile. Phosphorylated 3-(\(\subseteq\)-hydroxy)allenes were smoothly converted into the corresponding 2-phosphoryl-2,5dihydrofurans by using 5 mol % of coinage metal salt as catalyst in 5-endo-trig cycloisomerization reaction.

KEYWORDS: Phosphorylated 3-(□-hydroxy) Allenes, Electrophilic Cyclization, 2,5-Dihydro-1,2-Oxaphospholes, Coinage Metal-Catalyzed Cycloisomerization, 2,5-Dihydrofurans.

INTRODUCTION

Functionalized allenes have attracted a growing attention because of their versatility as key building blocks for organic synthesis. The synthetic potential of functionalized allenes has been explored extensively in recent years, and this has led to the development of novel methods for the construction of a variety of functionalized heterocyclic and carbocyclic systems [1].

A plethora of methods exists for the construction of hydroxyallenes, including prototropic rearrangement of propargylic alcohols [2], metal-catalyzed nucleophilic addition of propargylic derivatives to aldehydes [3], Cu(I)-catalyzed reaction of propargylic chlorides with Grignard reagents [4], metal-catalyzed reaction of propargylic oxiranes with organometallic compounds [5] and ketones [6], and by other methods [7].

There are methods [8] for the synthesis of phosphorus-containing allenes (phosphonates [9], and phosphine oxides [10]) including reactions of □-alkynols with chloride-containing

derivatives of phosphorus acids followed by [2,3]-sigmatropic rearrangement. Several diethylphosphono-substituted □-allenic alcohols were prepared by Brel [11] directly from alcohols by Horner-Mark rearrangement of unstable propargylic phosphites.

Transition metal-catalyzed cyclization of functionalized allenes bearing a nucleophilic center has attracted considearble attention in recent years [12]. Particularly, the cyclization reactions of allenols catalyzed by Ag(I) [13], Hg(II) [14], Pd(0) [15], Pd(II) [16], or Ru(III) [17] have become quite useful methodologies for the synthesis of five-, or six-membered oxygen-containing heterocycles. Krause's group has reported a highly efficient and stereoselective synthesis of 2,5-dihydrofurans by Au(I)- and Au(III)-catalyzed [18] cycloisomerization of α -hydroxyallenes [19]. Moreover, the method is not restricted to the cycloisomerization of α -hydroxyallenes to 2,5-dihydrofurans [18a, 19b], rather, it was recently extended by Krause's group to the corresponding endo-cyclization of β -hydroxyallenes [20] to the corresponding six-membered α -heterocycles. The method of choice, however, is the use of transition metal catalysts since this combines high reactivities and excellent yields with a tolerance to many functional groups.

Acyclic analogs of nucleotides containing an allenic skeleton were prepared by Brel and coworkers [21] directly from alcohols by Horner-Mark [2,3]-sigmatropic rearrangement of unstable propargylic phosphites. Intramolecular cyclization of the alkoxides tethered to the allenyl moiety in the presence of AgNO₃ yielded 3,6-dihydro-2*H*-pyran-4-yl- and 4,5-dihydro-3-furanyl-phosphonates [11c, 21].

On the other hand, the literature data on the reactions of phosphorylated allenes with electrophilic reagents reveal that the reactions proceed with cyclization of the allenic system bearing the phosphoryl group (O=P-C=C=C) to give heterocyclic compounds in most cases and the outcome depends on the structure of the starting allenic compound as well as the type of electrophile used [22].

As a part of our research program on the chemistry of the bifunctionalized allenes, we required a convenient method to introduce a phosphorus-containing group such as phosphonate or phosphine oxide group as well as a \Box -hydroxyalkyl group in the third position to the allenic system of double bonds. The above mentioned groups attract increasing attention as useful functionalities in organic synthesis. Of particular interest are the applications of these groups as temporary transformers of chemical reactivity of the allenic system in the synthesis of eventually heterocyclic compounds. In a continuation to our previous reports on the synthesis [23] and cyclization reactions of phosphorylated α -hydroxy- and \Box -hydroxy-allenes [24], we have found a convenient and efficient method for regionselective synthesis of phosphorylated 3-(\Box -hydroxy)allenes by an atom economical [2,3]-sigmatropic rearrangement of the mediated 1,3-diphenyl-1-[phenyl-(tetrahydro-2*H*-pyran-2-yloxy)-methyl]-prop-2-ynyl phosphite or phosphinite, which to be used as starting materials in the electrophilic cyclization and coinage metal-catalyzed cycloisomerization reactions to 2,5-dihydro-1,2-oxaphospholes and 2-phosphoryl-2,5-dihydrofurans respectively.

EXPERIMENTAL Section

General Information

All new synthesized compounds were purified by column chromatography and characterized on the basis of NMR, IR, and microanalytical data. NMR spectra were recorded on DRX

Brucker Avance-250 (Bruker BioSpin, Karlsruhe, Germany) (¹H at 250.1 MHz, ¹³C at 62.9 MHz, ³¹P at 101.2 MHz) and Brucker Avance II+600 (Bruker BioSpin GmbH, Karlsruhe, Germany) (¹H at 600.1 MHz, ¹³C at 150.9 MHz, ³¹P at 242.9 MHz) spectrometers for solutions in CDCl₃. All ¹H and ¹³C NMR experiments were measured referring to the signal of internal TMS and ³¹P NMR experiments were measured referring to the signal of external 85% H₃PO₄. J values are given in hertz. IR spectra were recorded with an FT-IRAfinity-1 Shimadzu spectrophotometer (Shimadzu, Tokyo, Japan). Elemental analyses were carried out by the Microanalytical Service Laboratory of Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria, using Vario EL3 CHNS(O) (Elementar Analysensysteme, Hanau, Germany). Column chromatography was performed on Kieselgel F25460 (70-230 mesh ASTM, 0.063-0.200 nm, Merck). Et₂O and THF were distilled from Na wire/benzophenone, CH₂Cl₂ was distilled over CaH₂, and other organic solvents used in this study were dried over appropriate drying agents by standard methods and distilled prior to use. All other chemicals used in this study were commercially available and were used without additional purification unless otherwise noted. Reactions were carried out in oven dried glassware under an argon atmosphere and exclusion of moisture. All compounds were checked for purity on TLC plates Kieselgel F₂₅₄ 60 (Merck).

Procedure [26] for Synthesis of the Diphenyl-2-(tetrahydro-2H-pyran-2-yloxy)- Ethanone 2

A solution of the benzoin 1 (120 mmol) and DHP (3,4-dihydro-2H-pyran) (15.14 g, 180 mmol) in dry methylene chloride (100 mL) containing PPTS (pyridinium p-toluenesulfonate) (3 g, 12 mmol) is stirred for 6h at room temperature. Then the reaction was quenched with saturated NaHCO₃ end extracted with methylene chloride. The organic layer was dried over anhydrous sodium sulfate. After evaporation of the solvent, the residue was chromatographied on a column (silica gel, Kieselgel Merck 60 F_{254}) with a mixture of ethyl acetate and hexane (1:1) as an eluent. The pure product 2 had the following properties:

Diphenyl-2-(tetrahydro-2H-pyran-2-yloxy)-ethanone (**2**). This compound was obtained as colourless oil, yield: 92%. Eluent for TLC: ethyl acetate: hexane = 1:1, R_f 0.56; IR (neat, cm⁻¹): 1121 (C-O-C), 1449, 1495 (Ph), 1694 (C=O). ¹H-NMR (250.1 MHz): δ_H 1.32-1.43, 1.48-153, 3.55-3.77, 5.20-5.24 (overlapping multiplets, 9H, OTHP), 5.77 (m, 1H, CH), 7.18-8.09 (m, 10H, 2Ph). ¹³C-NMR (62.9 MHz) □_C 20.2 (CH₂), 24.7 (CH₂), 30.6 (CH₂), 64.4 (CH₂), 77.2 (CH), 98.5 (CH), 124.9-136.7 (2Ph), 195.4 (C). Anal. Calcd for C₁₉H₂₀O₃ requires: C 77.00, H 6.80. Found: C 76.94, H 6.85.

Procedure for Synthesis of the 1,2,4-Triphenyl-1-(tetrahydro-2H-pyran-2-yloxy)-but-3-yn-2-ol 3

Ethylmagnesium bromide [prepared from magnesium (1.22 g, 50 mmol) and ethyl bromide (5.50 g, 50 mmol) in dry THF (50 mL)] is added dropwise under stirring to the phenylacetylene (50 mmol) and then the mixture is refluxed for 2h. The solution of the prepared ethynyl magnesium bromide is added dropwise under stirring to the diphenyl-2-(tetrahydro-2*H*-pyran-2-yloxy)-ethanone **2** (100 mmol). The mixture is refluxed for 24 h and after cooling is hydrolyzed with a saturated aqueous solution of ammonium chloride. The organic layer is separated, washed with water, and dried over over anhydrous sodium sulfate. Solvent and the excess of ketone are removed by distillation. Purification of the residue is achieved by column chromatography (silica gel, Kieselgel Merck 60 F_{254}) with ethyl acetate-hexane (1:3). The pure product **5** had the following properties:

1,2,4-Triphenyl-1-(tetrahydro-2H-pyran-2-yloxy)-but-3-yn-2-ol (**3**). This compound was obtained as light orange oil, yield: 58%. Eluent for TLC: ethyl acetate: hexane = 1:3, R_f 0.53; IR (neat, cm⁻¹): 1119 (C-O-C), 1449, 1491 (Ph), 3401 (OH). C₂₇H₂₆O₃ (398.49). Calcd: C 81.38, H 6.58; found: C 81.45, H 6.62. ¹H-NMR (250.1 MHz): δ_H 1.15-1.24, 1.29-1.36, 3.50-3.61, 4.93-4.96 (overlapping multiplets, 9H, OTHP), 2.52 (s, 1H, OH), 4.41 (m, 1H, CH), 6.68-7.68 (m, 15H, 3Ph). ¹³C-NMR (62.9 MHz) □_C 19.7 (CH₂), 25.7 (CH₂), 31.4 (CH₂), 63.3 (CH₂), 84.67 (C), 85.9 (C), 90.3 (C), 90.9 (CH), 101.1 (CH), 124.0-139.97 (3Ph). Anal. Calcd for C₂₇H₂₆O₃ requires: C 81.38, H 6.58. Found: C 81.45, H 6.62.

Procedure for Synthesis of the Dimethyl [1,3,4-Triphenyl-4-(tetrahydro-2H-pyran-2-yloxy)-buta-1,2-dienyl]phosphonate 5

To a solution of phosphorus trichloride (2.75 g, 20 mmol) and triethylamine (2.23 g, 22 mmol) in dry diethyl ether (60 mL) at -70°C was added dropwise with stirring a solution of the 1,2,4-triphenyl-1-(tetrahydro-2*H*-pyran-2-yloxy)-but-3-yn-2-ol **3** (20 mmol) in the same solvent (20 mL). After 30 min stirring at the same condition a solution of pyridine (3,16 g, 44 mmol) and of methanol (1,28 g, 40 mmol) in dry diethyl ether (50 mL) were added. The reaction mixture was stirred for an hour at the same temperature and for 6 hours at room temperature. The mixture was then washed with water, 2N HCl, extracted with ether, washed with saturated NaCl, and dried over anhydrous sodium sulfate. After evaporation of the solvent, the residue was chromatographied on a column (silica gel, Kieselgel Merck 60 F₂₅₄) with a mixture of ethyl acetate and hexane (3:1) as an eluent to give the pure product **7** as an oil, which had the following properties:

Dimethyl [1,3,4-triphenyl-4-(tetrahydro-2H-pyran-2-yloxy)-buta-1,2-dienyl]phosphonate (**5**). This compound was obtained as orange oil, yield: 71%. Eluent for TLC: ethyl acetate: hexane = 3:1, R_f 0.42; IR (neat, cm⁻¹): 1117 (C-O-C), 1260 (P=O), 1447, 1495 (Ph), 1933 (C=C=C).

¹H-NMR (600.1 MHz): δ_H 1.28-1.76, 3.43-3.71, 4.55-4.69 (overlapping multiplets, 9H, OTHP), 3.69 (d, J = 11.2 Hz, 3H, MeO), 5.94-5.97 (m, 1H, CH), 7.16-7.73 (m, 15H, 3Ph).

¹³C-NMR (150.9 MHz) \Box_C 19.1 (CH₂), 25.6 (CH₂), 31.0 (CH₂), 53.2 (J = 5.8 Hz, CH₃), 62.7 (CH₂), 74.8 (J = 5.5 Hz, CH), 96.9 (CH), 100.9 (J = 187.7 Hz, C), 113.3 (J = 15.6 Hz, C), 127.1-139.6 (3Ph), 213.2 (J = 2.9 Hz, C).

³¹P-NMR (242.9 MHz): δ_P 17.9. Anal. Calcd for C₂₉H₃₁O₅P requires: C 71.01, H 6.37. Found: C 70.97, H 6.44.

Procedure for the Synthesis of the 2-(4-Diphenylphosphinoyl-1,2,4-triphenyl-buta-2,3-dienyloxy)-tetrahydro-2H-pyran 7

To a solution of the 1,2,4-triphenyl-1-(tetrahydro-2H-pyran-2-yloxy)-but-3-yn-2-ol **3** (20 mmol) and triethylamine (2.23 g, 22 mmol) in dry diethyl ether (60 mL) at -70°C, a solution of freshly distilled diphenylchloro phosphine (4.41 g, 20 mmol) in the same solvent (20 mL) was added dropwise with stirring. The reaction mixture was stirred for an hour at the same temperature and for 9 h at room temperature and then washed with water, 2N HCl, extracted with diethyl ether, and the extract was washed with saturated NaCl, and dried over anhydrous sodium sulfate. The solvent was removed using a rotatory evaporator, and the residue was purified by column chromatography on a silica gel (Kieselgel Merck 60 F_{254}) with ethyl acetate-hexane (3:1) to give the pure product **9** as an oil, which had the following properties:

2-[4-(Diphenylphosphinoyl)-1,2,4-triphenyl-buta-2,3-dienyloxy]-tetrahydro-2H-pyran (7). This compound was obtained as yellow oil, yield: 74%. Eluent for TLC: ethyl acetate: hexane = 3:1, R_f 0.45; IR (neat, cm⁻¹): 1119 (C-O-C), 1157 (P=O), 1439, 1493 (Ph), 1937 (C=C=C).

¹H-NMR (600.1 MHz): $\delta_{\rm H}$ 1.15-1.34, 1.40-1.78, 3.58-3.65, 4.40-4.70 (overlapping multiplets, 9H, OTHP), 5.49-5.52 (m, 1H, CH), 7.21-8.03 (m, 30H, 5Ph). ¹³C-NMR (150.9 MHz) $\Box_{\rm C}$ 20.9 (CH₂), 25.6 (CH₂), 30.8 (CH₂), 60.9 (CH₂), 67.0 (J = 1.8 Hz, CH), 95.8 (J = 122.5 Hz, C), 98.9 (CH), 115.6 (J = 14.5 Hz, C), 127.1-135.6 (5Ph), 210.7 (J = 2.5 Hz, C). ³¹P-NMR (242.9 MHz): $\delta_{\rm P}$ 34.6. Anal. Calcd for C₃₉H₃₅O₃P requires: C 80.39, H 6.05. Found: C 80.47, H 5.99.

Procedure for the Synthesis of the Dimethyl (4-Hydroxy-1,3,4-triphenyl-buta-1,2-dienyl)phosphonate 8 and the 4-Diphenylphosphinoyl-1,2,4-triphenyl-buta-2,3-dien-1-ol 9

A solution of the dimethyl [1,3,4-triphenyl-4-(tetrahydro-2H-pyran-2-yloxy)-buta-1,2-dienyl]phosphonate **5** or the 2-(4-diphenylphosphinoyl-1,2,4-triphenyl-buta-2,3-dienyloxy)-tetrahydro-2H-pyran **7** (5 mmol) and PPTS (0.5 mmol) in ethanol (10 mL) was stirred at room temperature for 6 h. The mixture was then washed with water, extracted with methylene chloride and dried over anhydrous sodium sulfate. After evaporation of the solvent, the residue was chromatographied on a column (silica gel, Kieselgel Merck 60 F_{254}) with a mixture of ethyl acetate and hexane (3:1) as an eluent to give the pure products **8** or **9** as oils, which had the following properties:

Dimethyl (4-hydroxy-1,3,4-triphenyl-buta-1,2-dienyl)phosphonate (8). This compound was obtained as yellow oil, yield: 79%. Eluent for TLC: ethyl acetate: hexane = 3:1, R_f 0.61; IR (neat, cm⁻¹): 1258 (P=O), 1447, 1495 (Ph), 1933 (C=C=C), 3450 (OH). (406.41). Calcd: ¹H-NMR (600.1 MHz): $\delta_{\rm H}$ 2.63 (s, 1H, OH), 3.68 (d, J = 11.3 Hz, 3H, MeO), 5.91-5.94 (m, 1H, CH), 7.09-7.73 (m, 15H, 3Ph). ¹³C-NMR (150.9 MHz) $\Box_{\rm C}$ 53.2 (J = 5.7 Hz, CH₃), 74.5 (J = 5.4 Hz, CH), 100.8 (J = 184.5 Hz, C), 113.2 (J = 15.8 Hz, C), 126.0-140.3 (m, 3Ph), 208.1 (J = 3.0 Hz, C). ³¹P-NMR (242.9 MHz): $\delta_{\rm P}$ 17.9. Anal. Calcd for C₂₄H₂₃O₄P requires: C 70.93, H 5.70. Found: C 70.99, H 5.65.

4-(Diphenylphosphinoyl)-1,2,4-triphenyl-buta-2,3-dien-1-ol (**9**). This compound was obtained as light yellow oil, yield: 81%. Eluent for TLC: ethyl acetate: hexane = 3:1, R_f0.60; IR (neat, cm⁻¹): 1161 (P=O), 1441, 1495 (Ph), 1921 (C=C=C), 3402 (OH). ¹H-NMR (600.1 MHz): δ_H 2.04 (s, 1H, OH), 4.52-4.56 (m, 1H, CH), 6.81-7.89 (m, 30H, 5Ph). ¹³C-NMR (150.9 MHz) □C 79.4 (J = 5.9 Hz, CH), 98.7 (J = 132.6 Hz, C), 112.5 (J = 13.5 Hz, C), 126.7-138.9 (5Ph), 205.0 (J = 2.4 Hz, C). ³¹P-NMR (242.9 MHz): δ_P 31.8. Calcd for C₃₄H₂₇O₂P requires: C 81.91, H 5.46. Found: C 81.84, H 5.51.

General Procedure for the Reactions of the Phosphorylated 3-(\Box -Hydroxy)allenes 5, 7-9 with Electrophilic Reagents.

To a solution of the phosphorylated 3-(\square -hydroxy)allene with protected (5 or 7) or unprotected (8 or 9) hydroxy group (3.0 mmol) in dry dichloromethane (10 mL) at -20 °C was added dropwise with stirring a solution of electrophilic reagent (bromine, benzenesulfenyl chloride or benzeneselenenyl chloride) (3.6 mmol) in the same solvent (10 mL). The reaction mixture was stirred at the same temperature for 2 hours and 3 hours at room temperature. After evaporation of the solvent, the residue was chromatographed on a silica gel column (ethyl acetate and hexane 1:1) as an eluent to give the pure products 10 or 11 as oils, which had the following properties:

2-[(4-Bromo-2-methoxy-2-oxo-3,5-diphenyl-2,5-dihydro-1,2-oxaphosphol-5-yl)(phenyl)methoxy]-tetrahydro-2H-pyran (10a). This compound was obtained as orange oil,

yield: 81%. Eluent for TLC: ethyl acetate: hexane = 1:1, R_f 0.49; IR (neat, cm⁻¹): 1022 (C-O-P), 1121 (C-O-C), 1259 (P=O), 1436, 1495 (Ph), 1582 (C=C). ¹H-NMR (600.1 MHz): $\delta_{\rm H}$ 1.10-1.28, 1.46-1.90, 3.19-3.62, 4.70-4.73 (overlapping multiplets, 9H, OTHP), 3.73 (d, J=11.2 Hz, 3H, MeO), 5.10-4.13 (m, 1H, CH), 7.24-8.02 (m, 15H, 3Ph). ¹³C-NMR (150.9 MHz) $\Box_{\rm C}$ 14.9 (CH₂), 24.1 (CH₂), 31.6 (CH₂), 52.1 (J=15.4 Hz, CH₃), 63.2 (CH₂), 83.5 (J=7.9 Hz, CH), 96.3 (J=10.0 Hz, C), 99.9 (CH), 126.0-136.6 (3Ph), 133.5 (J=152.9 Hz, C), 138.3 (J=48.7 Hz, C). ³¹P-NMR (242.9 MHz): $\delta_{\rm P}$ 31.8. Anal. Calcd for C₂₈H₂₈BrO₅P requires: C 60.55, H 5.08. Found: C 60.62, H 5.04.

(2-Methoxy-2-oxo-3,5-diphenyl-4-phenylselenenyl-2,5-dihydro-1,2-oxaphosphol-5-yl)(phenyl)methanol (**10b**). This compound was obtained as light yellow oil, yield: 73%. Eluent for TLC: ethyl acetate: hexane = 1:1, R_f 0.52; IR (neat, cm⁻¹): 1018 (C-O-P), 1263 (P=O), 1444, 1493 (Ph), 1580 (C=C), 3422 (OH). ¹H-NMR (600.1 MHz): δ_H 3.32 (s, 1H, OH), 3.69 (d, J = 11.9 Hz, 3H, MeO), 5.29-5.33 (m, 1H, CH), 6.89-8.01 (m, 20H, 4Ph). ¹³C-NMR (150.9 MHz) \Box_C 52.0 (J = 14.8 Hz, CH₃), 75.8 (J = 7.2 Hz, CH), 101.4 (J = 9.6 Hz, C), 127.4-147.4 (4Ph), 134.8 (J = 98.5 Hz, C), 174.7 (J = 15.1 Hz, C). ³¹P-NMR (242.9 MHz): δ_P 34.6. Anal. Calcd for C₂₉H₂₅O₄PSe requires: C 63.63, H 4.60. Found: C 63.67, H 4.53.

2-(2-Chloro-4-diphenylphosphinoyl-1,2,4-triphenyl-3-phenylselenenyl-but-(3E)-enyloxy)-tetrahydro-2H-pyran (**11a**). This compound was obtained as dark orange oil, yield: 70%. Eluent for TLC: ethyl acetate: hexane = 1:1, R_f 0.54; IR (neat, cm⁻¹): 1120 (C-O-C), 1156 (P=O), 1440, 1493 (Ph), 1617 (C=C). ¹H-NMR (600.1 MHz): $\delta_{\rm H}$ 1.16-1.22, 1.32-1.61, 3.61-3.66, 4.54-4.58 (overlapping multiplets, 9H, OTHP), 5.00-5.04 (m, 1H, CH), 6.94-8.10 (m, 30H, 6Ph). ¹³C-NMR (150.9 MHz) $\Box_{\rm C}$ 19.6 (CH₂), 25.4 (CH₂), 30.9 (CH₂), 65.4(CH₂), 94.8 (*J* = 5.0 Hz, CH), 96.6 (CH), 98.6 (*J* = 8.9 Hz, C), 126.1-138.9 (6Ph), 132.0 (*J* = 92.8 Hz, C), 152.5 (*J* = 15.2 Hz, C). ³¹P-NMR (242.9 MHz): $\delta_{\rm P}$ 36.3. Anal. Calcd for C₄₅H₄₀ClO₃PSe requires: C 69.81, H 5.21. Found: C 69.77, H 5.15.

2-Chloro-4-(diphenylphosphinoyl)-1,2,4-triphenyl-3-phenylsulfenyl-but-(3E)-en-1-ol (11b). This compound was obtained as orange oil, yield: 64%. Eluent for TLC: ethyl acetate: hexane = 1:1, R_f 0.47; IR (neat, cm⁻¹): 1167 (P=O), 1441, 1493 (Ph), 1615 (C=C), 3410 (OH). ¹H-NMR (600.1 MHz): 0.97 (s, 1H, OH), 5.64 (m, 1H, CH), 7.07-8.21 (m, 30H, 6Ph). ¹³C-NMR (150.9 MHz) \Box_C 80.5 (J = 14.8 Hz, CH), 88.3 (J = 8.3 Hz, C), 126.7-135.8 (6Ph), 136.9 (J = 100.7 Hz, C), 160.5 (J = 14.6 Hz). ³¹P-NMR (242.9 MHz): δ_P 38.5. Anal. Calcd for C₄₀H₃₂ClO₂PS requires: C 74.70, H 5.01. Found: C 74.63, H 4.96.

General Procedure for Coinage Metal-catalyzed Cycloisomerization of the Dimethyl (4-Hydroxy-1,3,4-triphenyl-buta-1,2-dienyl)phosphonate 8 and the 4-Diphenylphosphinoyl-1,2,4-triphenyl-buta-2,3-dien-1-ol 9

Coinage metal salt catalyst (0.15 mmol) was added to a solution of the dimethyl (4-hydroxy-1,3,4-triphenyl-buta-1,2-dienyl)phosphonate **8** and the 4-diphenylphosphinoyl-1,2,4-triphenyl-buta-2,3-dien-1-ol **9** (3.0 mmol) in dry dichloromethane (10 mL). The mixture was stirred at room temperature and in the dark for the hours indicated in the **Table 1**. Saturated sodium chloride solution was added to precipitate the silver ions. The product was extracted by chloroform. The organic layer was dried over anhydrous sodium sulfate. After evaporation of the solvent, the residue was chromatographed on a column (silica gel, Kieselgel Merck 60 F_{254}) with a mixture of ethyl acetate and hexane (1:1) as an eluent to give the pure products **12** as oils, which had the following properties:

Dimethyl (2,4,5-triphenyl-2,5-dihydrofuran-2-yl)phosphonate (**12a**). This compound was obtained as orange oil, yield: 25-75%. Eluent for TLC: ethyl acetate: hexane = 1:1, R_f 0.53; IR (neat, cm⁻¹): 1121 (C-O-C), 1244 (P=O), 1447, 1495 (Ph), 1620 (C=C). ¹H-NMR (600.1 MHz): δ_H 3.69 (d, J =11.4 Hz, 6H, 2MeO), 5.30 (s, 1H, CH), 5.58 (d, J =4.1 Hz, 1H, HC=), 7.21-7.76 (m, 15H, 3Ph). ¹³C-NMR (150.9 MHz) \Box_C 53.1 (J = 10.4 Hz, CH₃), 78.2 (J = 5.1 Hz, CH), 87.5 (J = 126.8 Hz, C), 126.1 (J = 8.0 Hz, C), 126.9-144.3 (3Ph), 145.9 (J = 8.0 Hz, C). ³¹P-NMR (242.9 MHz): δ_P 18.2. Anal. Calcd for C₂₄H₂₃O₄P requires: C 70.93, H 5.70. Found: C 70.99, H 5.66.

2-(*Diphenylphosphinoyl*)-2,4,5-triphenyl-2,5-dihydrofuran (**12b**). This compound was obtained as yellow oil, yield: 20-83%. Eluent for TLC: ethyl acetate: hexane = 1:1, R_f 0.57; IR (neat, cm⁻¹): 1118 (C-O-C), 1177 (P=O), 1440, 1493 (Ph), 1622 (C=C). ¹H-NMR (600.1 MHz): $\delta_{\rm H}$ 5.87 (s, 1H, CH), 6.52 (d, J =5.3 Hz, 1H, HC=), 7.27-7.89 (m, 25H, 5Ph). ¹³C-NMR (150.9 MHz) $\Box_{\rm C}$ 87.4 (J = 125.8 Hz, C), 90.9 (J = 7.7 Hz, CH), 128.0 (J = 7.9 Hz, C), 127.4-142.6 (5Ph), 147.2 (J = 8.1 Hz, C). ³¹P-NMR (242.9 MHz): $\delta_{\rm P}$ 21.6. Anal. Calcd for C₃₄H₂₇O₂P requires: C 81.91, H 5.46. Found: C 81.85, H 5.53.

RESULTS AND DISCUSSION

Synthesis of Phosphorylated 3-(□-Hydroxy)allenes

Our strategy for the synthesis of the phosphorylated $3-(\Box-hydroxy)$ allenes, using our experience on the preparation of the phosphorylated \Box -hydroxy- [23] and \Box -hydroxy-allenes [24c], relies on the well-precedented [2,3]-sigmatropic shift of propargylic phosphites to allenephosphonates [9] and propargylic phosphinites to allenyl phosphine oxides [10]. In order to assess this approach towards the target 1,3-bifunctionalized allenes, a range of the phosphorylated $3-(\Box-hydroxy)$ allenes 5, 7-9, was prepared by the following four-step procedure [25] including i) protection of the hydroxy group in the benzoin 1; ii) subsequent reaction with Grignard reagent and phenylacetylene to give the 1,2,4-triphenyl-1-(tetrahydro-2H-pyran-2-yloxy)-but-3-yn-2-ol 3 with protected hydroxy group at position 1; iii) interaction with chloride of phosphorus acid in the presence of a base; and finally iv) [2,3]-sigmatropic rearrangement of the mediated protected propargyl phosphite or phosphinite.

As a starting point for our investigation, we first examined the protection of hydroxy group in the benzoin 1 with DHP in the presence of PPTS [26] (Scheme 1). Thus, the protected benzoin 2 was isolated by column chromatography with excellent yield (92%). Reaction of the protected benzoin 2 with *in situ* the generated ethynylmagnesium bromide from ethyl magnesium bromide and phenylacetylene to give the 1,2,4-triphenyl-1-(tetrahydro-2*H*-pyran-2-yloxy)-but-3-yn-2-ol 3, which is stable and was isolated by column chromatography in 58% yield. With the required 1,2,4-triphenyl-but-3-yn-1,2-diol with protected hydroxy group at 1 position 3 in hand, we were then able to investigate the proposed reactions with the corresponding chloro-containing phosphorus reagents such as dimethyl chlorophosphite and chlorodiphenyl phosphine in the presence of a base and subsequent [2,3]-sigmatropic rearrangement of the mediated 1,3-diphenyl-1-[phenyl-(tetrahydro-2*H*-pyran-2-yloxy)-methyl]-prop-2-ynyl phosphite 4 or phosphinite 6. In the first instance, the dimethyl [1,3,4-triphenyl-4-(tetrahydro-2*H*-pyran-2-yloxy)-buta-1,2-dienyl]phosphonate 5 can be readily prepared *via* an atom economical 2,3-sigmatropic rearrangement of the protected propargyl phosphite 4, intermediate formed by reaction of the 1,2,4-triphenyl-1-(tetrahydro-2*H*-pyran-2-yloxy)-pyran-2-yloxyl-pyran-

yloxy)-but-3-yn-2-ol **3** with dimethyl chlorophosphite, prepared *in situ* from phosphorus trichloride in the presence of triethylamine and 2 *equiv* of methanol and 2 *equiv* of pyridine, according to **Scheme 1**.

Next, the reaction of the 1,2,4-triphenyl-1-(tetrahydro-2*H*-pyran-2-yloxy)-but-3-yn-2-ol **3** with chlorodiphenyl phosphine in the presence of triethylamine at -70°C gave the expected 2-[4-(diphenylphosphinoyl)-1,2,4-triphenyl-buta-2,3-dienyloxy]-tetrahydro-2*H*-pyran **7** in very good yield (74%) as a result of [2,3]-sigmatropic rearrangement of the protected propargyl phosphinite **6** for 9 hours at room temperature, according to the reaction sequence outlined in **Scheme 1**.

A new family of phosphorylated 3-(\square -hydroxy)allenes with protected hydroxy group **5** and **7** were synthesized *via* an atom economical and regioselective [2,3]-sigmatropic rearrangement of the intermediate formed propargyl phosphite **4** or phosphinite **6** in the reaction of the protected 1,2,4-triphenyl-1-(tetrahydro-2*H*-pyran-2-yloxy)-but-3-yn-2-ol **3** with dimethylchloro phosphite or chlorodiphenyl phosphine in the presence of triethylamine. Compounds **5** and **7** were stable enough to be handled at ambient temperature. The hydroxy group was deprotected by stirring the ethanol solution of the protected 3-(\square -hydroxy)-allenephosphonate **5** and 3-(\square -hydroxy)-allenyl phosphine oxide **7** in the presence of 0.1 *equiv* PPTS at room temperature for 6 hours, according to **Scheme 2**.

After a conventional work-up, all allenic products **5**, **7-9** were isolated as stable yellow or orange oils by column chromatography and identified by ¹H, ¹³C, and ³¹P NMR and IR spectra as well as by elemental analysis.

Phosphorylated 3-(\square -hydroxy)allenes **5**, **7-9** isolated in preparative amounts allowed us to study its chemical behavior in the reactions with electrophilic reagents and the coinage metal-catalyzed cycloisomerization. The present paper is a part of our long-term objective to investigate both the advantages and the limitations of the electrophilic cyclization and cycloisomerization reactions of the phosphorylated 3-(\square -hydroxy)allenes **5**, **7–9**.

Scheme 1. Synthesis of the phosphorylated $3-(\Box-hydroxy)$ allenes with protected hydroxyl group **5** and **7** by 2,3-sigmatropic rearrangement of the propargyl phosphite **4** and phosphinite **6**.

Reagents and Conditions: i) Benzoin (1 eq), DHP (1.5 eq), PPTS (0.1 eq), CH₂Cl₂, rt, 6h, column chromatography; ii) dropwise addition of EtMgBr (1 eq) to phenylacetylene (1 eq), THF, reflux, 2h, dropwise addition of prepared ethynylmagnesium bromide to **2** (2 eq), THF, reflux, 24h, column chromatography; iii) PCl₃ (1 eq), Et₃N (1.1 eq), Et₂O, -70 °C, 30 min stirring, pyridine (2.2 eq), MeOH (2 eq), Et₂O, -70 °C; iv) [2,3-□]-rearrangement, -70 °C, 1h, rt, 6h, column chromatography v) Ph₂PCl (1 eq), Et₃N (1.1 eq), Et₂O, -70 °C; vi) [2,3-□]-rearrangement, -70 °C, 1h, rt, 9h, column chromatography.

Scheme 2. Synthesis of the phosphorylated 3-(\square -hydroxy)allenes **8** and **9**.

Reagents and Conditions: viii) PPTS (0.1 eq), EtOH, rt, 6h, stirring, column chromatography.

Electrophilic Cyclization of Phosphorylated 3-(□-hydroxy)allenes

It is necessary to draw attention to the fact that conceptually two distinct modes of cyclization of the phosphorylated 3-(\square -hydroxy)allenes are possible. They depend on the electrophilic atom that forms a new bond with the central carbon of the allenic system, which seems likely [11c, 22]. It is evident that these pathways are closely connected with the intramolecular neighboring group participation of the phosphoryl and/or the hydroxymethyl groups as internal nucleophile(s) in the final step of the cyclization. Besides the 5-endo-trig cyclization [27] to

the 2,5-dihydro-1,2-oxaphospholes **I** or to the 2-phosphoryl-2,5-dihydrofurans **II**, the electrophilic addition might afford the 2,3-adducts **III** and/or the 2,1-adducts **IV** (**Scheme 3**).

Scheme 3. Probable products of the electrophilic reaction of the phosphorylated $3-(\Box-hydroxy)$ allenes 5, 7-9.

We started the present study with the reaction of the dimethyl 1,3,4-triphenyl-4-hydroxy-buta-1,2-dienephosphonate with protected (**5**) or unprotected (**8**) hydroxy group with bromine or benzeneselenenyl chloride (**Scheme 4**). We conducted the reactions under the optimized reaction conditions determined in the similar reactions of the phosphorylated □-hydroxy- and □-hydroxy-allenes earlier [24] − solvent CH₂Cl₂ at −20 °C using 1.0 *equiv* of the allenephosphonate and 1.2 *equiv* of the electrophilic reagent. We have to say that the reaction in the favour of 5-*endo-trig* mode afforded the 2-methoxy-2-oxo-2,5-dihydro-1,2-oxaphospholes **10a,b** to have very good yields (81 and 73 %) and it does not depend on the nature of the substituent on the hydroxy group, as a result of the neighboring group participation of phosphonate group in the cyclization.

Scheme 4. Synthesis of the 2-oxo-2,5-dihydro-1,2-oxaphospholes **10** by electrophilic cyclization of the phosphorylated $3-(\Box-hydroxy)$ allenes **5** and **8**.

Reagents and Conditions: ix) Br₂ or PhSeCl (1.2 eq), CH₂Cl₂, -20 °C, 2 h, rt, 3h, stirring, column chromatography.

In order to outline the general terms of this methodology, the reaction of the 1,3,4-triphenyl-4-hydroxy-buta-1,2-dienyl phosphine oxides with protected and unprotected hydroxyl group 7 and 9 with benzeneselenenyl or benzensulfenyl chloride was thorougly investigated. Surprisingly, once we applied the current standard conditions to the 1,3-bifunctionalized allenes comprising a phosphine oxide and a 3-(\Box -hydroxymethyl) groups such as 7 and 9 (Scheme 5), the interaction afforded the 1-hydroxy-but-($\exists E$)-en-4-yl diphenyl phosphine oxides 11a,b in 70% and 64% yields. These reaction pathways may be interpreted as a result of the highly regio- and stereoselective association of the external nucleophile, indicating a highly chemoselectively addition reaction of the electrophilic reagent to the C²-C³-double bond of the allenic system with formation of the ($\exists E$)-2,3-adducts 11a,b.

The stereoselectivity could be explained by the favorable *trans* arrangement of the electrophile and the phosphine oxide group and *anti*-attack of the external nucleophile. This is supposed to arise from attack on the allenic C^2 - C^3 double bond *anti* to the phosphoryl group which assists in the cyclization by neighboring group participation as an internal nucleophile.

Scheme 5. Synthesis of the 1-hydroxy-but-(3E)-en-4-yl phosphine oxides **11** by reaction of the phosphorylated 3- $(\Box$ -hydroxy)allenes **7** and **9** with electrophilic reagents.

Reagents and Conditions: x) PhSeCl or PhSCl (1.2 eq), CH₂Cl₂, -20 °C, 2h, rt, 3h, stirring, column chromatography.

Coinage Metal-catalyzed Cycloisomerization of Phosphorylated 3-(□-hydroxy)allenes

In addition to the above mentioned preparation of 2,5-dihydro-1,2-oxaphospholes by electrophilic cyclization of the 3-(□-hydroxymethyl)-allenephosphonates **5** and **8** and allenyl phosphine oxides **7** and **9** due to the participation of the phosphonate or phosphine oxide neighboring group in the 5-endo-trig cyclization, the next step in our study was to explore the possibilities of the cycloisomerization reaction of the above mentioned compounds **8** and **9** in the presence of coinage metal salts as catalysts. We conducted the reaction under the optimized reaction conditions determined in the similar reactions of the phosphorylated □-hydroxy- [24b] and □-hydroxy-allenes earlier [24c] – solvent methylene chloride, 5 mol % catalyst and room temperature. The reaction occurred via an 5-endo-trig cyclization to give the 2-phosphoryl-2,5-dihydrofurans **12a,b** (**Scheme 6**).

The type of catalyst and its influence on the yields and the reaction time of the cycloisomerization of the 3-(□-hydroxymethyl)-allenephosphonate **8** and allenyl phosphine oxide **9** was also of great interest to us. We performed a series of experiments with the sole intention of determining the best catalysts bearing in mind two criteria – highest yield and shortest reaction time (**Scheme 6**). We applied the following coinage metal salts as catalysts: AgNO₃, AgClO₄, AuCl, AuCl₃, Pd(PPh₃)₄, PtCl₂, CuCl₂, NiCl₂, SnCl₂, AlCl₃, PdCl₂, ZnCl₂, CuCl, CuBr, and CuI. The data reveal that both Au and Ag are excellent catalysts. Pd(I), Pt, and Cu(II) are very good catalysts for our experiments. It becomes obvious that Ni, Sn, Al, and

Pd(II) are relatively good catalysts. It is the Zn and Cu(I) catalysts that are bad. **Table 1** presents the characteristics of all the above-mentioned catalysts in the cycloisomerization reaction of the allenic compounds 8 and 9.

Scheme 6. Synthesis of the 2-phosphoryl-2,5-dihydrofurans **12** by coinage metal-catalyzed cycloisomerization of the phosphorylated $3-(\Box-hydroxy)$ allenes **8** and **9**

Reagents and Conditions: xi) Coinage metal catalyst (5 mol %, **Table 1**), CH₂Cl₂, rt, stirring (**Table 1**), column chromatography.

The results are explicit enough – a catalytic 5-endo-trig cycloisomerization occurs and the hydroxy group participates as an internal nucleophile to give the 2-phosphoryl-2,5-dihydrofurans **12a,b** in good yields.

CONCLUSIONS

In conclusion, a couple of new phosphorylated □-hydroxyallenes were synthesized by a convenient, efficient, atom economical and regioselective method.

Table 1. Synthesis of the 2-phosphoryl-2,5-dihydrofurans 12a,b by coinage metal-catalyzed cycloisomerization of the phosphorylated 3- $(\Box$ -hydroxy)allenes 8 and 9

Entry	Catalyst	Reaction time ^a 8 (h)	12a, Yield (%)	Reaction time ^a 9 (h)	12b , Yield (%)
1	AgNO ₃	6	68 ^b	7	76°
2	$AgClO_4$	5	69 ^c	6	75°
3	AuCl	3	75°	3	83°
4	$AuCl_3$	3	72 ^b	4	79 ^c
5	$Pd(PPh_3)_4$	7	62 ^c	8	67 ^b
6	$PtCl_2$	8	63 ^b	9	67 ^c
7	$CuCl_2$	8	59 ^c	10	64 ^b
8	$NiCl_2$	10	55°	10	50 ^b
9	$SnCl_2$	11	51 ^b	12	48 ^c
10	$AlCl_3$	10	50 ^b	12	52°
11	$PdCl_2$	11	50 ^b	10	41 ^c
12	$ZnCl_2$	12	42 ^c	11	36 ^b
13	CuCl	19	34 ^c	17	27 ^b
14	CuBr	22	28 ^b	20	25°
15	CuI	26	25 ^b	25	20°

^aOn the average; ^b Yields determined by ¹H- and ³¹P-NMR analysis; ^c Isolated yield by chromatographic purification on silica gel.

Reaction of the phosphorylated \Box -hydroxyallenes with protected or unprotected hydroxy groups with different electrophilic reagents occurs via 5-endo-trig cyclization. Treatment of the 1-(2-hydroxypropyl)-allenephosphonates with electrophiles gives the 2-methoxy-2-oxo-2,5-dihydro-1,2-oxaphospholes as a result of the neighboring group participation of the phosphonate group in the cyclization, while the hept-1*E*-en-1-yl phosphine oxides were prepared as mixtures with the 2,5-dihydro-1,2-oxaphosphol-2-ium halides in a ratio of about 1:2 by chemo-, regio-, and stereo-selective electrophilic addition to the C^2 - C^3 -double bond in the allene moiety and subsequent concurrent attack of the external (chloride anion) and internal (phosphine oxide group) nucleophiles.

We have developed a coinage metal-catalyzed cycloisomerization reaction of the phosphorylated \Box -hydroxyallenes, which provides an efficient route to the 4-phosphoryl-3,6-dihydro-2H-pyrans which are produced as a result of the participation of the neighboring hydroxy group as an internal nucleophile in the cyclization process.

Due to the easy availability of starting materials, the convenient operation and mild conditions, the readily availability of the reagents and catalysts, the good yields and the usefulness of the 2,5-dihydro-1,2-oxaphospholes and the 4-phosphoryl-3,6-dihydro-2*H*-pyrans, the cyclization reactions may show potential and will be useful in organic synthesis as well in their application in target-oriented synthesis. Further investigation on the chemistry of other phosphorylated allenols for the synthesis of different heterocyclic systems is being intensively carried out in our laboratory. Moreover, results of an initial investigation of the biological activity of the compounds prepared were encouraging, and the antibacterial and antifungal activities of selected compounds are now under investigation in our University.

Acknowledgments

Financial support of our work by the Research Fund of the Konstantin Preslavsky University of Shumen (Projects Nos. RD-08-208/2014 and RD-08-248/2015), National Research Fund of Bulgaria (Project No. DRNF-02-13/2009) and Human Resources Development Operational Programme of the European Union (BG051PO001- 3.3.06-0003/2012) is gratefully acknowledged.

REFERENCES

- [1] (a) Bates, R.W.; Satcharoen, V. Nucleophilic transition metal based cyclization of allenes. *Chem. Soc. Rev.* **2002**, *31*, 12–21; (b) Ma, S. Recent advances in the chemistry of allenes. *Aldrichim. Acta* **2007**, *40*, 91–102; (c) Hassan, H.H.A.M. Recent progress in the chemistry of allenes. *Curr. Org. Synth.* **2007**, *4*, 413–439; (d) Pinho e Melo, T.M.V.D. Allenes as dipolarophiles and 1,3-dipole precursors: Synthesis of carbocyclic and heterocyclic compounds. *Curr. Org. Chem.* **2009**, *13*, 1406–1431; (e) Back, T.G.; Clary, K.N.; Gao, D. Cycloadditions and cyclizations of acetylenic, allenic, and conjugated dienyl sulfones. *Chem. Rev.* **2010**, *110*, 4498–4553.
- [2] (a) Enomoto, M.; Katsuki, T.; Yamaguchi, M. Highly regioselective isomerization of acetylenes to allenes. *Tetrahedron Lett.* **1986**, 27, 4599–4600; (b) Oroshnik, W.; Mebane, A.; Karmas, G. Synthesis of polyenes. III. Prototropic rearrangements in β-ionols and

- Published by European Centre for Research Training and Development UK (www.eajournals.org
- related compounds. *J. Am. Chem. Soc.* **1953**, 75, 1050–1058; (c) Phadtare, S.; Zemlicka, J. Nucleic acid derived allenols: Unusual analogues of nucleosides with antiretroviral activity. *J. Am. Chem. Soc.* **1989**, *111*, 5925–5931.
- (a) Crabbé, P.; Fillion, H.; André, D.; Luche, J.-L. Efficient homologation of acetylenes J. Chem. Soc. Chem. Commun. 1979, 859–860; (b) Ma, S.; Hou, H.; Zhao, S.; Wang, G. Efficient synthesis of optically active 2,3-allenols via the simple CuBr-mediated reaction of optically active propargylic alcohols with paraformaldehyde. Synthesis 2002, 2002, 1643–1645; (c) Ye, J.; Li, S.; Chen, B.; Fan, W.; Kuang, J.; Liu, J.; Liu, Y.; Miao, B.; Wan, B.; Wang, Y.; et al. Catalytic asymmetric synthesis of optically active allenes from terminal alkynes. Org. Lett. 2012, 14, 1346–1349; (d) Boldrini, G.P.; Lodi, L.; Tagliavini, E.; Tarasco, C.; TrombinI, C.; Umanl-Ronchi, A. Synthesis of enantiomerically enriched homoallylic alcohols and of 1,2-dien-1-ols using chiral tin(IV) complexes containing diethyl tartrate as an auxiliary ligand. J. Org. Chem. 1987, 52, 5447–5452; (e) Hoffman, R.W.; Weldmann, U. Stereoselective synthesis of alcohols, XIX. The sense of asymmetric induction on addition to α-chiral aldehydes. Chem. Ber. 1985, 118, 3966–3979; (f) Corey, E.J.; Imwinkelried, R.; Pikul, S.; Xiang, Y.B. Practical enantioselective Diels-Alder and aldol reactions using a new chiral controller system. J. Am. Chem. Soc. 1989, 111, 5493-5495; (g) Corey, E.J.; Yu, C.-M.; Lee, D.-H. Copper catalyzed asymmetric propargylation aldehydes. J. Am. Chem. Soc. 1990, 112, 878-879; (h) Corey, E.J.; Jones, G.B. Enantioselective route to α-hydroxy aldehyde and acid derivatives. Tetrahedron Lett. 1991, 32, 5713– 5716.
- [4] (a) Li, J.; Kong, W.; Fu, C.; Ma, S. An efficient CuCN-catalyzed synthesis of optically active 2,3-allenols from optically active 1-substituted 4-chloro-2-butyn-1-ols. *J. Org. Chem.* **2009**, *74*, 5104–5106; (b) Li, J.; Zhou, C.; Fu, C.; Ma, S. Studies on Cu(I)-catalyzed synthesis of simple 3-substituted 1,2-allenes and optically active 2-substituted secondary 2,3-allenols. *Tetrahedron* **2009**, *65*, 3695–3703; (c) Deng, Y.; Jin, X.; Ma, S. Studies on Highly stereoselective addition-elimination reactions of 3-(methoxycarbonyl)-1,2-allen-4-ols with MX. An efficient synthesis of 3-(methoxycarbonyl)-2-halo-1,3(*Z*)-dienes. *J. Org. Chem.* **2007**, *72*, 5901–5904.
- (a) Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J.F. Diastereoselective synthesis of α-allenic alcohols from propargylic epoxides. Tetrahedron Lett. 1989, 30, 2387–2390; (b) Alexakis, A.; Marek, I.; Mangeney, P.; Normant, J.F. Diastereoselective syn or anti opening of propargylic epoxides. Synthesis of α -allenic alcohols. Tetrahedron 1991, 47, 1677-1696; (c) Marshall, J.A.; Pinney, K.G. Stereoselective synthesis of 2,5dihydrofurans by sequential SN2' cleavage of alkynyloxiranes and silver(I)-catalyzed allenylcarbinol cyclization of the products. J. Org. Chem. 1993, 58, 7180–7184; (d) Krause, N.; Hoffmann-Röder, A.; Canisius, J. From amino acids to dihydrofurans: Functionalized allenes in modern organic synthesis. Synthesis 2002, 12, 1759–1774; (e) Krause, N.; Hoffmann-Röder, A. Synthesis of allenes with organometallic reagents. Tetrahedron 2004, 60, 11671-11694; (f) Deutsch, C.; Lipshutz, B.H.; Krause, N. Small but effective: Copper hydride catalyzed synthesis of αhydroxyallenes. Angew. Chem. Int. Ed. 2007, 46, 1650-1653; (g) Aksin-Artok, Ö.; Krause, N. Combined Rhodium/Gold catalysis: From propargyloxiranes to 2,5dihydrofurans in one pot. Adv. Synth. Catal. 2011, 353, 385-391; (h) Poonoth, M.; Krause, N. Cycloisomerization of bifunctionalized Allenes: Synthesis of 3(2H)furanones in water. J. Org. Chem. 2011, 76, 1934–1936.

- [6] (a) Aurrecoechea, J.M.; Solay, M. Stereoselective samarium diiodide-promoted intermolecular coupling of alkynyloxiranes with ketones. Synthesis of 2,3-pentadiene-1,5-diols. *Tetrahedron Lett.* 1995, 36, 2501–2504; (b) Aurrecoechea, J.M.; Alonso, E.; Solay, M. Synthesis of allenic diols by samarium diiodide-promoted coupling between alkynyloxiranes and ketones. *Tetrahedron* 1998, 54, 3833–3850.
- [7] (a) Marshall, J.A.; Tang, Y. Allene-directed diastereoselection. Additions to chiral allenyl aldehydes and ketones. *J. Org. Chem.* **1993**, *58*, 3233–3234; (b) Krause, N.; Aksin-Artok, Ö.; Asikainen, M.; Breker, V.; Deutsch, C.; Erdsack, J.; Fan, H.-T.; Gockel, B.; Minkler, S.; Poonoth, M.; Sawama, Yo.; Sawama, Yu.; Sun, T.; Volz, F.; Winter, C. Combined coinage metal catalysis for the synthesis of bioactive molecules. *J. Organomet. Chem.* **2012**, *704*, 1–8.
- [8] (a) Mark, V. The Uncatalyzed Rearrangements of Tervalent Phosphorus Esters in Selective Organic Transformations; Thyagarajan, B.S., Ed.; John Wiley & Sons: New York, NY, USA, 1970; pp. 319–437; (b) Landor, P.D. The Chemistry of the Allenes; Landor, S.R., Ed.; Academic Press: New York, NY, USA, 1982; Volume 1, pp. 174–178; (c) Saalfrank, R.W.; Lurz, C.-J. Methoden der Organischen Chemie (Houben Weyl); Kropf, H., Scheumann, E., Eds.; Thieme: Stuttgart, Gremany, 1993; pp. 2959–3102. (In German); (d) Hashmi, A.S.K. Synthesis of Allenes in Modern Allene Chemistry; Krause, N., Hashmi, A.S.K., Eds.; Wiley-VCH: Weinheim, Gremany, 2004; Volume 1, pp. 3–50.
- (a) Macomber, R.S. Phosphorus-containing products from propargyl alcohols and phosphorus trihalides. 5. A stereochemical investigation of the formation and cyclization of allenic phosphonic acids. Preparation of 4-substituted 1,2-oxaphosphol-3-enes. *J. Am. Chem. Soc.* 1977, 99, 3072–3075; (b) Denmark, S.E.; Marlin, J.E. Carbanion-accelerated Claisen rearrangements. 7. Phosphine oxide and phosphonate anion stabilizing groups. *J. Org. Chem.* 1991, 56, 1003–1013; (c) Cai, B.; Blackburn, G.M. The syntheses and reactions of 3,4-bisphosphono-1,2,4,5-tetraenes. *Synth. Commun.* 1997, 27, 3943–3949; (d) Saalfrank, R.W.; Haubner, M.; Deutscher, C.; Bauer, U. Yne-allenes from 1-bromoallenes and trimethylstannylacetylenes via palladium-mediated C–C coupling reactions. *Eur. J. Org. Chem.* 1999, 1999, 2367–2372; (e) Bhuvan Kumar, N.N.; Kumara Swamy, K.C. The reaction of allenes with phosphorus(III) compounds bearing a P-NH-(t-Bu) group: Isolation of both enantiomers in crystalline form from an achiral system. *Tetrahedron Lett.* 2008, 49, 7135–7138; (f) Kumar, B.; Chakravarty, M.; Kumar, S.; Sajna, K.; Swamy, K. Allenylphosphonates with a 1,3,2-dioxaphosphorinane ring: Synthesis, structures, stability and utility. *J. Chem. Sci.* 2009, 121, 23–36.
- [10] (a) Nicolaou, K.C.; Maligres, P.; Shin, J.; de Leon, E.; Rideout, D. DNA-cleavage and antitumor activity of designed molecules with conjugated phosphine oxide-allene-enefunctionalities. J. Am. Chem. Soc. 1990, 112, 7825–7826; (b) Curfin, M.L.; Okamura, W.H. Synthetic the intramolecular kinetic studies of Diels-Alder reactions cycloalkenylallenylphosphine oxides. J. Org. Chem. 1990, 55, 5278–5287; (c) Grissom, J.W.; Huang, D. Low-temperature tandem envne allene radical cyclizations: Efficient synthesis of 2,3-dihydroindenes from simple enediynes. Angew. Chem. Int. Ed. 1995, 34, 2037-2039; (d) Darcel, C.; Bruneau, C.; Dixneuf, P.H. Straightforward syntheses of dienyl- and diallenylphosphine oxides from α-allenols. Synthesis 1996, 1996, 711–714; (e) De Frutos, O.; Echavarren, A.M. An approach to the synthesis of the benzo[b]fluorene core of the kinamycins by an arylalkyne-allene cycloaddition. Tetrahedron Lett. 1997, 38, 7941–7943; (f) Schmittel, M.; Steffen, J.-P.; Maywald, M.; Engels, B.; Helten, H.; Musch, P. Ring size effects in the C^2 – C^6 biradical cyclisation of enyne–allenes and the relevance for neocarzinostatin. J. Chem. Soc. Perkin Trans. 2 2001, 1331-1339; (g) Guo,

- H.; Qian, R.; Guo, Y.; Ma, S. Neighboring group participation of phosphine oxide functionality in the highly regio- and stereoselective iodohydroxylation of 1,2-allenylic diphenyl phosphine oxides. *J. Org. Chem.* **2008**, *73*, 7934–7938; (h) Srinivas, V.; Sajna, K.V.; Kumara Swamy, K.C. Zn(OTf)₂ catalyzed addition-cyclization reaction of allenylphosphine oxides with propargyl alcohol-unexpected formation of 2,5-dimethylenetetrahydrofurans and 2-substituted furans. *Tetrahedron Lett.* **2011**, *52*, 5323–5326.
- [11] (a) Brel, V.K. Synthesis and cyclization of diethylphosphono-substituted α-allenic alcohols to 4-(diethylphosphono)-2,5-dihydrofurans. *Synthesis* 1999, 463–466; (b) Brel, V.K.; Abramkin, E.V. Cyclization of allenyl phosphonates to 3-chloro-4-(diethylphosphono)-2,5-dihydrofurans induced by CuCl₂. *Mendeleev Commun.* 2002, 12, 64–65; (c) Brel, V.K. Phosphonoallenes for building organophosphorus derivatives. *Heteroatom Chem.* 2006, 17, 547–556.
- [12] Zimmer, R.; Dinesh, C.U.; Nadanan, E.; Hhan, F.A. Palladium-catalyzed reactions of allenes. *Chem. Rev.* **2000**, *100*, 3067–3125;
- [13] (a) Olsson, L.-I.; Claesson, A. Synthesis of 2,5-dihydrofurans and 5,6-dihydro-2*H*-pyrans by silver(I)-catalyzed cyclization of allenic alcohols. *Synthesis* **1979**, 743–745; (b) Nikam, S.S.; Chu, K.H.; Wang, K.K. The cyclization of trimethylsilyl-substituted α-allenic alcohols to 3-(trimethylsilyl)-2,5-dihydrofurans and their facile autoxidation to 3-(trimethylsilyl)furans or 4-(trimethylsilyl)-2(5*H*)-furanones. *J. Org. Chem.* **1986**, *51*, 745–747; (c) Marshall, J.A.; Sehon, C.A. Synthesis of furans and 2,5-dihydrofurans by Ag(I)-catalyzed isomerization of allenones, akynyl allylic alcohols, and allenyl carbinols. *J. Org. Chem.* **1995**, *60*, 5966–5968; (d) Marshall, J.A.; Yu, R.H.; Perkins, J.F. Diastereo-and enantioselective synthesis of allenylcarbinols through SE2' addition of transient nonracemic propargylic stannanes to aldehydes. *J. Org. Chem.* **1995**, *60*, 5550–5555.
- [14] (a) Chilot, J.-J.; Doutheau, A.; Gore, J. Heterocyclisation de diols βγ'-alleniques. *Tetrahedron Lett.* **1982**, *23*, 4693–4696; (b) Gelin, R.; Gelin, S.; Albrand, M. Oxymercuration-demercuration d'alcools α-alleniques. *Bull. Soc. Chim. Fr.* **1972**, 1946–1949;
- [15] (a) Uemura, K.; Shiraishi, D.; Noziri, M.; Inoue, Y. Preparation of cyclic carbonates from alkadienols, CO₂, and aryl or vinylic halides catalyzed by a palladium complex. *Bull. Chem. Soc. Jpn.* **1999**, 72, 1063–1069; (b) Kang, S.-K.; Baik, T.-G.; Kulak, A.N. Palladium(0)-catalyzed coupling cyclization of functionalized allenes with hypervalent iodonium salts. *Synlett* **1999**, 324–326; (c) Kang, S.-K.; Yamaguchi, T.; Pyun, S.-J.; Lee, Y.-T.; Baik, T.-G. Palladium-catalyzed arylation of α-allenic alcohols with hypervalent iodonium salts: Synthesis of epoxides and diol cyclic carbonates. *Tetrahedron Lett.* **1998**, 39, 2127–2130.
- [16] (a) Ma, S.; Gao, W. Efficient synthesis of 4-(2-alkenyl)-2,5-dihydrofurans via PdCl₂-catalyzed coupling-cyclization reaction of 2,3-allenols with allylic halides. *Tetrahedron Lett.* **2000**, *41*, 8933–8936; (b) Ma, S.; Gao, W. Efficient Synthesis of 4-(2'-alkenyl)-2,5-dihydrofurans and 5,6-dihydro-2*H*-pyrans via the Pd-catalyzed cyclizative coupling reaction of 2,3- or 3,4-allenols with allylic halides. *J. Org. Chem.* **2002**, *67*, 6104–6112.
- [17] (a) Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S. Ruthenium-catalyzed cyclic carbonylation of allenyl alcohols. Selective synthesis of γ- and δ-lactones. *Org. Lett.* **2000**, 2, 441–443; (b) Trost, B.M.; Pinkerton, A.B. A Ruthenium-catalyzed alkylative cycloetherification. *J. Am. Chem. Soc.* **1999**, *121*, 10842–10843.
- [18] (a) Hoffmann-Röder, A.; Krause, N. The golden gate to catalysis. *Org. Biomol. Chem.* **2005**, 3, 387–391; (b) Hashmi, A.S. K.; Hutchings, G.J. Gold catalysis. *Angew. Chem. Int. Ed.*

- Published by European Centre for Research Training and Development UK (www.eajournals.org
 - **2006**, *45*, 7896–7936; (c) Bongers, N.; Krause, N. Golden opportunities in stereoselective catalysis. *Angew. Chem. Int. Ed.* **2008**, *47*, 2178–2181.
- [19] (a) Hoffman-Roder, A.; Krause, N. Gold(III) chloride catalyzed cyclization of α-hydroxyallenes to 2,5-dihydrofurans. *Org. Lett.* **2001**, *3*, 2537–2538; (b) Krause, N.; Hoffman-Roder, A.; Canisius, J. From amino acids to dihydrofurans: Functionalized allenes in modern organic synthesis. *Synthesis* **2002**, 1759–1774; (c) Deutsch, C.; Gockel, B.; Hoffmann-Röder, A.; Krause, N. Golden opportunities in stereoselective catalysis: Optimization of chirality transfer and catalyst efficiency in the Gold-catalyzed cycloisomerization of α-hydroxyallenes to 2,5-dihydrofurans. *Synlett* **2007**, 1790–1794.
- [20] Gockel, B.; Krause, N. Golden times for allenes: Gold-catalyzed cycloisomerization of α-hydroxyallenes to dihydropyrans. *Org. Lett.* **2006**, *8*, 4485–4488.
- [21] Brel, V.K.; Belsky, V.K.; Stash, A.I.; Zavodnik, V.E.; Stang, P.J. Synthesis and molecular structure of new unsaturated analogues of nucleotides containing sixmembered rings. *Eur. J. Org. Chem.* **2005**, 512–521.
- [22] (a) Angelov, C.M. Five-membered heterocyclization of phosphorus-containing allenes by their reaction with electrophiles—possibilities and restrictions. *Phosphorus Sulfur* 1983, 15, 177–193; (b) Khusainova, N.G.; Pudovik, A.N. Phosphorylated allenes. Methods of synthesis and properties. Russ. Chem. Rev. 1987, 56, 564-578; (c) Alabugin, I.V.; Brel, V.K. Phosphorylated allenes: structure and interaction with electrophilic reagents. Russ. Chem. Rev. 1997, 66, 205-224; (d) Ma, S. Electrophilic addition and cvclization reactions of allenes. Chem. Acc. Res. 2009. 42. 1679-1688.
- [23] Ismailov, I.E.; Ivanov, I.K.; Christov, V.C. Bifunctionalized allenes. Part XIII. A convenient and efficient method for regioselective synthesis of phosphorylated α -hydroxyallenes with protected and unprotected hydroxy group. *Molecules* **2014**, *19*, 6309–6329.
- [24] (a) Ismailov, I.E.; Ivanov, I.K.; Christov, V.C. Bifunctionalized allenes. Part XV. Synthesis of 2,5-dihydro-1,2-oxaphospholes by electrophilic cyclization reaction of phosphorylated α-hydroxyallenes. *Molecules* **2014**, *19*, 11056–11076; (b) Christov, V.C.; Ismailov, I.E.; Ivanov, I.K. Bifunctionalized allenes. Part XVI. Synthesis of 3-phosphoryl-2,5-dihydrofurans by coinage metal-catalyzed cycloisomerization of phosphorylated α-hydroxyallenes. *Molecules* **2015**, *20*, 7263–7275; (c) Christov, V.C.; Ismailov, I.E.; Ivanov, I.K. Bifunctionalized Allenes. Part XVII. Synthesis of 2,5-dihydro-1,2-oxaphospholes and 4-Phosphoryl-3,6-dihydro-2*H*-pyrans by Electrophilic Cyclization and Coinage Metal-catalyzed Cycloisomerization of Phosphorylated □-Hydroxyallenes. *Int. J. Rec. Sci. Res.* (*IJRSR*) **2015**, *6*, 4526-4537.
- [25] Ismailov, I.E.; Ivanov, I.K.; Christov, V.C. Bifunctionalized Allenes. Part XIV. A Convenient and efficient regioselective synthesis of phosphorylated □-hydroxyallenes with protected and unprotected hydroxy group. *Bulg. Chem. Commun.* **2014**, *46*, Special Issue A, 39-46.
- [26] (a) Robertson, D.N. Adducts of tert-alcohols containing an ethynyl group with dihydropyran. Potentially useful intermediates. *J. Org. Chem.* **1960**, *25*, 931-932; (b) Miyashita, M.; Yoshikoshi, A.; Griecolb, P.A. Pyridinium p-toluenesulfonate. A mild and efficient catalyst for the tetrahydropyranylation of alcohols. *J. Org. Chem.* **1977**, *42*, 3772-3774.
- [27] Baldwin, J.E. Rules for ring closure. Chem. Commun. 1976, 734–736.