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ABSTRACT: The efficiency of Seemingly Unrelated Regression (SUR) not only depends on 

contemporaneous correlation between errors term but also on the degree of collinearity among 

explanatory variables in the equations of the model. The problem of collinearity consequentially 

leads to biased estimation, rank deficient, large standard deviations and misleading interpretation 

of the estimates among others in analysis. This study examines the robustness of the Bayesian 

estimator to varying degree of correlation among categorical explanatory variables of seemingly 

unrelated regression model. The result revealed an asymptotic property of the Bayesian method 

and the best estimates were obtained when sample size, N is large irrespective of the degree of 

correlation among the regressors. 
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INTRODUCTION 

 

Seemingly unrelated regression (SUR) is a system of equations in which there is at least two 

response variables jointly regressed with predictive variables on the basis of contemporaneous 

correlation of errors term between them. The efficiency of SUR is not independent of collinearity  

or   non collinearity of predictive variables. Collinearity in the analysis of SUR model practically 

leads to biased coefficients, large standard errors of regression coefficients and loss of power. Jian 

and Yong (2019) presented closed-form assumption of the best linear unbiased parameter(BLUP)  

and best linear unbiased estimator(BLUE) of all unknown  parameters  in the SUR models; 

necessary and sufficient conditions for  a family of equalities of predictors under SUR. Funda and 

Fikri(2016) developed a restricted feasible seemingly unrelated estimator(RFSURE) in the 

estimation problem with linear restrictions and investigated using MCMC. In this study, it was 
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revealed that RFSURE produced smaller mean square estimators(MSEs) as against feasible 

generalized least squares(FGLS). The simulation study revealed that SUR estimator is efficient at 

tolerable non–orthogonal correlation points(TNCP) among the explanatory variables which follow 

a Gaussian distribution(Yahya et al 2008). Olanrewaju et al (2017) reported that SUR model was 

preferable in the presence of multicollinearity and autocorrelation from Monte Carlo experiment 

of 1000 trial for all the sample sizes considered. Banterle et al (2018) used a Bayesian variable 

selection(BVS) in SUR to allow residuals to conditional dependence between response variables 

and reported a matrix of binary variable selection indicators. However in addition, expensive 

iterative methods of simulation failed to scale well with the problem of dimension with exact 

computation. Ando (2012) developed Bayesian method to solve problem of variable selection and 

model parameter with a large number of predictors in SUR using Direct Monte Carlo(DMC). 

These are the crucial problems in Bayesian modeling of SUR. DMC performed better than MCMC 

usually used for Bayesian model estimation. Okewole(2014) investigated the performance of the 

Bayesian approach in estimating multi-equation models in the presence of multicollinearity and 

found that this method performed well in the small sample size 40N  . Adepoju and Ojo(2019) 

showed that Mante Carlo Intergration(MCI) outperformed the Gibbs sampler(GS) for the different 

levels of correlation used in the  prior covariance and the accuracy of MCI does not depend on the 

levels of correlation either positive or negative. This study examines the robustness of the Bayesian 

estimation method to correlation among the explanatory in a SUR model. The rest of the paper is 

structured as follows: section 2 considers the model specification and brief discussion of the prior, 

likelihood and posterior distributions, section 3 discusses the derivation of the Bayesian estimator 

using the MCMC, section 4 presents the analysis, results and discussion and lastly section 5 

concludes the paper.  

 

MATERIAL AND METHOD  

 

The Model 
The aim of this paper is to carry out a Bayesian method of SUR when the categorical explanatory 

variables are correlated in at least one of the equations in the model. This study examines the 

sensitivity of the Bayesian method to varying levels of collinearity among the explanatory 

variables in equation(1). The asymptotic and consistent properties of the Bayesian method will be 

investigated via the posterior mean and the posterior standard deviation respectively.  

Given the following two–equation seemingly unrelated regression with the regressors in 

equation(1) assumed to be correlated;            

               
1 11 11 12 12 11

2 21 21 22 12 21 = 

cor cory x x u

y x x u

 

 

  

 
                                                            (1) 

where 
1 2( , )y y y  is a vector of response variables with  is 1 p  vector of regression 

coefficients, X  is m n  matrix of categorical explanatory variables and 
1 2( , )u u u is  a vector 

of random errors that assume  multivariate normal with covariance matrix .Thus, equation 1  is 

here compactly written as a single equation defined as 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.2, pp.1-8, July 2020 

       Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                                  Online ISSN: 2053-2210 (Online) 

3 
 

                         j j jy X u                                                                           (2) 

where    

                       

'

1 1j 1 1j

j '
2 2 22j

X      0
,  X = ,  u=

0       X

j j

j

j j j

y u
y and

y u






      
             

        

The likelihood, Prior and Posterior distribution  
 

In this study, the posterior distributions of  and   are obtained  by the likelihood functions 

conditional on reliable prior (diffused prior and Wishart prior). The likelihood function is 

designated as  , ~ ( , )p y N X    ,and its density is given as 
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       (3)    

 The insufficient knowledge of any prior for related categorical covariates gives rise to the use of 

diffused prior for    while    follows Wishart prior as a generalization of gamma distribution 

for SUR.Independent diffused priors are used for categorical variables. Jeffrey (1961) suggested 

diffused priors for these variables parameters.  

                                 

  ~     p const                                                                (4)

  

Inverse-wishart prior is used for the covariance matrix of the error term( ) where A is a scalar 

and B symmetric and positive definite matrix , ~ ( , )IW A B for 0   and with a standard 

choice of 1A  and  1 ,..., mB diag d d  as small as d=0.005. The probability distribution function 

of  is then given as 

                          
( 1) / 2 1( ) exp ( )

A K
p tr B

                                                      (5)   

 The posterior distribution 

The Bayesian inference is based on the posterior distribution of the model parameter.  This is done 

by combining equation 3, 4 and 5 to give 6, the posterior distribution defined below. 

                    
       , ,p y p y p p       

                                        
(6) 
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The posterior distributions of model parameters  and    to be estimated are numerically 

intractable. Therefore, this problem is addressed by MCMC simulation methods whereby samples 

are drawn from the sample from the full conditional distribution of the parameter given other 

information.  

The marginal posterior distribution for   

Sample   from,         
1 1

2 2| , ~ ,T T Tp y N X X X y X X  
 

                         
(7) 

The marginal distribution of covariance matrix for   

Sample  from,  
22 1 1

| , , ~ ,
2 2

p y IW A K B u 
 

    
                                 

(8)  

 

 

Bayesian MCMC 

Datasets of sample sizes of 20, 50, 100 , 500 and 1000    with two response variables(
1 2  and yy ) 

and four categorical predictive variables  1 11cor 12cor= x  xX  in the first equation  and  2 21 22= x  xX  

in the second equation were generated from binomial distribution with 11 0.2  ,
12 0.7  ,

21 0.4  and 
22 0.6  , and  random error that follows a normal distribution with mean zero and 

variance one. The two response variables, 
1 2 and  y  y  were obtained with associated distinct 

vector of categorical explanatory variables 1 2 and   XX  respectively.  Let 
'X =  1 2 X X  denote a 

vector of explanatory variables, '

1 2(  )   , the vector of regression coefficients  and   the 

variance covariance matrix of the error   . The correlated categorical explanatory variables in the 

first equation are generated by modifying Gary and Diane method (Gary and Diane, 1975) in the 

equation below, where  
11 12cor and  xcorx  the two covariates in equation(1) are derived.  

           
1

2
1 1 21   j=1,2jcorx z z                                                             (9) 

where 1 2 and zz  are binomially distributed  for the specified sample sizes with mean  and variance  

2 and  0.5 respectively. The (0.0,0.1,0.2,...0.9,1.0)  represents different degrees of collinearity 

between two categorical explanatory variables of the first equation. To solve this problem MCMC 
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methods are employed to randomly draw samples from the marginal posterior distribution for the 

parameters sated above with the aids of BayesX software.  

 

ANALYSIS, RESULTS AND DISCUSSION  

Table1.Posterior Means Of Bayesian Seemingly Unrelated Regression Model Under Varying 

Degree Of Collinearity With Different Sample Sizes Between CEVs 
11 12cor  and xcorx  

Collinearity 
Posterior mean of 11 0.2   Posterior mean of 

12 0.7   

levels 20 50 100 500 1000 20 

 

50 

 

100 500 1000 

 

 
 

 

11 12x x  

0.0 0.199711 0.199926 0.199832 0.199981 0.200005 0.700223 0.699993 0.700156 0.699938 0.700076 

0.1 0.19974 0.199887 0.199887 0.199979 0.200012 0.700317 0.699971 0.699971 0.699936 0.700046 

0.2 0.199767 0.199881 0.199899 0.19998 0.200013 0.700343 0.699963 0.700093 0.699938 0.700033 

0.3 0.199789 0.199878 0.199917 0.19998 0.200014 0.700361 0.699956 0.700078 0.69994 0.700024 

0.4 0.199807 0.199876 0.199933 0.199981 0.200015 0.700376 0.69995 0.700065 0.699942 0.700016 

0.5 0.19982 0.199874 0.199948 0.199981 0.200016 0.70039 0.699944 0.700053 0.699944 0.700008 

0.6 0.199828 0.19987 0.199965 0.199981 0.200016 0.700402 0.699937 0.70004 0.699946   0.7 

0.7 0.199828 0.199866 0.199984 0.199982 0.200017 0.700412 0.699929 0.700024 0.699948 0.699991 

0.8 0.199815 0.199859 0.199859 0.199982 0.200018 0.70042 0.699917 0.699917 0.699952 0.69998 

0.9 0.199781 0.19985 0.200047 0.199983 0.200019 0.70042 0.699898 0.699974 0.699957 0.699963 

1.0 0.199674 0.199824 0.200138 0.199986 0.200019 0.700394 0.699849 0.69989 0.699978 0.69992 

 

Table 1 shows the posterior means of Bayesian seemingly unrelated regression(BSUR) estimator 

with varying  degree of collinearity(  ) between CEVs
11 12  and XX  in  the first  equation of 

SURM   of equation(2) for sample sizes 20 to 1000 when the true values are set at 11 0.2 
 
and  

12 0.7  . For example, the posterior means  when 
11 12

0.1x x   for sample sizes of 20,50, 100, 

500 and 1000 are   0.19974(0.700317), 0.199887(0.699971)0.199887(0.699971), and 

0.199979(0.700046) respectively, which  are close to the true values 11 ( 12 ). The posterior means 

when  
11 12

0.8x x 
 
for all sample sizes considered are 0.199815(0.699917), 0.199859(0.699917), 

0.199859(0.699917), 0.199982(0.699952).  The results show the asymptotic behaviour of the 

Bayesian procedure in that, for all the degrees of correlation, the posterior means move toward the 

true parameter values as the sample size increases from20 to 1000.  
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Table2.Posterior Standard Deviation Of Bayesian Seemingly Unrelated  Regression Model 

Under Varying Degree Of Collinearity With Different Sample Sizes  Between CEVs
 

11 12cor  and xcorx  

Colli
nearit

y 

Posterior Standard Deviation of 11  Posterior Standard Deviation of 12  

Levels 20 50 100 500 1000 20 

 

50 

 

100 500 1000 

 

 
 

 

11 12x x

 

0.0 0.002251 0.0007180 0.0003794 0.0000917 0.0000560 0.001779 0.0006929 0.0003688 0.0000916 0.0000560 

0.1 0.002262 0.0006436 0.0006436 0.0000884 0.0000540 0.001739 0.0007062 0.0007062 0.0000903 0.0000537 

0.2 0.002316 0.0006221 0.0004013 0.0000867 0.0000529 0.001754 0.0007144 0.0003710 0.0000891 0.0000526 

0.3 0.002369 0.0006090 0.0004048 0.0000855 0.0000521 0.00177 0.0007214 0.0003714 0.0000884 0.0000519 

0.4 0.002419 0.0006000 0.0004077 0.0000849 0.0000517 0.001792 0.0007281 0.0003721 0.0000880 0.0000515 

0.5 0.002462 0.0005937 0.0004103 0.0000846 0.0000515 0.001807 0.0007345 0.0003730 0.0000878 0.0000514 

0.6 0.002496 0.0005894 0.0004125 0.0000847 0.0000516 0.001815 0.0007408 0.0003742 0.0000880 0.0000515 

0.7 0.002516 0.0005873 0.0004144 0.0000851 0.0000520 0.001813 0.0007467 0.0003757 0.0000884 0.0000519 

0.8 0.002514 0.0005883 0.0005883 0.0000860 0.0000527 0.001797 0.0007516 0.0007516 0.0000891 0.0000523 

0.9 0.002484 0.0005957 0.0004139 0.0000875 0.0000538 0.001765 0.0007528 0.0003794 0.0000900 0.0000537 

1.0 0.002428 0.0006489 0.0003943 0.0000907 0.0000560 0.001754 0.0007281 0.0003786 0.0000908 0.0000555 

 

Table2 contains posterior standard deviations of Bayesian seemingly unrelated regression(BSUR) 

methods under varying  levels of collinearity(  ) between CEVs
 11 12  and XX  in the first equation 

of equation(2).  For example when 
11 12

0.1X X   and sample size ranges from 20 to 1000, the 

obtained posterior standard deviations  of the estimators of 11  ( 12 ) are 0.002262(0.001739), 

0.0006436(0.0007062), 0.0006436(0.0007062), 0.0000884(0.0000903) and 

0.0000884(0.0000537).The posterior standard deviations of 11  ( 12 ) are 0.002484(0.001765), 

0.0005957(0.0007528), 0.0004139(0.0003794), 0.0000875(0.0000900) and 

0.0000875(0.0000537) when 
11 12

0.9X X 
 
for all sample sizes. The results reveal that posterior 

standard deviations of Bayesian estimator consistently decrease as sample size increases. Also, the 

posterior standard deviations increase as level of collinearity increases for all sample sizes except 

for N=20.  However, for N=20, the posterior standard deviations only when the degree of 

correlation 
11 12X X ranges from 0.7 to 1.0. For N=50 and 100 when 

11 12
0.1 and 0.8X X  , the values 

of posterior standard deviations obtained are similar. Best estimates are obtained when N is large 

irrespective of the level of correlation between the explanatory variables. 

 

CONCLUSION 

 

This study investigated the behavior of Bayesian method when applied to the seemingly unrelated 

regression with the regressors assumed to be correlated at different degrees of collinearity(  ) 
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from 0.0 to 1.0.  The results show that the posterior means are close to the true values at all levels 

of collinearity as the sample size increases. Moreover, the posterior standard deviations 

consistently decrease as sample size increases. In addition, in small size when the degree of 

collinearity is high between CEVs, the posterior standard deviations are considerably reduced. 

This implies that without loss of efficiency, BSUR estimator performs well at all levels of 

collinearity of CEVs for the sample sizes considered 
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