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ABSTRACT: A key challenge to successful implementation of Time-Frequency (TF) analysis 

for machine diagnosis is the development of an accurate and consistent method to interpret the 

images so that they truly reflect machine condition. In this paper, the time-frequency domain 

is used to study signals from industrial bearings. Examination results are presented as TF 

images. A Fuzzy logic approach is developed to classify Fourier Descriptors obtained from the 

time–frequency images so that the fault can be automatically identified. The analysis and 

results of experimental data indicate that bearing faults can be correctly classified using the 

developed method. 

KEYWORDS: Time-Frequency Analysis, Fourier Descriptors, Fuzzy Logic Method, Failure 

Diagnosis, Diagnostics, Rotating Machinery. 

 

INTRODUCTION    

Monitoring of machinery is currently used as a predictive maintenance tool. Its primary 

purpose is safety, but it is also expected to detect the beginning of a defect and follow its 

development over time. Such early detection makes it possible to plan and schedule repairs for 

a suitable time in order to avoid production interruptions. Analysis of signals to extract hidden 

information is known as signal processing. Signal processing methods are the principal tools 

used in the diagnostics of machinery. Modern technology is progressing rapidly and machinery 

diagnostics plays a major role in plant maintenance. For this reason, it is essential to take 

advantage of a new generation of more powerful methods of signal analysis. These methods, 

called time-frequency representations, make it possible to analyze non-stationary or cyclo-

stationary signals [1-4].  

If a random signal is not stationary, its correlation function usually depends on time and its 

spectral density. Representations in time-frequency (RTF), that describe the frequency progress 

in time, can be used to analyze such cases. 

The most immediate representation is the Spectrogram (STFT), which carries the conventional 

Fourier Transform of one part of the signal; the part moving along the time axis. The precise 

formulation is [5]: 

 𝑅(𝑡, 𝑓) = ∫ 𝑥(𝑢). 𝑤(𝑢 − 𝑡). 𝑒−𝑖2𝜋𝑓𝑢 𝑑𝑢                                                           (1) 

The role of the window w(t) is to isolate a neighborhood of length L of the point t, in which the 

frequency contents are analyzed. In spite of its single and intuitive aspect, this transformation 

is bijective, and therefore contains all the information of the signal. It is understood that there 

is a compromise between the length L of w(t), which induces a frequency resolution 1/L, and 

the capacity of the Time Frequency distribution to handle variations in modulation speed. 
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The STFT representation is not the only distribution capable of representing the evolutionary 

spectral properties of a signal. The Wigner-Ville distribution is the most widely-used member 

of the class of representations called class of Cohen. 

The following distributions result from various choices of the Kernel Φ(θ, τ) [5]:  

 Φ(θ, τ)=1 gives the Wigner-Ville representation 

 Φ(θ, τ) = 𝑒𝑖θτ/2 gives the Rihaczek representation 

 Φ(θ, τ) = 𝑒𝑖θ|τ|/2 gives the Page representation 

 Φ(θ, τ) = 𝑒−θ2τ2/σ gives the Choi-Williams representation, for which the choice of 

parameter σ reduces interference terms. 

Time-scale representations are also bilinear representations, but they are originally designed 

for a different purpose: for a complex signal, wave forms which have undergone temporal 

translations and contraction are sought, and it is natural to look for a correlation between the 

signal and these dilated and translated forms. To facilitate this, the Continuous Wavelet 

transformation is introduced. 

Certain difficulties limit the efficiency of machinery diagnosis based on these methods. The 

majority of engineers have little or no knowledge of advanced signal processing techniques, 

and it is therefore necessary to have user-friendly software. This software must include both 

advanced and traditional methods of signal analysis in order to automatically identify the faults 

in different machinery components (such as bearings, shafts, gears…). Automated visual 

examination systems needed to identify and classify probable defects from images must be 

rapid and rigorous.  

In this paper, thresholding and an 8-connectivity algorithm were applied to an image generated 

using time-frequency analysis. In addition, a Fuzzy logic method is used to classify a Fourier 

descriptor found in the image to detect faults in an industrial bearing. 

Image Pre-Processing Algorithm 

The fault detection method proposed in this work includes an image processing portion, which 

is applied to enhance information that is extracted from numerical images. 

This section presents a short description of two basic image processing methods used in this 

research: threshold filtering and connectivity algorithms. Threshold filtering converts a 

continuous gray scale image into a two-or-more-level image such that the concerned contours 

are separated from the background. Shape images obtained from real operating systems are 

often corrupted with noise, and as a result the shape obtained from the threshold usually has 

noise around its boundary. A de-noising process is therefore applied using a classical wavelet 

transform to decompose the signal, remove noise from components and then reconstruct it [6]. 

This eliminates isolated pixels and small isolated regions or segments. 

In digital imaging characterized by a grid, a pixel can either have a value of 1, when it is part 

of the pattern, or 0, when it is part of the background. In our case, a pixel is 4-attached to its 

four neighbors, and 8-attached to its eight neighbors [7]. The most important process is finding 

a set of connected components in the time-frequency analysis image, because all points in this 

http://www.eajournals.org/
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set form a candidate area to represent a contour. An example of pre-processing is shown in 

Figure 1. 

 

 

 

 

 

 

 

 

Figure 1-Pre-processing example; a) original image and b) Traced shape [14]. 

Fourier descriptors 

Fourier descriptors (FD) are generally used to represent the outline of an object. An outline 

(contour) consists of a set of coordinates (xi, yi), and all coordinates are considered as a part of 

the complex plane S [n] = x[n] + iy[n] as depicted in Figure 2. 

The FDs are used to describe the shape of every silhouette located in an image. Their principal 

benefit is invariance to rotation, translation and scaling of the detected contour.  

 

 

 

 

 

 

 

 

Figure 2- Representation of a contour as a sequence of complex points. 

In object recognition methods, silhouette descriptors are found using the entire pixel inside a 

contour area. Contour descriptors are used in the same region to define the form of an object.  

Preprocessing is used to extract the contour information (coordinates of the contour), from the 

object with invariant descriptors.  
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The silhouette of the object is then found using a connectivity contour method to obtain the 

final boundary coordinates of the form. The block diagram for preprocessing and recognition 

is shown in Figure 3. 

 

 

                                                                           

Figure 3-Object recognition using shape information [14]. 

Classifying the time–frequency images using a Fuzzy logic Algorithm 

Introduction of Fuzzy logic: Fuzzy Logic (FL) is a popular approach to derive soft classifiers. 

It extends conventional Boolean logic using a concept of partial truth for values between “0” 

and “1”, which correspond to “totally true” and “totally false”, respectively. [20]. 

The FL method uses mathematical tools (fuzzy sets) to model approximate reasoning when 

data is imprecise, uncertain, vague, and incomplete.  

Clustering data using Fuzzy C-Means (FCM): The FCM is a method of grouping that 

permits one data set to belong to double or several clusters. The main objective of clustering is 

to recognize regular groupings of data from an important set of data [21-22].  

Classifying the Fourier descriptors with Fuzzy C-Means: Suppose we have a data set: 

{𝑋1 … … … , 𝑋𝑁}  , that we want to separate into C fuzzy clusters. This requires computing C 

centers of the group and generating a connection matrix U. This membership matrix is a C x N 

matrix, where C is the total number of clusters and N is the data sample quantity. Each 

membership matrix column involves C membership values corresponding to each data sample 

[19]. 

An ideal distribution using fuzzy C-Means is generated by reducing the global least squared 

errors function  𝐽(𝑈, 𝜈)[17]: 

                                        𝐽𝑚(𝑈, 𝜈) = ∑ ∑ (𝑈𝑖𝑘)𝑚𝐶
𝑖=1

𝑁
𝑘=1 ‖𝑋𝑘 − 𝜈𝑖‖

2                                     (2) 

 

where X= (𝑋1 … . . , 𝑋𝑁) is the set of data, C is the number of cluster centers (C between 2 and 

N), and m is the increment of weighting exponent  ( 1 ≼ 𝑚 ≺ ∞). 

‖𝑋𝑘 − 𝜈𝑖‖2 = ∑ (𝑋𝑗𝑘 − 𝜈𝑗𝑖)2
𝑗=1   ; where ‖𝑋𝑘 − 𝜈𝑖‖ is the Euclidean metric. 

N is the number of datasets.  

𝜈 =[𝜈𝑗𝑖] = [ 𝜈1, … … … 𝜈𝐶] is the matrix of cluster centers; 

𝜈𝑖 is the cluster center for subset i; 
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𝑈𝑖𝑘 is the value of fuzzy membership of sample k in group i; 

𝑈 = [𝑈𝑖𝑘]: Fuzzy C-partition matrix for the data set X. 

𝑈 ∈ 𝑅𝐶𝑥𝑁 ∀𝑖, 𝑘: 0 ≼ 𝑈𝑖𝑘 ≺ 1.  

At points where   ∑ 𝑈𝑖𝑘
𝐶
𝑖=1 = 1, 

0 < ∑ 𝑈𝑖𝑘

𝑁

𝑘=1

 

In this paper, the Fuzzy Logic method is applied to Time-Frequency images and a set of Fourier 

descriptor values for each object found in the image are introduced as input data to the FCM 

algorithm classification. In reference [23], an Application of Fourier Descriptors and Fuzzy 

Logic for classification of a Radar Subsurface Image was developed specifically for 

recognition of Archeological artifacts. The buried artifacts in these images appear in the form 

of hyperbolas due to radar backscatter from the artifacts. The procedure consists of using 

Fourier Descriptors and a Fuzzy C-Mean Classifier to separate two classes of hyperbola/non-

hyperbola objects from the sub-surface images [23]. Many other authors have applied this 

method in different fields, such as: a) Gabor B, a study in which the author investigates 

automatic object recognition (Fourier Descriptors and fuzzy logic) in unconstrained 

environments in order to resolve a problem of an inexact fit from the source map to the final 

digital product [24].   

b) Abdul Salam. T. H et al; the authors use invariant Fourier Descriptors to recognize, identify 

and classify objects (with invariant moments, fuzzy logic techniques etc…) from a 2D image 

[25]; 

c) Sérgio Oliveira studied authors that implement procedures for classification in intelligent 

systems using Fourier descriptors to define the contour of objects. Intelligent systems 

incorporating FL (fuzzy sets) have proven highly effective using only two Fourier descriptors, 

even when these are calculated using very few points to define the object’s contour obtained 

from an image taken by a smart camera [26]. 

d) Wang et al. present a fuzzy logic-based image retrieval system founded on color and shape 

features. The authors adopt Fourier descriptors and moment invariants to describe the shape 

feature of a binary image [27]. 

In the present paper, an intelligent detection and classification system for industrial signals 

based on analysis of the time-frequency domain is proposed. A set of significant Fourier 

descriptors are chosen as the features of an array vector that describes the contour of a time-

frequency image. A comparison procedure is implemented between the latter and a dictionary 

created especially for this purpose. The nearest neighbor process determines the Euclidean 

distances between the sample array vectors and each new product. The product is classified as 

non-defective if the nearest prototype is a non-defective product model. Otherwise the product 

is classified as defective. 

Experimental Setup 

Bearing characteristic frequencies: A rolling element bearing typically contains two rings, 

an interior and an exterior race with a set of balls retained in a cage. This prevents any contact 
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between rollers and also provides uniform spacing (Figure 4). There are many causes of bearing 

failures, including material flaws, lubricant failure, misaligned load, excessive contact stress, 

etc. In almost all cases the malfunction occurs due to a defect in the inner race, outer race or 

rolling elements. A vibration analyst can often detect/predict failures by collecting enough 

information about the frequencies emitted by a defective bearing. 

 

 

 

 

 

 

 

 

 

 

 

Three important frequencies that defective bearing can generate are: 

1- Ball/roller pass frequency of the outer race (BPFO): this frequency occurs when each 

Ball/roller passes over the defective location in the outer race and can be calculated 

using the formulas in Table1. 

2- Ball/roller pass frequency of the inner race (BPFI): this frequency occurs when each 

Ball/roller passes over the defective location in the inner race.  

3- Two times Ball/roller spin frequency (BSF): this frequency equals twice the spinning 

frequency of the Ball/roller. This occurs due to a single fault in roller contacts of the 

inner and outer rings. 

To calculate the BPFO, BPFI and BSF of a bearing, geometry and rotational speeds of the 

bearing are needed. 

Table 1: Fault characteristic frequencies of a ball bearing system. 

Frequencies Formulas 

 

Cage fault (FCF) 
𝐹𝐶𝐹 =

1

2
𝐹𝑅 (1 −

𝐷𝐵𝐶𝑂𝑆𝜃

𝐷𝑃
) 

 

Outer raceway fault (FORF) 
𝐹𝑂𝑅𝐹 =

𝑁𝐵

2
𝐹𝑅 (1 −

𝐷𝐵𝐶𝑂𝑆𝜃

𝐷𝑃
) 

 

Inner raceway fault (FIRF) 
𝐹𝐼𝑅𝐹 =

𝑁𝐵

2
𝐹𝑅 (1 +

𝐷𝐵𝐶𝑂𝑆𝜃

𝐷𝑃
) 

 

Outer Race 

 

Cage 

Inner Race 

Balls 

Figure 4-Different components of the bearing [Schoen et al.].  
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Ball fault 𝐹𝐵𝐹 =
𝐷𝑃

2𝐷𝐵
𝐹𝑅 (1 −

𝐷𝐵
2𝐶𝑂𝑆2𝜃

𝐷𝑃
2 ) 

Where; 

FR is spindle speed revolution, DB: ball diameter, DP: distance between the center of 

two opposing balls, NB: quantity of balls and θ: ball contact angle.  

 

Data Acquisition 

First case study: This case study presents the design of an experimental test rig to measure 

vibration signal responses of faulty rotating machinery components (simulated faults). The test 

rig is designed to detect typical rotating machinery faults such as a damaged bearing, mass 

imbalance and a gear fault. Since our diagnosis procedure is based on vibration signals, its 

reliability depends on how well the simulated signals reflect those that are obtained from real 

systems used in industry. We also need to adequately control the nature of the vibrations 

simulated on the test rig, i.e. eliminate all potential sources of noise. For these reasons, design 

of the test rig was carried out following a strict set of procedures. First, it was necessary to 

define the components to be tested and the test parameters, including speed and the loads to be 

applied on tested components. Once faulty components were identified, a common way to 

simulate faults similar to those usually encountered in industry was proposed. Finally, 

instrumentation of the test rig was considered. 

In many previous works, test rigs were made of bearings, gears, and a disk or flywheel mounted 

on a rotating system driven by an electric motor. 

Our test rig is a rotating system consisting of a shaft supported at each end by SKF Plummer 

block bearings. These are connected to a gearbox system through a belt transmission system. 

The whole system is driven by a 2 HP electrical motor at 3600 rpm nominal speed mounted on 

a set of two 67 lb/ft H-beams. The motor is coupled to the rotating system using a standard 

elastomeric connector that can sustain angular misalignment and absorb some unwanted 

vibration coming from the motor. The test rig is 210 mm wide and 1750 mm long.  

An unbalanced flywheel is mounted on the shaft. This arrangement and the belt transmission 

system provide loads on the bearings. The gears are mounted on shafts which are supported by 

bearings at each end. All bearings (those of the rotating system and those of the gearbox) are 

mounted on adapter sleeves and can be easily dismantled for replacement. The speed ratio of 

the gear transmission is 1.16, whereas the ratio for the belt transmission is 1.06. 

 

(a) 
(b) 
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Figure 5-Test rig for the analysis Machinery Diagnostics laboratory at École 

Polytechnique of Montreal, (a) isometric view and (b) Zoom isometric view. 

While the motor runs at its nominal rotational speed of 3600 rpm, output shaft of the belt 

transmission rotates at 3400 rpm and the output shaft of the gear transmission rotates at 2900 

rpm. If the belt and gear transmissions are used for speed multiplication, their output speeds 

will be 3800 and 4400 rpm, respectively. The maximum speed that can be reached on this test 

rig is therefore 4400 rpm. The gearbox unit, the imbalance flywheel, and the shafts were custom 

designed for this test rig. All other components were purchased from suppliers.  

Table 2: Test rig specifications. 

 

Pratt & Whitney bearing Tests: The goal of the present work is to demonstrate that the 

developed procedure can diagnose any faulty condition in rotating machinery. This is done by 

analyzing the vibration response of components such as Pratt & Whitney bearings on the test 

rig. An adapted version of the original test rig is presented in the Figures. Since Pratt & Whitney 

bearings are not available on the market, a bearing housing of appropriate dimensions was 

designed. The gearbox transmission was replaced by the custom-made bearing housing and an 

SKF Plummer block bearing. These two units are used to support the shaft connected to the 

output of the belt transmission system.  

The tested bearing is now loaded by the belt transmission system. A set of internal and external 

adapter sleeves was designed to accommodate all bearing dimensions required by Pratt & 

Whitney.  

The details of the design are shown in Figures 6 and 7. The housing adapter sleeves enable 

changing the bearings without disassembly of the whole system. Only the central part shown 

on the cover of the bearing housing needs to be removed and reinstalled.  

 

Figure 6-Test setup with PWC100#5 bearing mounted on the shaft. 

Accelerometers 

P1 

P3 

P2 

PWC15 bearing 
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(a) Bearing housing with smaller bearing, (b) Bearing housing with larger bearing 

 

                   (c) Housing adapter sleeves              (d) Replacing bearings inside the housing 

Figure 7- Test rig adapted for Pratt & Whitney bearings. 

Test specifications: Using the in-house Software TF-Analysis, spectral analysis was 

undertaken to detect possible faults in the industrial bearing provided by Pratt and Whitney, 

see Figure 7. The tests on the bearing were carried out in the Machinery Diagnostics Laboratory 

at École Polytechnique of Montreal, according to specifications provided by Pratt and Whitney. 

Tests were carried out at 3 different rotating speeds (S1, S2 and S3, see Table 3). Data was 

gathered at a sampling frequency of 50 kHz, with 5 minute recordings at each speed. The 

acceleration and deceleration stages were recorded as well. See Figure 8 for the test sequence 

 

 

 

 

 

 

Figure 8-Test speed scheme. 
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Table 3: Test speed 

 

 

 

Three accelerometers were used; P1, P2 and P3 (see Figure 6). P1 is positioned horizontally over 

the bearing to detect bearing faults. P2 is positioned vertically on the side of the bearing and 

detects shaft faults. P3 is positioned horizontally on the bearing housing (1217K) and is used 

to monitor this bearing and thus test equipment condition.  

In this paper, only the data from P1 is analyzed while the others are used merely for monitoring 

and verification of the test equipment.  

Technical specification 

Bearing parameters 

Table 4: Bearing specifications 

P&W Bearing ID PW100 #15 BRG, 

Roller bearing 

 

Inner diameter 2.7556’’ - 2.7559’ 

Outer diameter 5.9051’’ – 5.9055’’ 

Pitch diameter 4.3308’’ 

Width 1.370’’ – 1.375’’ 

Contact Angle n/a 

Operating speed 1 400 rpm 

Operating speed 2 800 rpm 

Operating speed 3 1200 rpm 

 

Calculated defect frequencies  

Table 5: Calculated defect frequencies of PW100#5 BRG, Roller bearing. 

Frequency rotation  6.67 Hz 13.3 Hz 20 Hz 

Defect of cage (FCF)  2.64 Hz 5.30 Hz 7.97 Hz 

Outer race defect (FORF) 31.67 Hz 63.64 Hz 95.70 Hz 

Inner race defect (FIRF) 47.76 Hz 95.96 Hz 144.30 Hz 

Ball defect (FBF) 0.64 Hz 1.29 Hz  1.94 Hz 

 

Second case study: Our second case study involves application of the proposed method to 

analyze vibration signals collected during a failure of Pratt & Whitney bearing PW100#5. This 

bearing is part of Pratt & Whitney’s aircraft engine PWC100, where it is used to support a 

gearbox shaft. It has been identified as one of the most problematic components in the engine. 

Speed Rotating speed (rpm) Frequency (Hz) 

S1 400 6.67 

S2 800 13.3 

S3 1200 20 

http://www.eajournals.org/


European Journal of Mechanical Engineering Research 

Vol.3, No.2, pp.19-41, May 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

29 

ISSN 2055-6551(Print), ISSN 2055-656X (Online) 

Experimental data was collected from a test rig at the National Research Center in Ottawa. 

Three bearings of the same type were tested on that test rig.   

Steady state and transient signals were recorded at a 50 kHz sampling frequency according to 

the speed path given in Figure 10.   

Note that only data from one of these three bearings; PW100#5 no3, is analyzed in this paper. 

Moreover, during the tests the rotational speed was kept low (1,000 and 2,000 rpm) due to 

excessive noise and risk of damage to the test rig. 

Table 6: Geometrical dimensions and rotating speeds for tests performed at NRC on the 

P&W bearing. 

P&W Bearing ID First Second Third 

PW100 #5 

Roller 

bearing 

PW100 #5  

Roller bearing  

PW100 #5  Roller 

bearing  

Inner diameter 2.8347’’ - 

2.8350’’ 

2.8347’’ - 

2.8350’’ 

2.8347’’ - 2.8350’’ 

Outer diameter 3.9292’’ - 

3.9272’’ 

3.9292’’ - 

3.9272’’ 

3.9292’’ - 3.9272’’ 

Pitch diameter 3.4165’’ 3.4165’’ 3.4165’’ 

Width 0.625’’ – 

0.630’’ 

0.625’’ – 0.630’’ 0.625’’ – 0.630’’ 

Contact Angle n/a n/a n/a 

Operating speed 1 25,600 rpm 25,600 rpm 1,000 rpm 

Operating speed 2 32,000 rpm 32,000 rpm 2,000 rpm 

Operating speed 3 34,200 rpm 34,200 rpm - 

             

 

Figure 9-Experimental test setup; NRC test rig. 
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Figure 10-Real rotational speed of the PW100#5 roller bearing: S2=32,000 and S3=34,200 

rpm. 

As previously shown in Table 1, a number of equations can be used to calculate the fault 

frequencies of the bearing. Using these formulas, one can compute the defect frequencies of 

the PW100 #15 bearing, where DB = 7.3 mm, DP = 87.8 mm, NB = 12, and θ = 0.  

The theoretical bearing defect frequencies are presented in Table 7 for different rotational 

speeds. Note that the third bearing was tested at a low speed range of 1,000 to 2,000 rpm due 

to excessive noise during the speed-up period.  

Table 7: Defect frequencies for the PWC100#5 bearing. 

Bearing Rotation 

Speed 

(RPM) 

Cage fault 

(FCF) Hz 

Inner raceway 

fault (FORF) 

Hz 

Outer 

raceway fault 

(FIRF) Hz         

Ball fault 

      Hz 

First Bearing 34,200 261.34  3,704.86  3,136.14  3,403.80  

32,000 244.30  3,463.43  2,932.56  3,182.86 

25,600 195.60  2,772.00  2,347.15  2,547.48  

Second 

Bearing 
34,200 261.34  3,703.86  3,136.14  3,403.80  

32,000 244.30  3,463.43  2,932.56  3,182.86  

Third 

Bearing 
1,000 7.64  108.32  91.71  99.54  

2,000 15.28  216.58  183.38  199.03  

 

RESULTS AND DISCUSSIONS  

Time-Frequency Analysis  

As mentioned earlier, the time-frequency analysis method is an alternative method that can be 

used to detect faults with higher accuracy when bearing defects occur and also to reduce noise 

effects.  

First case study 

Visual inspection of the PWC100#5 bearing indicated an outer race fault (Scratches on the 

outer race bearing surface which is in contact with the balls. Although the defect is small, see 

Figure 11, it is positioned in the loading zone of the bearing and therefore generates pulses in 

the vibration signature). Figure 12 shows the spectrum and spectrogram of signals up to 250 

Hz gathered by the accelerometer at a rotating speed of 1200 rpm. As is typical with spectral 
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analysis for the purpose of bearing fault detection, it is expected to have a peak at the same 

frequency on both diagrams. The spectrum in this case shows a peak around 95 Hz, slightly 

higher spectral energy can also be observed from the spectrogram around the same frequency. 

This frequency coincides well with the over-rolling frequency at one point on the outer race of 

the PWC100#5 bearing, as shown in Table 5 (95.70 Hz). 

 

Figure 11-Outer raceway of the tested Pratt & Whitney bearing (PWC100#5) 

 

Figure 12-Spectrum and spectrogram of the faulty PWC100#5 bearing. 

Outer race fault 

http://www.eajournals.org/


European Journal of Mechanical Engineering Research 

Vol.3, No.2, pp.19-41, May 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

32 

ISSN 2055-6551(Print), ISSN 2055-656X (Online) 

 

 

 

Figure 13-Wide range frequency spectrogram of the faulty PWC100#5 bearing at 

rotating speed 1200 rpm. 

In order for the vibration produced by faulty bearings to be clearly discernible on the 

spectrogram one needs to look at a broader frequency range. Figure 13 shows the spectrogram 

and spectrum of the signal up to 12.5 kHz. On the spectrogram, the outer race fault appears as 

a series of bursts taking place at around 3.5 kHz with an interval equal to the inverse of the 

outer race fault characteristic frequency (modulation frequency). Figure 14 presents a waterfall 

plot of the same signal centered on 3.5 kHz and this modulation is confirmed. Indeed, in this 

figure two main peaks are visible at frequencies 96 Hz and 200 Hz. This indicates that the 

signal is modulated with a modulation frequency about 96 Hz, which coincides with the outer 

race fault frequency of the PWC100#5 bearing given in Table 5 (frequency rotation at 20Hz). 
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Figure 14-Wide range frequency waterfall plot of the faulty PWC100#5 bearing (at 1200 

rpm). 

Second case study 

Figure 15 shows the signal of the bearing and its spectrum at 1,000 and 2,000 rpm, respectively. 

The spectrum of the signal shows some tight peaks around 100 and 200 Hz, however it is very 

difficult to confirm which defects are present in this region. 

 

 

X=95.325Hz 

1,000 rpm. 

96Hz 

 

200 Hz 
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Figure 15-Spectrum signal, bearing PW100 #5 no3, 1,000 and 2,000 rpm. 

Modulation 
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The time-frequency representation of the signal provided by the spectrogram (Figure 16) shows 

the amplitude-modulated signal at the inner and outer race fault frequencies and its harmonics. 

We can easily calculate the time between the two peaks and verify that it is identical to the 

frequency of the rotating shaft. These particularities observed on the time-frequency 

representations of the signals recorded at 1,000 and 2,000 rpm allow us to conclude that bearing 

no3 has an inner and outer race defect. This diagnosis is confirmed by a visual inspection of the 

bearing. 

Classifying time–frequency images using Fuzzy C-Means and Fourier Descriptors  

The analysis in section 7.1 confirms that bearing defects can readily detected using the time-

frequency approach. However, the ultimate goal of this work is to diagnose the condition of 

components in rotating machines automatically. To achieve this, our proposed method involves 

using a Fuzzy logic classifier (Fuzzy C-Means) and Fourier Descriptors to treat the time–

frequency images and identify the faults.  

The steps of Fuzzy C-Mean method used in this work can be described in simple terms as 

follows [21-23]: 

Create a set of values for C, m, e (e is a threshold) and generate a loop (iteration) t =1. Then 

randomly generate an initial membership matrix U with dimensions N x C. The next step is to 

calculate the center of gravity for each cluster (partition): 

   𝜈𝑖
(𝑡)

=
∑ (𝑢𝑖𝑘

(𝑡)
)𝑚𝑥𝑘𝑁

𝑘=1

∑ (𝑢
𝑖𝑘
(𝑡)

)𝑚𝑁
𝑘=1

; 𝑖 = 1 … . . 𝐶                          (3) 

Subsequently, the new center of partitioning is used to update the membership matrix: 

      𝑢𝑖𝑘
(𝑡)

=
1

∑ (
𝑑𝑖𝑘
𝑑𝑗𝑘

)
2

𝑚−1𝐶
𝐽=1

                                                                (4) 

Finally, the membership matrix is updated and compared with the preceding matrix: 

Figure 16-Spectrogram with modulation of bearing no3, 1,000 and 2,000 

rpm. 

Modulation 

Modulation 
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If {|𝑢𝑖𝑘
(𝑡)

− 𝑢𝑖𝑘
(𝑡−1)

|} > 𝑒,  t is incremented and a new iteration is calculated, in the contrary case, 

the algorithm is ended. 

Outer race defects of bearings PWC #15 and #5 are presented in Figures 17-20 along with the 

twelve most significant Fourier descriptors. These Figures show; a) the image of an outer race 

defect of the bearing obtained using a time-frequency representation, b) classification of the 

objects using the fuzzy logic method and c) Fourier descriptors of one of the objects found in 

the time-frequency image.  

These significant Fourier descriptors are chosen as the first twelve descriptors, that is, C0, C1, 

. . ., C11 ; the first elements of the array. This choice is justified because all of the information 

describing the border of the contour will be found in the lower frequency portion of the signal.   

 

 

 

 

 

 

Figure 17 a) Outer race defects of bearing no15 in time-frequency representation at 400 

rpm, b) Fuzzy C-Means classification of the time-frequency image and c) Fourier 

descriptors of one object 

Objects a) 

b) 

c) 

FD of one object 
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Figure 18 a) Outer race defects of bearing no15 in time-frequency representation at 800 

rpm, b) Fuzzy C-Means classification of the time-frequency image and c) Fourier 

descriptors of one object. 

 

 

 

 

 

 

 

Objects 

a) 

c) 

a) 

b) 

 Objects 

FD of one object 

Objects 

c) 

http://www.eajournals.org/


European Journal of Mechanical Engineering Research 

Vol.3, No.2, pp.19-41, May 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

38 

ISSN 2055-6551(Print), ISSN 2055-656X (Online) 

Figure 19 a) Outer race defects of bearing PW100#5 no3 in time-frequency 

representation at 1,000 rpm, b) Fuzzy C-Means classification of the time-frequency 

image and c) Fourier descriptors of one object. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 a) Outer race defects of bearing PW100#5 no3 in time-frequency 

representation at 2,000 rpm, b) Fuzzy C-Means classification of the time-frequency 

image and c) Fourier descriptors of one object. 

The classification procedure can be described as follows:  

1- Create a dictionary that contains signals showing the state (whether a defect exists or 

not) of the bearing. The objective at this stage is to use this dictionary to classify the 

signals derived from distributions that give the best results for our case. If we state that 

the best distribution is the one with the largest peak, the image of the top three time-

frequency distributions will be selected for this component (bearing) and hence the 

dictionary is created.  

2- For a new product, the process to verify whether or not the signal has a fault is as 

follows. The signal is first processed using the top three distributions retained. In the 

second step, a series of twelve Fourier descriptors are found for every object in the time-

frequency image. These significant Fourier descriptors are chosen as features of the 

array vector that describe the contour. A comparison procedure is subsequently 

implemented between the latter and the dictionary (only signals that correspond to the 

state of the bearing) to identify its state.  

3- The nearest-neighbor process is used to determine the Euclidean distances between the 

sample array vectors and those of each new product. The new products are then 

a) 

Objects 

b) 
c) 

http://www.eajournals.org/


European Journal of Mechanical Engineering Research 

Vol.3, No.2, pp.19-41, May 2016 

___Published by European Centre for Research Training and Development UK (www.eajournals.org) 

39 

ISSN 2055-6551(Print), ISSN 2055-656X (Online) 

classified as non-defective if the nearest prototype is a non-defective model, if not the 

product is classified as defective.  

 

 

Figure 21-Classification of a Fourier descriptor output for new bearing data a) 

PW100#5, b) PW100#15 and c) the message describing the performance of the classifier. 

The final results of classification using C-Means clustering based on the Fourier Descriptors 

output data for a new product are shown in Figure 21. Three separate clusters exist in this 

Figure, which illustrate the positions of defects in different locations. These clusters are 

classified as follows: healthy class (first class), outer race fault class (second class) and inner 

race fault class (third class). Results of second and third class are quite close, but they can be 

divided via classifiers.  
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Figure 21 illustrates a map of classification for Fuzzy logic clustering of PW100#5 and 

PW100#15 bearings, respectively. In any one figure, each circle belongs to a defect, and these 

are separated according to three different class faults. The smallest area of each unidentified 

sample corresponds to the cluster set in which the fault sample belongs. Figure 21 presents 

successful classification of the test data. It can be seen that for an unknown test point (x) the 

classifier associates this point to a specific type of fault class, with a text message indicating 

the performance of classification.  

 

CONCLUSION 

In this paper, an intelligent detection and classification system for industrial signals treated 

using the time-frequency domain is presented. Results are presented in grey representations. 

Application of a Fuzzy Logic method using Fourier Descriptors is shown to be capable of 

automatic defect classification and is successfully applied to identify the condition of a bearing. 

Performance of the technique is demonstrated using experimental signals. Results confirm 

good sensitivity and accuracy of the system for automatic detection, localization and 

assessment of faults.  
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