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ABSTRACT: We describe and analyze a simple SIS model with treatment. In particular we give 

a completely qualitative analysis by means of the theory of asymptotically autonomous system. It 

is found that a backward bifurcation occurs if the adequate contact rate is small. It is also found 

that there is exists the bistable (if two steady state coexist) endemic equilibria. In the case of 

disease -induced death, it is shown that the backward bifurcation also occurs. Moreover, there is 

no limit cycle under some condition, and the subcritical Hopf bifurcation occurs under another 

condition. 
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Introduction 

In compartmental model for the case transmission of communicable disease, there is standard, 

basic reproductive number 0R representing the mean number of secondary infections caused by 

single infective introduced into susceptible population. If 10 R  there is a disease –free 

equilibrium which is asymptotically stable and the infections dies-out. If 10 R the usual 

situation is, there is an endemic equilibrium which is asymptotically stable and the infections 

persist. In this case the bifurcation leading from a disease –free equilibrium to an endemic 

equilibrium is forward. Even, if the endemic equilibrium is unstable, the instability commonly 

arises from a Hopf bifurcation and the infection still persists but in oscillatory manner. More 

precisely, as 0R  is increase through 1 there is an exchange of stability between the disease –free 

equilibrium and the endemic equilibrium (which is negative as well as unstable and the 

biologically meaningless if 10 R ). There is bifurcation or change in equilibrium behaviour 

at 10 R , but the equilibrium infective population size depends on continuously on 0R  such a 

transition is a transcriptional bifurcation. In this case, reducing the basic reproductive number 

0R  below one may fail to control the disease. Thus, it is important to identify the backward 

bifurcation to obtain threshold to control disease. We know that quarantine is an important 

method to decrease the spread of disease. In classical epidemic models the treatment rate is 

assumed to be proportional to the number of infective. In fact, this assumption is irrational 

because every community should have a suitable capacity for treatment. If it is too large, the 

community pays for unnecessary cost. If it is too small, the community has the risk of the 

outbreak of a disease. In this paper we modify it into  
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where 0rIM  .This means that, the treatment rate ratio is proportional to the number of being 

infected when the capacity of treatment is not reached, and otherwise, take the maximal 

capacity. 

 

                                                                    

The SIS model 

Suppose there is a fixed population of size N which is initially entirely composed of susceptible 

becomes whose population is denoted by S. Then some number 0I
 
become infected at t= 0.If the 

population is mixed randomly, new infected denoted by  are predicted to appear at a rate 

proportional to both the number of infected and the number of susceptible. Infected individual 

recover at some rate and become susceptible again or transmission may occur from an infected 

person to another infected person which result is nothing happening, since the person is already 

infected. Or the potential transmission may occur from an infected person to recovered or 

immune person. In this case again nothing to change since only 0R  percent of the population is 

susceptible each infected person generates only tS is a new infection each period. 

Let’s as describe the susceptible population we begin period t with tS  individuals in susceptible 

population from this population we lose an average tt IS  from the population. Thus in the 

period 1t we have          11 SSt  tt IS  

  Through similarly reasoning we see that 

                       tt II 1 tt IS Where    is adequate contact rate. 

 In this paper, we will give a complete qualitative analysis of a simple SIS model with this 

treatment rate. Our model is given as follows 
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                                      (1.1) 

Where A is the recruitment of population, d is the natural death rate of the population, ε is the 

disease –induced rate and  )(IT  is treatment rate.  For all parameters are positive constants. 

 

SIS model without Disease –induced Death 

In this section we can consider the case in which there is no disease –induced death.  

That is when 0 , then we get    
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                              (2.1)  

In (2.1) the total population size is given by ISN  . This implies that 1 IS  

And dNA
dt

dI

dt

dS
ISN  '' )( . Then

d

A
tNt  )(lim  for every choice of initial 

value and (2.1) is asymptotically autonomous. Now we let
d

A
K  , by the theory of 

asymptotically autonomous system, this implies if N has a constant limit then the system is 

equivalent to the system in which, we may replace N by this limit that is K and reduce the 

dimensional of system (2.1) by using INS   to give the single differential equation 
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                     )()(' ITdIIIKI                               (2.2)      

                                      

 

Equilibrium of the System under without Disease –Induced Death 

Now we first consider the equilibrium of the system (2.1) and asymptotical stability. Let 

                           
rd

K
R





0 . 

  Then, 0R  is : 

 One of the fundamental concepts in mathematical biology. 

 Defined as “the average number of secondary infections caused by a single infectious 

individual during their entire infectious lifetime. 

 It is expected number of secondary individuals produced by an individual in its lifetime. 

 However, “secondary” depends on context:- 

 Mean lifetime reproductive success (demographics and ecology). 

 It is the number of individuals infected within a single infected individual’s entire 

infectious lifetime (epidemiology); 

 Number of newly infected cells produced by a single infected cell (in-host dynamics). 

A threshold criterion of 0R  is: 

 If 10 R , each individual produces, on average, less than one new infected individual and 

hence the disease dies out. 

 If 10 R , each individual produces more than one new infected individual and hence the 

disease is able to invade the susceptible population. This allows us to determine the 

effectiveness of control measures. Predicts whether a disease will become endemic or die 

out. 

When, 00 II  , we have two equilibrium of the system (2.1). 

 Thus KSIIKS  0,    

)0,(, 0
d

A
E

d

A
S  . And from system (2.1) we have rIdIIIKI  )('   for, then we get     

0)(  rIdIIIK  

)(


rd
KI


   and 



rd
S


  

Now by using Jacobin matrix and Taylor expansion we can see that ),0(0


rd
E


 is a disease-

free equilibrium, and ),(1


rdrd
kE


 is an endemic equilibrium of system (2.1) if and only 

if 

                        1< 



rd

I
R 0

0


2P  

When I > 0I  an endemic equilibrium of (2.2) satisfies  

0)(  MdIIIK                                                                            (2.3) 

 

 It is clear that (2.3) does not have positive solution when Kd  . Let MKd  4)( 2   

We know that equation (2.3) has positive solution is equivalent to 
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







0

Kd 
 0R 





rd

dM4
0P                                        (2.4) 

Let us suppose that (2.4) holds. Then (2.3) has two positive solution 
*I  and *I where  
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

dK
I
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I  

Clearly ),(),,( ***

*** SIESIE   is an endemic equilibrium of the system (2.2) if and only 0* II    

and 0

* II   By simple computation, we have 

                           0* II   0
2

I
dK







02 IdK    

                              dIK  02  

                               KdI   020  

                                02 0  KdI   

                                     
rd

dI



02
2P

rd

K






 

This implies that  10* PII 20

02
PR

rd

dI





. 

And for 0

* II 
00 2

2
IdKI

dK








  

Therefore, 10 PR   or 102 P  R P   

Summarizing the discussion above, we have the following conclusions. 

Theorem 2.1 

 ),0(0


rd
E


 is locally stable when 10 R and unstable when 10 R  

),(1


rdrd
kE


  Exist 201 PR  and locally stable if and only if 201 PR    

),0(0


rd
E


, ),(1



rdrd
kE


  is globally asymptotically stable if 201 PR   and one of the 

following conditions is satisfied:  

00, PRi   

10, PRii   

Proof: 1, from the   equation (2.1), we have 
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Then by Jacobin matrix we get   
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Now at )0,(K , )det( IJ  . Then, we get the SIS Eigen values 



















rdK

Id
J K

0
)0,(  

Then, the Eigen values are )(,1,2 rdKd   . In this case the disease free equilibrium is 

stable if the second Eigen value is negative i.e. rdK   this implies that 10 R . Hence 

),0(0


rd
E


 is locally stable, when 10 R and unstable when 10 R . 

 Proof similarly we can that (2) for, since the endemic equilibrium point ),( IS is actually only 

available to the system if rdK   since I  cannot be negative equilibrium point. 

Remark 2.2: To the global stability of the equilibrium, we can know the system (2.1) is 

bounded and )( 10 EE is the unique locally stable equilibrium under the   condition of theorem 

(2.1)   in the one -dimensional system (2.2).So we can easily obtain that )( 01 EE  is globally 

asymptotically stable under condition in Theorem (2.1) 

Theorem 2.3 

Endemic equilibria 
E  and E  do not exist if 00 PR  . Further, if 00 PR   we have the following: 

Both  
E  and E  exist when rI 0  and 20 PR  . 

E  , does not exist but  E   exists when  rI 0  and 20 PR  . 

Let  rI 0  , then  
E  does not exist. Further,  E  exists when 00 PR   and  E    does not exist 

when 20 PR  . 

Notice that rI 0   is equivalent to 
21 PP   or 01 PP   and rI 0   is equivalent to 

20 PP  . So the Theorem 2.3 can be got from the above analysis. 

Theorem 2.4  

E  is unstable whenever it exists and E  is locally stable whenever it exists. 

Further,  is globally asymptotically stable when exists and . 

Notice that the local stability of equilibria is easy to get in one-dimensional system. The global 

stability of equilibria is similar to the Theorem 2.1. We know that is the uniquelocally stable 

equilibrium under the conditions of Theorem 2.4, so we can obtain that is globally 

asymptotically stable. 

 

We consider 00 .1 IrifP  , a typical bifurcation diagram is illustrated in Fig. 1, where the 

bifurcation at 1oR  is forward and (2.2) has one unique endemic equilibrium for all 1oR . 

According to Theorem 2.1 (3), Theorem 2.3 (iii) and Theorem 2.4, we know that 0E , 1E and E   

are all globally asymptotically stable under this case. Further, if 0Ir   a typical bifurcation 

diagram is illustrated in Fig. 2, where the bifurcation from the disease-free equilibrium at 

is forward and there is a backward bifurcation from an endemic equilibrium 

at
rd

I
PR


 0

20 1


which give rise to the existence of multiple endemic equilibria. 
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Figure1. The diagram of 

*

10 ,, IandII versus 0R  when 0I =10,  = 0.2, d .2, r =0.8, where 

(iii) of Theorem 2.3 holds. The bifurcation at 0R 1 is forward and (2.2) has one unique endemic  

equilibrium for all 1R 0   

 

 
Figure2. The figure of infective sizes at equilibria  

2.0,05,0,10, 00  dIwhenRversus  ,r=0,8, where (i) of Theorem 2.3 holds. The 

bifurcation from the disease-free equilibrium at = 1 is forwardand there is a backward 

bifurcation from an endemic equilibrium at 5.120  pR . 

We know that a backward bifurcation with endemic equilibria when 1R 0   is very interesting in 

applications. So we present the following proposition to give conditions for such aback ward 

bifurcation to occur. 

Proposition2.5. If 1P0   there is a backward bifurcation with endemic equilibria when 1R 0   

in the system (2.1). 

Proof: Suppose that 02P P  when rI 0 , and rI 0  is equivalent to 01 PP   since 1P0   

when 1R 0  .Therefore by using theorem 2.3, the Proposition holds. Moreover, we can get the 

thresholds for control of the disease under this case. The threshold is 0P . By the definition of , 

we know that  is increasing with  increasing. When  is large Such that 1P0  , it follows 

from Theorem 2.3 that there is no backward bifurcation with endemic equilibria when 1R 0  , 

see Fig. 2 (   0.05). When  is larger such that rI 0 , there does not have a backward 

bifurcation because the endemic equilibria 
*

* EandE do not exit according to Theorem 2.3, see 

Fig. 1(  0.2). Moreover, when,    is small such- that 1P0   , there is a backward bifurcation 

with endemic equilibria when 1R 0  , see Fig. 3(  0.01). This means that a small adequate 

contact rate is a source of the backward bifurcation. Similarly, we also find that an insufficient 

capacity for the treatment is a source of the backward bifurcation. 
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Figure 3.The figure of infective sizes at equilibria 

2.0,01,0,10, 00  dIwhenRversus  ,r=0.8 that shows a backward bifurcation with 

endemic equilibria when 1R 0   where the Proposition 2.5 holds. 

 

SIS Model with Disease-induced Death 

Now we consider the system (1.1). The total population size 

 dNAIdNAISNandISN  )'('  

It follows that
d

A
tNt  )(lim  that means N is bounded. Let 









 0,0;:),( 2 ISthatsuch
d

A
ISRIS , for 

dNAIdNAISIStIIAtSS  )'(1,0)('0,0)('0  

Then   is positive invariant with respect to system (1.1). Since the total population is not 

constant when 0 , we do not reduce the dimension of the system to simple the computation. 

 

Equilibrium of system under Disease-induced Death 

             Equilibrium of system (1.1) satisfies; 

                                          








0)()(

0)(

ITIdSI

ITSIdSA




                                      (3.1) 

 

Let 
)(

0







rdd

A
R  then 0R are a basic reproductive number of systems (1.1). When 

00 II  , we have two equilibrium points. Thus )0,(0
d

A
E  is a disease-free equilibrium, 

and 0E is locally stable when 00 1 EandR  is a saddle, when 10 R  by analyzing the Eigen 

values of the Jacobean matrix of system (1.1) at 0E . And 

)
)(

)()1(
,( 0

1












d

rddRrd
E  is an endemic equilibrium of system (1.1) if and only if 

2
0

0 1
)(

)(
1 P

rdd

dI
R 









 

when ,0II   we solve S from the second equation (3.1) to obtain 
I

IdM
S



 )( 
  Substituting 

into the first equation (3.1), we have 

0)()( 22  dMIAddId                                                         3.2 
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If ,02   Add , it is clear that equation (3.2) does not have a positive solution. Let 

,)(4)( 22 dMdAdd   we know that equation (3.2) have positive solutions is 

equivalent to 

00

2

)(

)(2

)(
1

0

0
P

rdd

dMd

rdd

dr
R

Add

























                               3.3 

Let us suppose (3.3) holds, then (3.2) has two positive solution 
*

* IandI where 

),
)(

(),,
)(

(,
)(2

)(
,

)(2

)( *

*

*
*

*

*

*
*

2
*

2

* I
I

IdM
EI

I

IdM
Ethen

d

Add
I

d

Add
I















 











is an endemic equilibrium of system (1.1) if 0

*

0* , IIorII  . By the simple computation, we 

have 

.

)(

)(2

)(
1

1210*

20
0

10*

PRPorPRII

PR
rdd

Id

rdd

dr
PII

oo 














  

Summarizing the above discussions, we have the following conclusions. 

Theorem 3.1.  

)0,(0
d

A
E is locally stable when 10 R and is a saddle when 10 R  

)
)(

)()1(
,( 0

1












d

rddRrd
E exists and is locally stable if and only 201 PR    

The locally stability of 1E is easy to obtain by analyzing the Jacobean matrices of system (1.1) 

at 1E  . 

Theorem3.2 Endemic equilibria  and  do not exist if 00 PR  . Further, if 00 PR   we have 

the following: 

Both and exist when 200)( PRanddrId   

  does not exist but exists when 200)( PRanddrId   

Let drId  0)(  . The
*E does not exist. Further, *E is exists when 20 PR   and  *E  does not 

exist when 20 PR   

Theorem 3.2 can be easily obtained from the above analysis. We notice that  

drId  0)(  is equivalent 2100121 )( PPtoequivalentisdrIdandPPorPP   .  

So we also can get the following Proposition. 

Proposition3.3. If 11 P , there is a backward bifurcation with endemic equilibria when 

10 R in System (1.1). 

The above conclusions are similar to the results in section 2. Moreover, 0P increases with 

0Ior  increasing by the definition. So we also can obtain that a small adequate contact rate or 

an insufficient capacity for the treatment is a source of the backward bifurcation. That is to say, 

when the adequate contact rate or capacity is large, there is no backward bifurcation (see Fig. 4). 
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Figure4. The diagram of

*

10 , IandII versus 0R when  ,8.0,1.0,2.0,2.0,100  rdR 
 

Where (iii)  of Theorem3.2 holds. The bifurcation at 10 R is forward and (2.2) has one unique 

endemic equilibrium for all 10 R . 

When the adequate contact rate or capacity is small, there is a backward bifurcation with 

endemic equilibria when 10 R  (see Fig. 5).With the adequate contact rate or capacity becomes 

more smaller, there will be a backward bifurcation with endemic equilibria when 10 R  (see 

Fig. 6) 

whenRmequilibruiatsizeinictiveoffigureThefigure 05

.1.0,8.0,2.0,01.0,100   rdI  Where (i)of Theorem3.2 holds. The bifurcation from 

the disease-free equilibrium at 10 R  is forward and there is a backward bifurcation from an 

endemic equilibrium at  20 PR  1.40909. 

v 

 

Figure.6.The figure of infective sizes at equilibria 0I =10,  = 0.2, d .2, r =0.8,  .It 

shows a backward bifurcation with endemic equilibria when 10 R  when Proposition 
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Moreover, we can get the thresholds to the control of disease in this case. The threshold 

is 0p Theorem3.4.  

),( *** ISE is a saddle whenever it exists. 

 When ),( *** ISE exists, then is stable
24)( dMdA    and is unstable. 

If
24)( dMdA    

Proof (1): Now we begin by analyzing the stability of these two endemic equilibria. The Jacobin 

matrices of system (1.1) at
*E  is 

                                                













)(**

**

*




dSI

SId
J  

We have    

             det )( *J  
**2

** ))(( ISSdId    

 = MISMISAdd   **

2**2 )()(  

  *

2 )(2 IdAdd   0 , This implies eigen value is negative. It follows that 

),( ** IS  is a saddle point. By the same argument, we obtain that det 0)( * J Moreover, we 

see that the trace of )( *J is given by. 

tr
*

*2
*** )()(

I

MdII
dSIdJ





 . 

Let us verity that existence of a Hopf bifurcation in (1.1) and determine its direction. Set 0A  is 

the positive solution of the following equation. 

          
24)( dMdA    

Theorem3.5. Suppose the endemic equilibria of System (1.1) exist. Then there is a family of 

unstable limit cycles if A is greater than and close to 0A  , i.e., a subcritical Hopf bifurcation 

occurs when A passes through the critical value 0A  

Proof.  Suppose 0AA   .Then tr 0)( * J  we can obtain that 









2

234
,

2

4 2

*

2

* 





ddM
S

dMd
I  

The eigenvalues of )( *J  are i 2,1 •, where ,)(4)( 22 dMdAdd   Let 

,, ** IIySSx   then System (1.1) becomes  

                                      











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xyydSxI
dt
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xyISxId
dt
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)(

)(

**
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Setting VdUyVSx )(, **   we can obtain 

                                 









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
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VUGU
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dV

VUFV
dt

dU





 

Where  


 ))((
),(

*** VIdVUdISV
VUF


  
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                                  )(),( *VIdVUVVUG    

We know that tr )( *J  = 0, so we get







d

VUF
VUG

),(
),(  

Let    .)()(
16

1

16

1
VVvvUUUUVVUUUVVVUUUVUUVUVVUUU GFGFGGGFFFGFF 


  

By some calculations, we obtain 

0
8

)232)((
2

**22*2










IdSddId
 

As an example, we fix = 10, = 0.04, d = 0.2, r = o.8, ε = 0.1. Then we obtain that 

0A = 8.430703310. We know that there is an unstable limit cycle when A is greater than and 

near 0A from Theorem 3.5, which is shown the following figure (see Fig. 7) 

At this stage, the local stability of the endemic equilibria of System (1.1) is clear. Next, we 

begin to study the global stability of the equilibria. 

 

Theorem3.6. The disease-free equilibrium is globally asymptotically stable if 10 R and 

one of the following conditions is satisfied:  

                                                    00, pRi  , 10, pRii   

Proof. Let 10 R  implies 0E   that does not exist. Suppose 00 pR  .  It follows from the 

discussions for the Theorem 3.2 at exists
*E  and *E only if 00 pR  , which is impossible since 

we have 10 R .Let us now suppose 10 p   and 10 p . If ,)(0 drdI  since
21 pp  , it 

follows from the discussions for (i),(ii),of that
*E or *E .Theorem  3.2 exists only if 00 pR   , 

which is impossible since we have .If ,)(0 drdI   since
21 p , it follows from  of  

Theorem 3.2 that
*E  and *E  do not exist 

 It is easy to verify that positive solutions of are ultimately bounded. Note that the nonnegative 

S-axis is positively invariant and that the nonnegative I-axis repels positive solutions of (1.1). 

Since  is asymptotically stable, it follows from the Bendixson Theorem that every positive 

solution of (1.1) approaches 0E  as t approaches infinity. The limit cycles of (1.1) play crucial 

roles on the structure of dynamical behaviours of the model. For example; if there is no limit 

cycle and its endemic equilibrium is unique, the unique endemic equilibrium is globally stable. 

For this reason, we adopt Dulac functions to obtain conditions for the nonexistence of a limit 

cycle in (1.1). Generally speaking, the approach of Dulac functions applies to smooth vector 

fields.  However, it is applicable to (1.1).Where the vector field defined by (1.1) is not smooth at 

the line . Indeed, denote the right-hand sides of (1.1) by f1 andf2. 
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Figur7. An unstable limit cycle when  10,   0.04, d 0.2, r  0.8, ε  0.1,A  8.4308. 

Theorem3.7. System (1.1) does not have a limit cycle if 0rdIdArA  Proof.We know   is a 

positive invariant set, so we have
d

A
S  .Take a Dulac function 00.

1
IIIf

SI
D  we 

have .0
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from equation (1,1) 

0IIIf   it is easy to see that 
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I
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S
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Hence System (1.1) does not have a limit cycle. 

Theorem 3.7 implies that there is no limit cycle in System (1.1) if 0rdIdArA   

is to say, if the treatment rate is less than the death rate, there will no limit cycle. 

 

Remark3.8. In the above example rA  6.74464  0rdIdA 3.28616 and the condition 

of Theorem 3.7 is violated . So there is an unstable limit cycle, Theorem 3.5 is not in 

contradiction to Theorem 3.7. 

 

CONCLUSSION 
 

We have examined a simple SIS model with treatment. Firstly, we do not consider the disease-

induced death. By the theory of asymptotically autonomous system, we can easily obtain the 

global behaviour. In the case of limited resources, that is to say we use the function )(IT as the 
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treatment rate, we find that the small adequate contact rate or insufficient capacity can induce the 

backward bifurcation. We also show that the bistable endemic equilibria occur under this case. 

Secondly, when we consider the case of disease-induced death, we obtain more complex 

dynamical behaviour. It is shown that there is a backward bifurcation in some conditions, and 

the subcritical Hopf bifurcation occurs in some conditions, and there is no the control of disease 

when backward bifurcation occurs. The threshold is P0. This means that driving the basic 

reproductive number below one is not enough to eradicate the disease. Although the small 

adequate contact rate or insufficient capacity for the treatment may lead to backward 

bifurcations, we emphasize that it always decreases the spread of disease and the infective 

population size. 
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