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INTRODUCTION 

 
The exponentiated – Weibull distribution (EWD) was introduced by Mudholkar and 

Huston (1996) as a simple generalization of well-known Weibull distribution by 

introducing two shape parameters.  Mudholkar and Srivastava (1993) studied the 

suitability of EWD with bathtub hazard rate life time data. 

 

The probability density function (p.d.f.) and the distribution function of EWD are 

expressed as  

f(x) = x
-1


x-e  (1 - 

x-e  )
-1

x    ,                            (1) 

and  

 F(x)    = (1 - 
x-e  )


              ,                                                                             (2) 

respectively, where  and  are the shape parameters of the model. It is important to 

mention that when  = 1 the EWD p.d.f. (1)  is that of the Weibull distribution.  For  

1 the EWD is decreasing and unimodal when > 1.   

The reliability and failure rate functions of the EWD are given, respectively, by  

R (t) = 1 – (1 - 
t-e  )


                                             ,  t > 0                                   (3) 

                   1t
t-e  (1 - 

t-e  )
 -1

 

H (t) =   _____________________________         ,   t > 0                                   (4) 

                                   1 - (1 - 
t-e  )
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The distinguished feature of EWD from other life time distribution is that it accommodates 

nearly all types of failure rates both monotone and non-monotone (unimodal and bathtub) 

and includes a number of distributions as particular cases. The structural properties of 

EWD have been discussed by Mudholkar and Hutson (1996), Jiang and Murthy (1999) 

and Nassar and Eissa (2003).   Practically, the failure model EWD is more realistic than 

that of monotone failure rates and play an important role to represent such data.  The 

applications of the EWD in reliability and survival studies were illustrated by Mudholkar 

et al (1995).   

Currently, there are little studies for the use of the EWD in reliability estimation.    Singh 

et al (2002), (2005a), (2005b), obtained the Bayes estimates of the distribution parameters 

and R(t), H(t) with type II censored sample under squared error as well as under LINEX 

loss functions .  Nassar and Eissa (2004) were obtained the Bayes estimates of the two 

unknown parameters, the reliability and failure rate function by using Bayes 

approximation form due to Lindley (1980) under the squared error loss and LINEX loss 

functions. 

This article is concerned with Bayesian estimation using progressive interval type I 

censored data from the EWD.  Maximum likelihood and Bayes estimates of the shape 

parameters  and , reliability, and failure rate functions are derived, using independent 

and dependent priors for the parameters  and   are considered.  We consider three types 

of loss functions, the squared error loss function (quadratic loss) which is classified as a 

symmetric function, the LINEX and general Entropy, (GE), loss functions. As well as 

Credible and Shortest Credible intervals for the parameters  and . A numerical 

illustration for these new results is also given. 

 

MLE for the unknown parameters. 

Progressively type I interval censored sample is a union of type I interval and progressive 

censoring.  A progressively type I interval censored sample is collected as follows: n units 

are put on life test at time T
0
 = 0 units are observed at pre – set times T

1
, T

2
,……., T

m
 

(therefore,   m is also fixed ). 

At these times, R
1
, R

2
, … , R

m
 live units are removed from experimentation, respectively.  

The values R
1
, R

2
, … , R

m
  may be pre – specified as percentages of the remaining live 

units or , alternatively R
1
, R

2
, … , R

m
 units available  for removal.  In this case, the 

number of live units removed at time T
i
 is obs

i
R  = min (R

i
 , number of units remaining ) , 

i = 1 , 2, … , m – 1 .  Again obs
mR  = all remaining units at time T

m
 when 

experimentation is scheduled to terminate. 

Suppose a progressively type I interval  censored sample is collected as described above, 

beginning with a random sample of size n units with a continuous life time distribution 

F(x) ,(2) , and  let d
1
 , d

2
 , … d

m
 denote the number of units known to have failed in the 
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intervals ( 0 , T
1
 ] , ( T

1
 , T

2
] , …. , ( T

m-1
 , T

m
] , respectively.  Then based on the 

observed data, Aggarwala (2001) derived the following joint likelihood function will be 

proportional to the following expression: 

ℓ (x ;  , )  
m

1i
 [ F(T

i
) – F(T

i-1
)]

 di [1-F(T
i
) 

obs
i

R]    

  = 
m

1i
 [(1-


i 

T-
e )


 - (1-


i 

T-
e )


 ]

 di [1- (1-

i 

T-
e )

 obs
i

R]  

  = 
m

1i
 [P

i
 – P

i-1
]
 di [ 1 – P

i

obs
i

R]    ,                               (5)  

where T
0
 = 0 , P

i-j
 = ( 1 -  


j-i 

T-
e )


 ,   j = 0, 1 and the constant of proportionality 

multiplying (5) is independent of parameters  and  . Clearly if = R
1
= R

2
 ...= R

m-1
= 0, 

we are left with the likelihood function for a conventionally Type I interval censored 

sample.  Additionally, it will be useful to note that 
m

1i
 (d

i
 + obs

i
R ) = n. 

The log likelihood function for (5) will be  

L (x ;  , ) = 
m

1i
 d

i
 ln (p

i
 – p

i-1
) + 

m

1i
 obs

i
R ln ( 1 – p

i
) .                   (6) 

The mle ̂  and ̂ , of  and  are obtained by simultaneously solving the equations  



1
[

m

1i
  d

i
 

im /w
i
 - 

m

1i
  obs

i
R 

iw / 

i
w  


m

1i
  d

i
 

2i
 / w

i
 - 

m

1i
  obs

i
R  i

*
i P  / 

i
w          ,                                                 (7) 

where    w
i
 = P

i
 – P

i-1
 , 

iw  = P
i
 ln P

i
 ,  

i
w  = 1 -  P

i 
 , 

  
iP   = (1- 


i 

T-
e )

-1
,  i  = 

i
 ln T

i
 ,  

i
 = 

i T  

i 

T-
e  , 


im  =  iw   - i-1

w     , jw   = P
j
 ( 1 + ln P

j 
) ln P

j
 ,  j = i – 1 , i   , 

 and  


2i

  = 
1

0j
  (-1)

j
 

  

j-i
* 

j-i P . 

The mle's of R(t) and H(t) can be obtained by replacing  &  by ̂  and ̂ in (3) and 

(4). 
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The elements of the observed Fisher information are derived as follows: 


11

   =  
2 

)  , ; x ( L 




  = - 

2

1


 [

m

1i
 d

i
 (w

i
 

im - 
i

m 2 ) / 2
iw  

                                                   - 
m

1i
 obs

i 
R  i

*
i P  / 

i
w ] 


22

 =   
2 

)  , ; x ( L 




 

          = - 
2
 [

m

1i
 d

i
 (w

i
 

3i
 - 

2i
) / 2

iw   - 
m

1i
 obs

i
R  ( 

i
w 

iw + 
iw ) / 

i
w ] 


12

   =  




  

)  , ; x ( L 2

 

= - [  
m

1i
 d

i
 (w

i


8i
 - im

 
*
i P 

im   ) / 2
iw  

            - 
m

1i
  obs

i
R  i

*
i P  

i
w 

  i
w +1) / 2

i
w 

where   im  = 
iw  -   

1-iw   ,   
3i

   =  
1

j 0 (-1)
j
 

i- j
  * 

j-i P 
i-j

 , 

             i
   =  

i
 ln

2
  T

i
   ,  

i-j
 =  ( - 1) 

i-j
  

i- j
P   - 

j-i T  +  1  ,  j = i – 1 , i ,  

              iP   =  (1- 

i 

T-
e )

1
,  

8i
 =  

1

j 0  (-1)
j
   

j-i
* 

j-i P 
j - iw   i

m


 i -   

j-i
 , 

and  

             

  i
w  =  1 + ln P

i 
.    

 

Replacing  ,  by ̂  , ̂  respectively , the approximate variance covariance matrix , that 

is , the  inverse of the approximate Fisher information matrix will be  

1
 0I = 

11 12
21 22 ˆ

ˆ




  
  
 

                                                                                         (9) 

Where 
11

   =  
2)( -  








   ,   

22  
 = 

2)( -  







    

and  


12

  =    
21

  = 
2)( -  
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Bayesian estimation with known   

Under the assumption that the parameter  is known ( = 
0
) and the natural family of 

conjugate prior   is a gamma distribution with p.d.f. is  
 

g
1
 (  )  

a0-1
 

/1-a
e      ,           0 <    <                                                        (10) 

where a
0
 and a

1
are positive. When there is no prior information on the parameters, 

the Bayesian approach his needs to specify a prior distribution the reflects this lack of 

information.  When  is known, then letting a
0
  0 and a

1
 0 in equation (10), it would 

be reasonable to assume a non-information prior for  as  


1g  ()  



1
 . 

In this case, the corresponding posterior distribution is given by 


1g  (

0
,t)   



1


1
(

0
 ), 0 <  <                                                              (11) 

Applying Bayes theorem, we obtain from equations (5) and (10) , the posterior density of 

 as 

g
1
 (  T

i
, 

0
 ) =  

0C

1
  

a0-1
 

/1-a
e 

1
( , 

0
)              ,  >  0                             (12) 

where 
1
( , 

0
) = 

m

1i


i

0k

d




obs
i

0j

R


  (-1)

k+j 









k

di
 















j

obs
i

R

   
  

  

k j

i
P


   

  

d -ki

i-1
P  , 

 Δ
i j

P 


 = ( 1 -  


j1-i 

T-
e  )


  ,    j1 =  0 , 1  and C

0
  is the normalizing constant given by  

C
0
 =  




0


a0-1
 

/θ-a1e 
1
(

0
,) d                                          (13) 

Which could be calculated numerically. 

When a squared error loss function is used, the posterior mean of , which is the 

Bayes estimate, is given by  

B
~
 = 

0C

1
 



0


a0 
/θ-a1e 

1
( , 

0
) d                                                                 (14) 

The corresponding Bayes risk, which is the variance of the posterior p.d.f. (12) is  

Var ( B
~
 )  = 

0C

1
 



0
( - B

~
 )

2
 

a0-1
 

/θ-a1e 
1
(

0
 ) d                                   (15)  

The Bayes estimators,  R
~

 and H
~

 of the reliability function R  R (t) and the hazard 

rate function H
  H (t), and its variances, respectively are   

ΒR
~

 = 
0C

1



0


a0-1
 

/θ-a1e  R



1
(

0
 ) d 
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ΒH
~

 = 
0C

1



0


 a0-1
 

/θ-a1e  H
 


1
(

0
 , ) d 

var ( ΒR
~

)  = 
0C

1
 



0


a0-1
 

/θ-a1e  (R

 ΒR

~

2


1
(

0
 ,) d

and 

var ( ΒH
~

)  = 
0C

1
 



0


a0-1
 

/θ-a1e  (H

 ΒH

~

2


1
(

0
 ) d

where R

(t) and H


(t) are R(t) and H (t) which defined in equations (3) and (4) with 

substituting   = 
0
  and T

i
 = t  , t > 0 . 

The means and the variances given equations (14) , (15) , (16) and (17) , 

respectively, could be evaluated numerically. 

Using LINEX loss function Bayes estimate L
~
 of parameter  relative to the LINEX 

loss function is  

L
~
  = 

a

1
 ln [

0C

1
 



0


a0-1
 e

-(a2 + a1)/
]

1
(

0
 ) d      

the Bayes estimate LR
~

 is  

LR
~

 = 
a

1
 ln [

0C

1
 



0


a0-1
 e

-(aR
•
 + a1)/

]
1
(

0
 ) d  

Also, the Bayes estimate LH
~

of the hazard rate function of (4) relative to the LINEX 

loss function is  

LH
~

=  
a

1
 ln [

0C

1
 



0


a0-1
 e

-(a1+ aH
•
)/


1
(

0
 ) d                                (20) 

The corresponding Bayes risks of L
~
 , LR

~
and LH

~
are given by  

var ( L
~
 ) = 

0C

1
 



0


a0-1 /θ-a1e  ( L- L
~
 )

2
 

1
(

0
 ) d    ,                             (21) 

where  =  , R

 , H


 and L

~
  = L

~
  ,  LR

~
 , LH

~
  . 

Using general Entropy loss Bayes estimate L
~
 , of parameter  relative to the general 

Entropy (GE) loss function is  

G
~
 = [

0C

1



0


a0-1-q /θ-a1e 
1
(

0
 ) q

1 
]


     ,       q  0                                    (22) 

using GE ,  the Bayes estimate GR
~

 is  

        GR
~

=[
0C

1



0


a0-1
 

/θ-a1e R
-q

 
1
(

0
 ) d q

1 

]


       .                                       (23) 

Also,  using GE loss function,  the Bayes estimate GH
~

 is  
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GH
~

 = [
0C

1



0


a0-1
 

/θ-a1e  H
-q

 
1
(

0
 ) d q

1 
]


       .                                   (24) 

The Bayes Risks of  G
~
  , GR

~
and GH

~
are given by  

var( G
~
 ) = 

0C

1
 



0


a0-1 /θ-a1e  ( L- G
~
 )

2
 

1
(

0
 ) d  ,                               (25) 

where  =  , R

 , H


 and G

~
  = G

~
  , GR

~
 , GH

~
 . 

Bayesian Estimation with Known  

When is known ( = 
0
) and  is unknown, a prior p.d.f. for  is  

g
2
 () a2-1

  
3-a

e               ,       0 <  < b
1
               ,                                    (26) 

where a
2
, a

3
 and b

1
 are Positive.  Using likelihood function ( 5),thus, the posterior p.d.f. 

for  is 

         g
 2

 (  T
i
 , 

0
) = 

1

-aa

C

e 32 1 


  
2
( 

0
)                                                       (27) 

where 
2
( 

0
) = 

m

1i
  

1d

k 0


obs
i

1j

R


 (-1)

k+j 









k

di
 















j   

Robs
i   jk

  i
P

  
d -ki

i-1
P , 

ΔΔ

1i j
P


 = ( 1 -   


j1-i 

T-
e )

  ,    j1 =  0 , 1  and C
1
 is the normalizing constant given by  

             C
1
 =  




0


a2-1
 

3-a
e 

2
(,

0
) d                                                                 (28) 

Under squared error loss function (symmetric), the usual estimator of a parameters (or a 

given function of the parameters) is the posterior mean.  Thus, Bayes estimators of the 

parameter , reliability function R
*
 = R

*
(t) and hazard rate function H

*
 = H

*
(t), given in 

equations (3) & (4) with  = 
0
 , respectively, are obtained by using the posterior density 

(27). 

The Bayes estimators *
B

~ , *
BR

~
and *

BH
~

of parameter  , the reliability function R* and the 

hazard  rate function H
*
 and its variances , respectively are  

*
B

~  = 
1

1

C

1b

0
 

a2 
3-a

e 
2
( 

0
) d

*
BR

~


1

1

C

1b

0
 

a2-1
 

3-a
e  R

*
 

2
( 

0
) d

 *
BH

~


1

1

C

1b

0
 

a2-1
 

3-a
e  H

*
 

2
( 

0
) d
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var ( 


~
) = 

0C

1
 

1b

0
 

a2-1
 

3-a
e  ( * - 


~

)
2
 

2
( 

0
) d                                 (29) 

where 


~
 = 


~ , *

BR
~

 ,  *
BH

~
 and  * =  , R

*
 ,  H

*
     . 

When there is no prior information on  , an appropriate non informative prior is obtained 

by letting a
2
  0 and a

3
  0 in (26) , as  

*
2

g () 
-1

 . 

Thus the posterior p.d.f. of  would be  

*
2

g  (T
i
 

0
)  

-1
 

2
( 

0
)                               (30) 

 Using LINEX loss, Bayes estimates 
L

~
 ,  *

L
R
~

 , *
L

H
~

of parameter  , R
*
 and H

*
 , 

respectively, relative to the LINEX loss function are  

L
~

 = - 
a

1
ln [

1C

1 1b

0
 

a2-1
 e

-(a3+a*)


2
( 

0
) d                             (31) 

where L
~ = L

~
 when  * =  , *

L
R
~

= L
~

when * = R*
 and *

L
H
~

= L
~

when * = H*. 

By substituting 


~
 with L

~
, in equation (29) The variances of  L

~ , *
L

R
~

and *
L

H
~

can be 

obtained . 

Using General Entropy (GE) Loss the Bayes estimates G
~ , *

G
R
~

and *
G

H
~

, of parameter , 

R
*
 and H

*
 relative to the GE loss function are  

G
~

 = [
1C

1 1b

0
 

a2-1 (*)
-q

 e
-a3 

2
( 

0
) d q

1 
]


 ,                                        (32) 

where G
~  = G

~
 when *=  , *

G
R
~

= G
~

 when *= R
*
 and *

G
H
~

= G
~

when *= H
*
 . 

Also, the variances of G
~ , 

GR
~

 and 
GH

~
 can be obtained by substituting G

~
in 

equation (29).  

Bayesian Estimation with Unknown  and  : 
In this section, we consider the typical case in which the two shape parameters  and 

 of a EWD are unknown.  We suppose some information on the shape parameters  and 

 are available prior.  Formulation of a joint density would be constructed in two cases, 

independent and dependent priors for  and   

Independent priors for  and   

In this case, we use independent priors for  and , therefore the joint prior will be 

g(,)  
a0-1

 e
-a1/

 
a2-1

 e
-a3  ,         > 0 ,  0 <    <  b

1
                           (33) 

Combining the likelihood equation (5) and the prior density function (33), the joint 

posterior density of   and  is  
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g (T
i
)  

a0-1
  

a2-1
 e

-(a1/+a3)
  ( , ) 

                =  
2C

1
 

a0-1


a2-1
 e

-(a1/+a3)
  ( , )                                              (34) 

where  (,)  = 
m

1i
  

id

k 1


obs
  i

R

1j
 (-1)

k+j 









k

di
 















j   

Robs
i (P

i
)
k+j

 (P
i-1

)
di-k, and C

2 
is a 

normalizing constant given by  

C
2
 = 




0

1b

0
 

a0-1


a2-1
 e

-(a1/ + a3)
  (,) d d  

The joint mode of (34), denoted by ( 
~~

,
~~ ), may be considered as a Bayes estimate of the 

unknown parameters and is obtained by simultaneously solving the equations  

D
1
-  (,) [ 1 – a

0
 - 

θ
1a

] = 0 

D
2
-  (,) [

θ
3a

– a
2
 + 1] = 0 

where D
1
 = 

  ( )

 

  

 
 =  m1



m

1i
  

id

k 1


obs
i

1j

R


  (-1)

k+j 









k

di
 















j   

Robs
i  (P

i
)
k+j

 (P
i-1

)
di-k  

       [(k+j) ln P
i
 + (d

i
-k) ln P

i-1
] , 

 and  

D
2
 =

  ( )

 

  

 
 = 

 m
 

m

1i
  

id

k 1


obs
i

1j

R


  (-1)

k+j 










k

di
 















j   

Robs
i (P

i
)
k+j-1

 (P
i-1

)
di-k-1

  

       [  i
*
i P P

i-1
 (k+j) + (di – k)  i  P

i
 * 

j-i P ]                         (35) 

Using the bivariate posterior p.d.f. (34) , we can obtain the univariate marginal densities of  

and  by integrating out one of the two unknown Parameters.  Thus the marginal p.d.f. 

of   is  

g
3
 (T

i
) = 

2

1
/θa-1a

C

I e θ 10 

           ,             > 0             ,                              (36) 

where I
1
 = 

1b

0
 

a2-1
 e

-a3  (,) d 

The Posterior mean and variance of (36) are  

B

~~
  = 

2C

1



0


a0 e
-a1  I

1
 d,  
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          var ( B

~~
 ) = 

2C

1
  



0

 ( - B

~~
 )

2
 

a0-1
 e

-a1/
  I

2
 d .                                          (37) 

From (34) , the marginal density of is  

g
4
 (|T

i
 = 

2C

1
 

a2-1
 e

-a3 
 I

2
      ,   0 <    < b

1
      ,                                       (38)    

where I
2
 =  




0


a0-1
  e

-a1   ( , ) d  . 

The posterior mean and variance of (38) are  

B
~~ = 

1b

0
  

 a2 
e
-a3 I

2
  d 

var ( B
~~ ) = 

1b

0
  ( - B

~~ )
2
 

 a2-1 
e
-a3  I

2
 d.                                                             (39) 

The Bayes estimators, BR
~~

and BH
~~

of the reliability function R  R (t) and the Hazard rate 

function H  H (t) and its variances, respectively are  

BR
~~

 = 
2C

1
 



0

1b

0
  

a0-1
 

a2-1
 e

-(a1/+a3)
 [1- 

tP ] (,) d d 

BH
~~

 = 
2C

1
 



0

1b

0
  

a0 


a2 
)P1

e t

t

)t a / (a-1-a 3 1









 1-θ
tP  (,) d d   ,    t > 0 

var( BR
~~

)  =  



0

1b

0
  ( R - BR

~~
)
2
 g (,) d d      

var( BH
~~

)  =  



0

1b

0
  ( H - BH

~~
)
2
 g (/) d d                               (40) 

where P
t
 = ( 1 – e

-t
 ) . 

The Bayes estimates  L
~~  , L

~~
 , LR

~~
 and LH

~~
 of parameters  and , R (t) and H(t) 

relative to the LINEX loss function and its variances are  

L

~~
    =  

a

1-
ln [




0

1b

0
 e

-a
 g (,) d d ] 
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var ( L

~~
 )   = 




0

1b

0
  (  - L

~~
 ) g (,) d d                         (41) 

where  L

~~
  = L

~~
  when    =  ,  L

~~  = L

~~
  when   =  ,  LR

~~
 = L

~~
  when   = R and  LH

~~
 

= L

~~
  when    = H . 

Using general Entropy (GE) loss, Bayes estimates G
~~ , G

~~
  , GR

~~
 and GH

~~
 of parameters 

 and , R(t) given by (3) and H (t) given by (4) , relative to GE loss function are  

G

~~
  = [

2C

1
 



0

 
a0 – q -1

 e
-a1/

I
1
d q

1 
]


 

G
~~  = [

2C

1 1b

0
 

a2 – q -1
 e

-a3/
 I

2
 d q

1 
]


 

GR
~~

 = [



0

1b

0
 [ 1 - 

tP
 -q]  g (,) d d q

1 
]


  

GH
~~

 = [



0

1b

0


q

t

1
t

1αaα

P 1

Ptαθ 20





















e
-(a1/+a3-qt)

  (,) dd q

1 
]


 .           (42)    

The corresponding Bayes risks, which are the variances of  G
~~  , G

~~
  , GR

~~
 and GH

~~
 are 

giver by substituting  L

~~
  in equation (41) with G

~~
 . 

If  and  are independent and assuming that no prior knowledge about  and   is 

available, the appropriate non-informative joint prior of  and k will be  

g* (,)  ()
-1

     ,       > 0  , 0 <  <  b
1
 ,                  (43) 

using (43) with (5) , the joint posterior density of  and  is  

g* (, T
i
)  ()

-1
 (,)  ,          > 0  , 0 <  <  b

1
                 (44)    

Singh et al (2002 & 2003) used (43) for estimating symmetric and asymmetric   

LINEX Bayes estimation of EWD parameters in type II censored sample. 

 

Dependent priors for  and  . 
Nassar and Eissa (2004) suggested the following bivariate prior density for  and   

G( ,) = G
1
() G

2
 ()  ,                              (45) 

where  

G
1
()  = 

)(V 

θα 1VV 

 e
-

   ,  V > 0     ,  > 0                   (46) 
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is the gamma conjugate prior, and the scale parameter of this density is  , which is 

assumed to become known previously with knowledge that may be translated into an 

exponential distribution with density function  

G
2
 () = 

d

1
 e

-d
                     ,      > 0     , d > 0                              (47) 

Multiplying G
1
() by G

2
 () , we obtain the bivariate prior density of   and , given 

from (45) by  

G (,) =
(V)d

eθα )/dαα(dθ1VV 2

     ,    > 0     ,  > 0                                     (48) 

where V and d are positive real numbers . 

Combining the likelihood equation (5) and the prior density function (48), the joint 

posterior density of   and , is  

G( ,T
i
 ) = 

3C

1


-V


V-1
 e

-(d + 2)/d
  (,)   ,    > 0   ,  > 0  ,            (49) 

where C
3
, is a normalizing constant, given by  

C
3
 = 

)V( d

1
 


0



0
 

-V


V-1
 e

-(d + 2)/d
 (,) d d  

The joint mode of (49) , denoted by 
~~

& 
~~ , is the solution of the equations  

D
1
 -  [ - (V - 1) ] (,) = 0 

D
2
 - [  V +

d


 - 




 ] (,) = 0  .                          

From (49), the marginal p.d.f. of  is  

g
5
(T

i
 ) = 

3C

1


-V
 e

-d
 I

3 
              ,      > 0     ,                (50) 

where I
3
  =  



0
 

-V-1 e
-

 (,)  d  . 

The posterior mean and variance of (50) are  

Β
~~   = 



0
  g

5
 (T

i
 )d 

var ( Β
~~ ) = 



0
  ( - Β

~~ )
2
 g

5
 (T

i
 )d        .                                                     (51) 

Also from (49) , the univariate marginal p.d.f. of  is 
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g
6
 (T

i
 ) = 

3C

1


-V-1
 I

4
                  ,        > 0    ,                 (52) 

where   I
4
 = 



0
  

-V
 e

-(d + 2)/d
 (,) d       .        

The posterior mean and variance of (52) are 




~~
  = 



0
 g

6
 (T

i
 ) d 

var ( 


~~
) =  



0
  ( - 


~~

)2 g
6
 (T

i
 ) d.                    (53) 

The Bayes estimators, *
BR

~~
and *

BH
~~

of R(t) and H(t) and its variances, respectively are  

*
BR

~~
 =  

3C

1
 


0



0
  [1 - 

tP ] 
-V

 
-V-1

 e
-(d + 2)/d

 (,) d d 

var( *
BR

~~
) =



0



0
  [ R - *

BR
~~

]2 G ( , T
i
 ) d d 

*
BH

~~
   =  



0



0
  H(t) G ( , T

i
 ) d d 

var( *
BH

~~
) =  



0



0
 [H(t) - *

BH
~~

]2 G ( , T
i
 ) d d.    , t > 0                   (54) 

Numerical evaluation, using Computer facilities, are needed to evaluate equations (51, 53 

& 54). 

The Bayes estimates L
~~  , L

~~
, *

LR
~~

and *
LH

~~
of Parameters  and,R (t) and H(t) 

relative to the LINEX  loss function and its variances are  

L

~~
 = - 

a

1
ln [



0



0
   e

-a
G ( , T

i 
) d d ]           ,                          (55) 

and 

var( L

~~
)  = 



0



0
 (  - L

~~
 )2 G ( , T

i
 ) d d  ,                               (56) 

where L

~~
 =  L

~~
 when  =  , where L

~~  =  L

~~
 when  =  , where *

LR
~~

 =  L

~~
 when  

= R(t) , where *
LH

~~
 =  L

~~
 when  = H (t) . 

Using general Entropy (GE) loss, the Bayes estimates G
~~ , G

~~
  , GR

~~
 and GH

~~
 of 

parameters  and , R (t) given by (3) and H (t), given by (4) , relative to GE loss function 

are  
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G

~~
 = [



0



0
 

-q
G ( , T

i 
) d d q

1 
]


                                  (57) 

where G
~~  =  G

~~
 when  =  , where G

~~
 =  G

~~
 when  =  , where *

G
R
~~

 =  G

~~
 when 

 = R(t) , where *
G

H
~~

 =  G

~~
 when  = H (t) .The variances of G

~~ , G

~~
, *

G
R
~~

and *
G

H
~~

 are 

given by substituting L

~~
 with G

~~
 in equation (56) 

 

Since EWD have a Unimodal  ( 
~~

, 
~~ ) if  >1, a l00 ( 1 –P) two sided shortest credible 

intervals { 1
~~ , 2

~~ } and { 1

~~
  , 2

~~
 } for  and  , respectively ( or highest posterior 

Density, HPD, g
5
(x) and g

6
(x) are unimodal, Box and Tiao (1972)) are such that  

g
5
 ( 1

~~ x) = g
5
 ( 2

~~ x) , as well as ,  

2
~~

~~
1




  g

5
 (x) d =1 – P                                                          (58)        

and  g
6
( 1

~~
 x) = g

6
( 2

~~ x) , as well as , 

2

~~

~~
1





  g
6
( 

~
x) = 1 – P                                  (59) 

Numerical Illustration Situations  . 

To illustrate the usefullness of the proposed estimators obtained in preceding sections with 

real situations obtained in preceding sections, we generate a sample of size 50 from the 

EWD with parameters  = 3 and  = 1.5 (Ahmed et al 2006).  

Using MATHCAD (2001) , a sample of size n = 50 was generated from the 

exponentiated Weibull with parameters  =3 and  = 1.5 (  = > 1 unimodal, see Figure 

(1) ) . The results are : 
 

0.20944 

0.35593 

0.41745 

0.43788 

0.43814 

0.52250 

0.53618 

0.59273 

0.60315 

0.60719 

0.60863 

0.69445 

0.69717 

0.72031 

0.73955 

0.77944 

0.78027 

0.78978 

0.80577 

0.81916 

0.84716 

0.88538 

0.89909 

0.83488 

0.93289 

0.94301 

0.94607 

0.95254 

0.97753 

1.02507 

1.11124 

1.11346 

1.11470 

1.11038 

1.11875 

1.12167 

1.14399 

1.15737 

1.16380 

1.22745 

1.28844 

1.30113 

1.32253 

1.33569 

1.33483 

1.34592 

1.41394 

1.41710 

1.57964 

1.78653 
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Suppose that progressive type I interval censored from EWD with removal occurs at five 

stages m = 5.  Assume that at Time T
1
 = 0.41745, none unit selected at random form the 

survivor, were censored, i.e., obs
1

R = 0 .  At T
2

 = 0.53618, two additional randomly 

selected survivors were removed .Three additional randomly selected survivors were 

removed at T
3
= 0.69717. At time T

4
 = 0.83488, another one unit selected at random from 

the survivors, and the test was terminated at T
5
 = 0.93289 data, we record :  

T
1
   =  0.417 T

2
 = 0.536         T

3
 = 0.697         T

4
 = 0.839          T

5
 = 0.933 

d
1
   =  3       d

2
 = 4                 d

3
 = 4                  d

4
 = 5                     d

5
 = 3 

R
1
  =  0       R

2
 = 2                 R

3
 = 3                 R

4
 = 1                     R

5
 = 25 

The estimates ,  , R (t) and H (t) at t = 0.75 developed in sections 2 , 3 , 4 and 5 on 

the basis of above data are obtained and are reported in Table 1 .  Also , figures 1and 2 

show that the unimodal property for the density function of EWD, f(x)and joint posterior 

density of the parameters  and  . 

 

0 2 4 6
0

0.1

0.2

0.3

Figure(2)

the joint posterior of parameters

G
(t

h
et

a
,a

lp
h

a)

f  ( )



 
Table 1 revealed that the Bayes estimators developed with non-informative prior yet the 

estimated values of Bayes estimators are very enclosed to the estimated values of MLE. 

Future numerical results using different values for n , m , d
i
 , R

i
 ,  and  are needed to 

establish strong conclusion for comparing mle with Bayes estimates . 

 

0 1 2
0

1

2

Figure (1)

x

f(
x

)
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Table 1 : Various Estimates For The Progressive Type I Interval Censored Sample  

Estimators. 

 
 

 

 

 

Estimate 

variance 

of   

Estimate 

variance 

of   
0.75tR(t)   0.75tH(t)   

mle 1.55 2.94 0.0043 0.0026 
0.802. (0.009)

 
 2.046 (0.074)


 

 Known=3.0       

Symmetric 

  LOSS 

1.581 

[1.35,1.82]
*
 

 
5.3810

-4
 

 
0.70  (0.009)

 
 1.757  (0.074)

 
 

LINEX 1.545  
1.6810

-4
 

 
0.872(1.6810

-4
)


 2.07(0.0310
-4

)
 

 

GE 1.671  0.026  
0.696 (8.510

-3
)


 1.78(4.010
-3

)
 

 

Noninformative 

prior 

1.55  0.0042  
0.80. (0.0094)

 
 2.036 (0.075)


 

 Known=1.5       

Symmetric loss  2.998 

[1.59, 3.58] 

 0.039 
0.784 (0.0031)

 
 2.06(1.710

-4
)
 

 

LINEX  3.028  0.052 
0.788(2.5610

-8
)
 

 2.06(7.710
-9

)
 

 

GE  3.018  0.048 
0.807 (0.011)

 
 1.83(4.910

-9
)
 

 

Noninformative 

prior 

 2.95  0.0029 
0.803. (0.0096)

 
 2.049 (0.071)


 

Indep.Unk. &        

Posterior mode 1.848 3.042 

Symmetric 

 loss 

1.523 

[1.45,1.55]
*
 

3.025 

[2.96,3.26]
*
 

6.9810
-8

 
0.051 

0.8 (4.610
-6

)
 

 2.06(1.910
-4

)
 

 

LINEX 1.49 3.03 
4.8610

-3
 

0.038 
0.8(4.610

-6
)
 

 2.06(1.910
-4

)
 

 

GE 1.546 3.058 
2.1510

-3
 

0.667 
0.8(4.610

-6
)
 

 2.04(1.9210
-4

)
 

 

Noninformative 

prior 

1.54 2.94 0.0045 0.0027 
0.803. (0.0098)

 
 2.041 (0.070)


 

Dep.Unk. &        

Posterior mode 1.507 2.914 

Symmetric  loss 1.554 

[1.43,1.57]
*
 

3.105 

[2.4,3.5]
*
 

1.7410
-5

 1.4910
-5

 0.776(1.2510
-3

)
 

 2.11(3.810
-3

)
 

 

LINEX 1.508 2.98 
1.4110

-7 
 3.5910

-3 
 0.762(9.6810

-6
)
 

 2.04(9.510
-3

)
 

 

GE 1.502 3.016 
1.9610

-8
 1.6310

-6
 0.762(9.6810

-6
)
 

 2.05(9.510
-3

)
 

 

Noninformative 

prior 

1.53 2.93 0.0041 0.0027 
0.801. (0.010)

 
 2.039 (0.072)


 

 

* Present the Shortest Credible Intervals for  &  . 

 Present the variance estimates for R(t) & H(t). 
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