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ABSTRACT: In this Paper, I propose a New Integral Transform which is still not widely known, 

nor used. The aim of the present paper is to investigate the application of the Elzaki Transform 

with combination of simple iteration Method for solving the Fokker-Planck equation and some 

similar equations. The method can easily be applied to many linear and non-linear Partial 

Differential Equations and is capable to reduce the size of computational work. In this approach 

the solution is found in the form of a convergent series with easily computed components. To give 

overview of Methodology, I have presented several examples in one- and two-dimensional cases. 
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INTRODUCTION 

 

In the last decade, many of new methods were used to solve linear and non-linear partial 

differential equations arising from the Mathematical Modelling of problems in Mathematics, 

Physics, Engineering and Other various branches of science which have imperative applications 

in a real life such as Adomain Decomposition Method (ADM)[1,2], Variational Iteration Method 

(VIM) [3], Homotopy Perturbation Method (HPM)[4,5], Homotopy Analysis Method (HAM) 

[6,7] , New Iterative Method (NIM) [8,9], Differential Transform Method (DTM) [10,11], Laplace 

Transform Method (LTM) [12], and Other Methods. 

 

Elzaki Transform first proposed by Tarig M. Elazki and Salih M. Elzaki [13] in 2011. This Method 

is Highly recommended to solve linear and Non-linear differential Equation with shorten 

calculation part compare to other Methods. For example, Adomain decomposition Method [14]. 

In this Paper, I solve Fokker-Planck equation (FPE) which was first applied to investigate the 

Brownian motion of particles, is now largely employed in various generalized forms in Physics, 

Engineering biology and Chemistry [15]. 

The motivation of this work is to extend the application of Elzaki Transform for solving Linear 

and Non-linear FPEs. 
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Fokker-Planck Equation (FPE):  

The general form of FPE for variables x and t is as follows, according to [2,7,9,11,12] 

𝜕𝑢

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝐴(𝑥) +

𝜕2

𝜕𝑥2
𝐵(𝑥)] 𝑢(𝑥, 𝑡)                                                                                                 (2.1) 

With the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 ∈ ℝ                                                                             (2.2) 

𝑊ℎ𝑒𝑟𝑒 𝐴(𝑥) 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑟𝑖𝑓𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑎𝑛𝑑 𝐵(𝑥) > 0 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡. 

The drift and diffusion coefficients can also be functions of x and t that is  

𝜕𝑢

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝐴(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝐵(𝑥, 𝑡)] 𝑢(𝑥, 𝑡)                                                                                         (2.3) 

Equation (2.1) is a linear second order partial differential equation of parabolic type called 

Kolmogorov equation, which is an equation for the motion of a concentration field 𝑢(𝑥, 𝑡). 

 

The backward Kolmogorov equation can be written in the following form: 

𝜕𝑢

𝜕𝑡
= [−𝐴(𝑥, 𝑡)

𝜕

𝜕𝑥
+ 𝐵(𝑥, 𝑡)

𝜕2

𝜕𝑥2
] 𝑢(𝑥, 𝑡)                                                                                          (2.4) 

A generalized form of equation (2.1) for N variables 𝑥1, 𝑥2, 𝑥3, ……… . , 𝑥𝑁 can be written as 

follows: 

 

𝜕𝑢

𝜕𝑡
= [−∑

𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥)

𝑁

𝑖=1

+ ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥)

𝑁

𝑖,𝑗=1

] 𝑢(𝑥, 𝑡)                                                                      (2.5) 

With the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥), 𝑥 = (𝑥1, 𝑥2, 𝑥3, ……… . , 𝑥𝑁) ∈ ℝ 𝑁                         (2.6) 

Where the drift vector 𝐴𝑖and the diffusion tensor 𝐵𝑖,𝑗 in equation (2.5) depend on N variables 

𝑥1, 𝑥2, 𝑥3, ……… . , 𝑥𝑁. 

There is a more general form of FPE, which is non-linear FPE. Nonlinear FPE has important 

applications in various areas such as plasma physics, surface physics, population dynamics, 

biophysics, Engineering, Neurosciences, nonlinear hydrodynamics, polymer physics, laser 

physics, pattern for motion, psychology and Marketing. 

The nonlinear FPE for one variable is in the following form: 

𝜕𝑢

𝜕𝑡
= [−

𝜕

𝜕𝑥
𝐴(𝑥, 𝑡, 𝑢) +

𝜕2

𝜕𝑥2
𝐵(𝑥, 𝑡, 𝑢)] 𝑢(𝑥, 𝑡)                                                                                 (2.7) 

Equation (2.7) for N variables 𝑥1, 𝑥2, 𝑥3, ……… . , 𝑥𝑁 is given by below equation. 

𝜕𝑢

𝜕𝑡
= [−∑

𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥, 𝑡, 𝑢)

𝑁

𝑖=1

+ ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥, 𝑡, 𝑢)

𝑁

𝑖,𝑗=1

] 𝑢(𝑥, 𝑡)                                                      (2.8) 
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𝑊ℎ𝑒𝑟𝑒 𝑥 = (𝑥1, 𝑥2, 𝑥3, ……… . , 𝑥𝑁) ∈ ℝ 𝑁 

 

Elzaki Transform Iterative Method (ETIM):  

The Basic definition of Elzaki Transform is given below  

A New integral transform called Elzaki transform [16–19] defined for functions of exponential 

order is proclaimed. We consider functions in the set A defined by  

𝐴 = {𝑓(𝑡): ∃𝑀,𝐾1, 𝐾2 > 0, |𝑓(𝑡)| < 𝑀𝑒
|𝑡|
𝐾𝑗 , 𝑖𝑓 𝑡 ∈ (−1)𝑗 × [0,∞)}  

Definition: If 𝑓(𝑡) is function defined for all 𝑡 ≥ 0, its Elzaki transform is the integral of  𝑓(𝑡) 

times 𝑒−
𝑡

𝑣 𝑓𝑟𝑜𝑚 𝑡 = 0 𝑡𝑜 ∞. It is a function of 𝑣 and is defined as 

𝐸[𝑓(𝑡)] = 𝑇(𝑣) = 𝑣 ∫ 𝑓(𝑡) 𝑒−
𝑡
𝑣  𝑑𝑡

∞

0

           𝑣 ∈ (𝐾1, 𝐾2)  

 𝑜𝑟 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 𝑇(𝑣) = 𝑣2 ∫ 𝑓(𝑣𝑡) 𝑒−𝑡  𝑑𝑡

∞

0

        𝐾1, 𝐾2 > 0        

Theorem 1: Elzaki transform amplifies the coefficients of the power series function,  

𝑓(𝑡) = ∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

                                                 (3.1) 

On the new integral transform “Elzaki Transform” is  

𝐸{𝑓(𝑡)] = 𝑇(𝑣) = ∑ 𝑛! 𝑎𝑛𝑣𝑛+2

∞

𝑛=0

                                                     (3.2) 

Theorem:2 Let  𝑓(𝑡) be in A and Let 𝑇𝑛(𝑣) denote Elzaki transform of nth derivative, 

𝑓𝑛(𝑡) 𝑜𝑓 𝑓(𝑡), 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑛 ≥ 1, 

𝑇𝑛(𝑣) =
𝑇(𝑣)

𝑣𝑛
− ∑ 𝑣2−𝑛+𝑘

𝑛−1

𝑘=0

𝑓(𝑘)(0)                                                   (3.3) 

To obtain Elzaki transform of partial derivative we use integration by parts, and then we have 
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𝐸 (
𝜕𝑓(𝑥, 𝑡)

𝜕𝑡
) =

1

𝑣
𝑇(𝑥, 𝑣) − 𝑣𝑓(𝑥, 0), 

  𝐸 (
𝜕2𝑓(𝑥, 𝑡)

𝜕𝑡2
) =

1

𝑣2
𝑇(𝑥, 𝑣) − 𝑓(𝑥, 0) − 𝑣

𝜕𝑓(𝑥, 0)

𝜕𝑡
                    (3.4) 

Properties of Elzaki transform  

1. 𝐸(1) = 𝑣2 

2. 𝐸(𝑡𝑛) = 𝑛! 𝑣𝑛+2 

3. 𝐸(𝑡) = 𝑣3 

4. 𝐸−1(𝑣𝑛+2) =
𝑡𝑛

𝑛!
 

5. 𝐸 (
𝜕𝑓(𝑥,𝑡)

𝜕𝑥
) =

𝑑

𝑑𝑥
(𝑓(𝑥, 𝑡)) 

6. 𝐸 (
𝜕2𝑓(𝑥,𝑡)

𝜕𝑥2 ) =
𝑑2

𝑑𝑥2 (𝑓(𝑥, 𝑡)) 

 

To illustrate the basic idea of the ETIM for linear and non-linear partial differential equation. 

The very first step is applying Elzaki transform on both side of the below equation 

𝜕𝑚𝑢(𝑥, 𝑡)

𝜕𝑡𝑚
+ 𝑅 . 𝑢(𝑥, 𝑡) + 𝑁. 𝑢(𝑥, 𝑡) = 𝑔(𝑥, 𝑡),𝑊ℎ𝑒𝑟𝑒 𝑚 =  1, 2, 3, ….                            (3.5) 

 𝑊𝑖𝑡ℎ 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠   
𝜕𝑚𝑢(𝑥, 𝑡)

𝜕𝑡𝑚
|
𝑡=0

= 𝑓𝑚−1(𝑥),𝑊ℎ𝑒𝑟𝑒 𝑚 =  1, 2, 3, … . 

 Where 
𝜕𝑚𝑢(𝑥,𝑡)

𝜕𝑡𝑚  is the Partial derivative of the function 𝑢(𝑥, 𝑡) of order m, R is the linear 

differential operator, N represents the general nonlinear differential operator and g(x, t) is the 

source term. Applying the Elzaki Transform (denoted by in this paper is E) on both side of 

equation, we get 

 

𝑣−𝑚𝐸[𝑢(𝑥, 𝑡)] =  ∑ 𝑣2−𝑚+𝑘

𝑚−1

𝑘=0

𝜕𝑘𝑢(𝑥, 0)

𝜕𝑡𝑘
+ 𝐸[𝑔(𝑥, 𝑡)] − 𝐸[𝑅. 𝑢(𝑥, 𝑡) + 𝑁. 𝑢(𝑥, 𝑡)]        (3.6)        

𝑊ℎ𝑒𝑟𝑒 𝑚 =  1, 2, 3, … . 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 𝑤𝑒 ℎ𝑎𝑣𝑒 

    

𝐸[𝑢(𝑥, 𝑡)] =  ∑ 𝑣2+𝑘𝑚−1
𝑘=0

𝜕𝑘𝑢(𝑥,0)

𝜕𝑡𝑘 + 𝑣𝑚𝐸[𝑔(𝑥, 𝑡)] − 𝑣𝑚𝐸[𝑅. 𝑢(𝑥, 𝑡) + 𝑁. 𝑢(𝑥, 𝑡)]          (3.7)   

Now, by operating Inverse transform on both side of the equation we get 

 

𝑢(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) − 𝐸−1[𝑣𝑚𝐸[𝑅. 𝑢(𝑥, 𝑡) + 𝑁. 𝑢(𝑥, 𝑡)]]                                                         (3.8) 

Where 𝐺(𝑥, 𝑡) represent the term arising from the source term and the given initial condition. 
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The next step in Elzaki Transform Iterative Method is that we represent the solution as an infinite 

series given below and linear and non-linear term given by simple recurrence relation 

𝑢0 = 𝑢(𝑥, 0) 

𝑢𝑟+1 = [𝑅(𝑢𝑟) + 𝑁(𝑢𝑟)],𝑊ℎ𝑒𝑟𝑒 𝑟 = 0, 1, 2, 3……                                                             (3.9) 

Finally, we approximate the analytical solution 𝑢(𝑥, 𝑡) as follows 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯…… ..                                                                           

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛=0

                                                                                                                (3.10) 

The above series solution generally converges very rapidly. 

 

Application of ETIM to FPEs:  

 

Example: 1 Consider Equation (2.1) with the initial condition 𝑢(𝑥, 0) = 𝑥, 𝑥 ∈ ℝ 

Let 𝐴(𝑥) = −1 𝑎𝑛𝑑 𝐵(𝑥) = 1 in equation (2.1). 

By applying Elzaki Transform on equation by putting these values as below 

𝐸 (
𝜕𝑢

𝜕𝑡
) = 𝐸 [[−

𝜕

𝜕𝑥
(−1) +

𝜕2

𝜕𝑥2
(1)] 𝑢(𝑥, 𝑡)] 

We get solution according to equation (3.6) as follow 

𝑣−1𝐸[𝑢(𝑥, 𝑡)] = 𝑣. 𝑢(𝑥, 0) + 𝐸 [
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡)] 

 

𝐸[𝑢(𝑥, 𝑡)] = 𝑣2. 𝑥 + 𝑣𝐸 [
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡)] 

 

Now by Applying inverse Elzaki Transform on above equation we get 

𝐸−1[𝐸[𝑢(𝑥, 𝑡)]] = 𝐸−1 [𝑣2. 𝑥 + 𝑣𝐸 [
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡)]] 

𝑢 = [ 𝑥 + 𝐸−1 [𝑣𝐸 [
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡)]]] 

 

Now, the recursive relation is given as below according to equation (3.9) 

𝑢0 = 𝑥 
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𝑢1 = 𝐸−1 [𝑣𝐸 [
𝜕

𝜕𝑥
𝑢0 +

𝜕2

𝜕𝑥2
𝑢0]] = 𝑡 

𝑢2 = 𝐸−1 [𝑣𝐸 [
𝜕

𝜕𝑥
𝑢1 +

𝜕2

𝜕𝑥2
𝑢1]] = 0 

𝑢3 = 𝐸−1 [𝑣𝐸 [
𝜕

𝜕𝑥
𝑢2 +

𝜕2

𝜕𝑥2
𝑢2]] = 0 

…………. 

 

Finally, we approximate the analytical solution 𝑢(𝑥, 𝑡) as follows 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯…… ..         

              = 𝑥 + 𝑡 + 0 + 0 + ⋯      

𝑢(𝑥, 𝑡) = 𝑥 + 𝑡 

 

Example: 2 Consider Equation (2.3) with the initial condition 𝑢(𝑥, 0) = sinh 𝑥 , 𝑥 ∈ ℝ 

Let 𝐴(𝑥, 𝑡) = 𝑒𝑡 coth 𝑥 cosh 𝑥 + 𝑒𝑡 sinh 𝑥 − coth 𝑥  𝑎𝑛𝑑 𝐵(𝑥, 𝑡) = 𝑒𝑡 cosh 𝑥 in equation (3). 

 

By applying Elzaki Transform on equation by putting these values as below 

𝐸 (
𝜕𝑢

𝜕𝑡
) = 𝐸 [[−

𝜕

𝜕𝑥
(𝑒𝑡 coth 𝑥 cosh 𝑥 + 𝑒𝑡 sinh 𝑥 − coth 𝑥) +

𝜕2

𝜕𝑥2
(𝑒𝑡 cosh 𝑥)] 𝑢(𝑥, 𝑡)] 

We get solution according to equation (3.6) as follow 

𝑣−1𝐸[𝑢(𝑥, 𝑡)] = 𝑣. 𝑢(𝑥, 0)

+ 𝐸 [−
𝜕

𝜕𝑥
{(𝑒𝑡 coth 𝑥 cosh 𝑥 + 𝑒𝑡 sinh 𝑥 − coth 𝑥). 𝑢(𝑥, 𝑡)}

+
𝜕2

𝜕𝑥2
{(𝑒𝑡 cosh 𝑥). 𝑢(𝑥, 𝑡)}] 

 

𝐸[𝑢(𝑥, 𝑡)] = 𝑣2. sinh 𝑥 + 𝑣𝐸 [−
𝜕

𝜕𝑥
𝐴(𝑥, 𝑡)𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝐵(𝑥, 𝑡)𝑢(𝑥, 𝑡)] 

 

Now by Applying inverse Elzaki Transform on above equation we get 

𝐸−1[𝐸[𝑢(𝑥, 𝑡)]] = 𝐸−1 [𝑣2. sinh 𝑥 + 𝑣𝐸 [−
𝜕

𝜕𝑥
𝐴(𝑥, 𝑡). 𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝐵(𝑥, 𝑡). 𝑢(𝑥, 𝑡)]] 
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𝑢 = [sinh 𝑥 + 𝐸−1 [𝑣𝐸 [−
𝜕

𝜕𝑥
𝐴(𝑥, 𝑡). 𝑢(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝐵(𝑥, 𝑡). 𝑢(𝑥, 𝑡)]]] 

 

Now, the recursive relation is given as below according to equation (3.9) 

𝑢0 = sinh 𝑥 

𝑢1 = 𝐸−1 [𝑣𝐸 [−
𝜕

𝜕𝑥
𝐴(𝑥, 𝑡). 𝑢0 +

𝜕2

𝜕𝑥2
𝐵(𝑥, 𝑡). 𝑢0]] = sinh 𝑥 . 𝑡 

𝑢2 = 𝐸−1 [𝑣𝐸 [−
𝜕

𝜕𝑥
𝐴(𝑥, 𝑡). 𝑢1 +

𝜕2

𝜕𝑥2
𝐵(𝑥, 𝑡). 𝑢1]] = sinh 𝑥 .

𝑡2

2!
 

𝑢3 = 𝐸−1 [𝑣𝐸 [−
𝜕

𝜕𝑥
𝐴(𝑥, 𝑡). 𝑢2 +

𝜕2

𝜕𝑥2
𝐵(𝑥, 𝑡). 𝑢2]] =  sinh 𝑥 .

𝑡3

3!
 

………… 

 

Finally, we approximate the analytical solution 𝑢(𝑥, 𝑡) as follows 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯…… ..         

              = sinh 𝑥 + sinh 𝑥 . 𝑡 + sinh 𝑥 .
𝑡2

2!
+ sinh 𝑥 .

𝑡3

3!
+ sinh 𝑥 .

𝑡4

4!
+ ⋯      

 = sinh 𝑥 (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+ ⋯…… . ) 

𝑢(𝑥, 𝑡) = 𝑒𝑡 sinh 𝑥        

 

Example: 3 Consider the backward Kolmogorov Equation (2.4) with the drift and diffusion 

coefficients given by below respectively 

𝐴(𝑥, 𝑡) = −(𝑥 + 1) 𝑎𝑛𝑑 𝐵(𝑥, 𝑡) = 𝑥2𝑒𝑡 

the initial condition 𝑢(𝑥, 0) = 𝑥 + 1, 𝑥 ∈ ℝ 

By applying Elzaki Transform on equation by putting these values as below 

𝐸 (
𝜕𝑢

𝜕𝑡
) = 𝐸 [[(𝑥 + 1)

𝜕

𝜕𝑥
+ (𝑥2𝑒𝑡)

𝜕2

𝜕𝑥2
] 𝑢(𝑥, 𝑡)] 

We get solution according to equation (3.6) as follow 

𝑣−1𝐸[𝑢(𝑥, 𝑡)] = 𝑣. 𝑢(𝑥, 0) + 𝐸 [(𝑥 + 1)
𝜕

𝜕𝑥
{𝑢(𝑥, 𝑡)} + (𝑥2𝑒𝑡)

𝜕2

𝜕𝑥2
{𝑢(𝑥, 𝑡)}] 

 

𝐸[𝑢(𝑥, 𝑡)] = 𝑣2. (𝑥 + 1) + 𝑣𝐸 [(𝑥 + 1)
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) + (𝑥2𝑒𝑡)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡)] 
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Now by Applying inverse Elzaki Transform on above equation we get 

𝐸−1[𝐸[𝑢(𝑥, 𝑡)]] = 𝐸−1 [𝑣2. (𝑥 + 1) + 𝑣𝐸 [(𝑥 + 1)
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) + (𝑥2𝑒𝑡)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡)]] 

𝑢 = [(𝑥 + 1) + 𝐸−1 [𝑣𝐸 [(𝑥 + 1)
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) + (𝑥2𝑒𝑡)

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑡)]]] 

 

Now, the recursive relation is given as below according to equation (3.9) 

𝑢0 = sinh 𝑥 

𝑢1 = 𝐸−1 [𝑣𝐸 [(𝑥 + 1)
𝜕

𝜕𝑥
𝑢0 + (𝑥2𝑒𝑡)

𝜕2

𝜕𝑥2
𝑢0]] = (𝑥 + 1). 𝑡 

𝑢2 = 𝐸−1 [𝑣𝐸 [(𝑥 + 1)
𝜕

𝜕𝑥
𝑢1 + (𝑥2𝑒𝑡)

𝜕2

𝜕𝑥2
𝑢1]] = (𝑥 + 1).

𝑡2

2!
 

𝑢3 = 𝐸−1 [𝑣𝐸 [(𝑥 + 1)
𝜕

𝜕𝑥
𝑢2 + (𝑥2𝑒𝑡)

𝜕2

𝜕𝑥2
𝑢2]] =  (𝑥 + 1).

𝑡3

3!
 

………… 

 

Finally, we approximate the analytical solution 𝑢(𝑥, 𝑡) as follows 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯…… ..         

              = (𝑥 + 1) + (𝑥 + 1). 𝑡 + (𝑥 + 1).
𝑡2

2!
+ (𝑥 + 1).

𝑡3

3!
+ (𝑥 + 1).

𝑡4

4!
+ ⋯      

 = (𝑥 + 1) (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+ ⋯…… . ) 

𝑢(𝑥, 𝑡) = (𝑥 + 1). 𝑒𝑡         

 

Example: 4 Consider the Equation (2.5) with:  

𝐴1(𝑥1, 𝑥2) = 𝑥1 𝑎𝑛𝑑 𝐴2(𝑥1, 𝑥2) = 5𝑥2 

𝐵1,1(𝑥1, 𝑥2) = 𝑥1
2 

𝐵1,2(𝑥1, 𝑥2) = 1 

𝐵2,1(𝑥1, 𝑥2) = 1 

𝐵2,2(𝑥1, 𝑥2) = 𝑥2
2 

With initial condition 𝑢(𝑥, 0) = 𝑥1, 𝑤ℎ𝑒𝑟𝑒 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 

 

By applying Elzaki Transform on equation by putting these values as below 
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𝐸 (
𝜕𝑢

𝜕𝑡
) = 𝐸 [[−∑

𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥)

2

𝑖=1

+ ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥)

2

𝑖,𝑗=1

] 𝑢(𝑥, 𝑡)] 

We get solution according to equation (3.6) as follow 

𝑣−1𝐸[𝑢(𝑥, 𝑡)] = 𝑣. 𝑢(𝑥, 0)

+ 𝐸

[
 
 
 
 −

𝜕

𝜕𝑥1

{𝑥1. 𝑢(𝑥, 𝑡)} −
𝜕

𝜕𝑥2

{5𝑥2. 𝑢(𝑥, 𝑡)} +
𝜕2

𝜕𝑥1𝜕𝑥1

{𝑥1
2. 𝑢(𝑥, 𝑡)}

+
𝜕2

𝜕𝑥1𝜕𝑥2

{1. 𝑢(𝑥, 𝑡)} +
𝜕2

𝜕𝑥2𝜕𝑥1

{1. 𝑢(𝑥, 𝑡)} +
𝜕2

𝜕𝑥2𝜕𝑥2

{𝑥2
2. 𝑢(𝑥, 𝑡)}

]
 
 
 
 

 

 

𝐸[𝑢(𝑥, 𝑡)] = 𝑣2. 𝑥1

+ 𝑣𝐸 [(−
𝜕

𝜕𝑥1

{𝑥1} −
𝜕

𝜕𝑥2

{5𝑥2}) 𝑢(𝑥, 𝑡)

+ (
𝜕2

𝜕𝑥1𝜕𝑥1

{𝑥1
2} +

𝜕2

𝜕𝑥1𝜕𝑥2

{1} +
𝜕2

𝜕𝑥2𝜕𝑥1

{1} +
𝜕2

𝜕𝑥2𝜕𝑥2

{𝑥2
2}) 𝑢(𝑥, 𝑡)] 

 

Now by Applying inverse Elzaki Transform on above equation we get 

𝐸−1[𝐸[𝑢(𝑥, 𝑡)]]

= 𝐸−1 [𝑣2. 𝑥1

+ 𝑣𝐸 [(−
𝜕

𝜕𝑥1

{𝑥1} −
𝜕

𝜕𝑥2

{5𝑥2}) 𝑢(𝑥, 𝑡)

+ (
𝜕2

𝜕𝑥1𝜕𝑥1

{𝑥1
2} +

𝜕2

𝜕𝑥1𝜕𝑥2

{1} +
𝜕2

𝜕𝑥2𝜕𝑥1

{1} +
𝜕2

𝜕𝑥2𝜕𝑥2

{𝑥2
2}) 𝑢(𝑥, 𝑡)]] 

𝑢 =

[
 
 
 
 

𝑥1 + 𝐸−1 [𝑣𝐸 [−∑
𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥)

2

𝑖=1

. 𝑢(𝑥, 𝑡) + ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥)

2

𝑖,𝑗=1

. 𝑢(𝑥, 𝑡)]]

]
 
 
 
 

 

 

Now, the recursive relation is given as below according to equation (3.9) 

𝑢0 = 𝑥1 

𝑢1 = 𝐸−1 [𝑣𝐸 [−∑
𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥)

2

𝑖=1

. 𝑢0 + ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥)

2

𝑖,𝑗=1

. 𝑢0]] = 𝑥1. 𝑡 
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𝑢2 = 𝐸−1 [𝑣𝐸 [−∑
𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥)

2

𝑖=1

. 𝑢1 + ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥)

2

𝑖,𝑗=1

. 𝑢1]] = 𝑥1.
𝑡2

2!
 

𝑢3 = 𝐸−1 [𝑣𝐸 [−∑
𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥)

2

𝑖=1

. 𝑢2 + ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥)

2

𝑖,𝑗=1

. 𝑢2]] =  𝑥1.
𝑡3

3!
 

………… 

 

Finally, we approximate the analytical solution 𝑢(𝑥, 𝑡) as follows 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯…… ..         

              = 𝑥1 + 𝑥1. 𝑡 + 𝑥1.
𝑡2

2!
+ 𝑥1.

𝑡3

3!
+ 𝑥1.

𝑡4

4!
+ ⋯      

 = 𝑥1 (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+ ⋯…… . ) 

𝑢(𝑥, 𝑡) = 𝑥1. 𝑒
𝑡    

 

Example: 5 Consider the non-linear Fokker-Planck Equation (2.7) with 

Initial condition 𝑢(𝑥, 0) = 𝑥2, 𝑥 ∈ ℝ 

𝐴(𝑥, 𝑡, 𝑢) = 4
𝑢

𝑥
−

𝑥

3
 𝑎𝑛𝑑 𝐵(𝑥, 𝑡, 𝑢) = 𝑢 

 

By applying Elzaki Transform on equation by putting these values as below 

𝐸 (
𝜕𝑢

𝜕𝑡
) = 𝐸 [[−

𝜕

𝜕𝑥
(4

𝑢

𝑥
−

𝑥

3
) +

𝜕2

𝜕𝑥2
(𝑢)] 𝑢(𝑥, 𝑡)] 

We get solution according to equation (3.6) as follow 

𝑣−1𝐸[𝑢(𝑥, 𝑡)] = 𝑣. 𝑢(𝑥, 0) + 𝐸 [−
𝜕

𝜕𝑥
{(4

𝑢

𝑥
−

𝑥

3
) 𝑢(𝑥, 𝑡)} +

𝜕2

𝜕𝑥2
{𝑢. 𝑢(𝑥, 𝑡)}] 

 

𝐸[𝑢(𝑥, 𝑡)] = 𝑣2. 𝑥2 + 𝑣𝐸 [−
𝜕

𝜕𝑥
{(4

𝑢

𝑥
−

𝑥

3
) 𝑢(𝑥, 𝑡)} +

𝜕2

𝜕𝑥2
{𝑢. 𝑢(𝑥, 𝑡)}] 

 

Now by Applying inverse Elzaki Transform on above equation we get 

𝐸−1[𝐸[𝑢(𝑥, 𝑡)]] = 𝐸−1 [𝑣2. 𝑥2 + 𝑣𝐸 [−
𝜕

𝜕𝑥
{(4

𝑢

𝑥
−

𝑥

3
)𝑢(𝑥, 𝑡)} +

𝜕2

𝜕𝑥2
{𝑢. 𝑢(𝑥, 𝑡)}]] 
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𝑢 = [𝑥2 + 𝐸−1 [𝑣𝐸 [−
𝜕

𝜕𝑥
{(4

𝑢

𝑥
−

𝑥

3
) 𝑢(𝑥, 𝑡)} +

𝜕2

𝜕𝑥2
{𝑢. 𝑢(𝑥, 𝑡)}]]] 

 

Now, the recursive relation is given as below according to equation (3.9) 

𝑢0 = 𝑥2 

𝑢1 = 𝐸−1 [𝑣𝐸 [−
𝜕

𝜕𝑥
{(4

𝑢0

𝑥
−

𝑥

3
) 𝑢0} +

𝜕2

𝜕𝑥2
{𝑢0. 𝑢0}]] = 𝑥2. 𝑡 

𝑢2 = 𝐸−1 [𝑣𝐸 [−
𝜕

𝜕𝑥
{(4

𝑢1

𝑥
−

𝑥

3
) 𝑢1} +

𝜕2

𝜕𝑥2
{𝑢1. 𝑢1}]] = 𝑥2.

𝑡2

2!
 

𝑢3 = 𝐸−1 [𝑣𝐸 [−
𝜕

𝜕𝑥
{(4

𝑢2

𝑥
−

𝑥

3
) 𝑢2} +

𝜕2

𝜕𝑥2
{𝑢2. 𝑢2}]] = 𝑥2.

𝑡3

3!
 

………… 

 

Finally, we approximate the analytical solution 𝑢(𝑥, 𝑡) as follows 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯…… ..         

              = 𝑥2 + 𝑥2. 𝑡 + 𝑥2.
𝑡2

2!
+ 𝑥2.

𝑡3

3!
+ 𝑥2.

𝑡4

4!
+ ⋯      

 = 𝑥2 (1 + 𝑡 +
𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
+ ⋯…… . ) 

𝑢(𝑥, 𝑡) = 𝑥2. 𝑒𝑡   

 

Example: 6 Consider the non-linear Fokker-Planck Equation (2.8) with 

Initial condition 𝑢(𝑥, 0) = 𝑥1
2, 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 

𝐴1(𝑥, 𝑡, 𝑢) =
4

𝑥1
𝑢 𝑎𝑛𝑑 𝐴2(𝑥, 𝑡, 𝑢) = 𝑥2 

𝐵1,1(𝑥1, 𝑥2) = 𝑢 

𝐵1,2(𝑥1, 𝑥2) = 1 

𝐵2,1(𝑥1, 𝑥2) = 1 

𝐵2,2(𝑥1, 𝑥2) = 𝑢 

With initial condition 𝑢(𝑥, 0) = 𝑥1
2, 𝑤ℎ𝑒𝑟𝑒 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 

 

By applying Elzaki Transform on equation by putting these values as below 



International Journal of Mathematics and Statistics Studies 

Vol.8, No.3, pp.50-65, October 2020 

        Published by ECRTD-UK   

Print ISSN:  2053-2229 (Print) 

                                                                                                                 Online ISSN: 2053-2210 (Online) 

61 
 

𝐸 (
𝜕𝑢

𝜕𝑡
) = 𝐸 [[−∑

𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥, 𝑡, 𝑢)

2

𝑖=1

+ ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥, 𝑡, 𝑢)

2

𝑖,𝑗=1

] 𝑢(𝑥, 𝑡)] 

We get solution according to equation (3.6) as follow 

𝑣−1𝐸[𝑢(𝑥, 𝑡)] = 𝑣. 𝑢(𝑥, 0)

+ 𝐸

[
 
 
 
 −

𝜕

𝜕𝑥1
{
4𝑢

𝑥1
. 𝑢(𝑥, 𝑡)} −

𝜕

𝜕𝑥2

{𝑥2. 𝑢(𝑥, 𝑡)} +
𝜕2

𝜕𝑥1𝜕𝑥1

{𝑢. 𝑢(𝑥, 𝑡)}

+
𝜕2

𝜕𝑥1𝜕𝑥2

{1. 𝑢(𝑥, 𝑡)} +
𝜕2

𝜕𝑥2𝜕𝑥1

{1. 𝑢(𝑥, 𝑡)} +
𝜕2

𝜕𝑥2𝜕𝑥2

{𝑢. 𝑢(𝑥, 𝑡)}
]
 
 
 
 

 

 

𝐸[𝑢(𝑥, 𝑡)] = 𝑣2. 𝑥1
2

+ 𝑣𝐸 [(−
𝜕

𝜕𝑥1

{𝑥1} −
𝜕

𝜕𝑥2

{𝑥2}) 𝑢(𝑥, 𝑡)

+ (
𝜕2

𝜕𝑥1𝜕𝑥1

{𝑢} +
𝜕2

𝜕𝑥1𝜕𝑥2

{1} +
𝜕2

𝜕𝑥2𝜕𝑥1

{1} +
𝜕2

𝜕𝑥2𝜕𝑥2

{𝑢})𝑢(𝑥, 𝑡)] 

 

Now by Applying inverse Elzaki Transform on above equation we get 

𝐸−1[𝐸[𝑢(𝑥, 𝑡)]]

= 𝐸−1 [𝑣2. 𝑥1
2

+ 𝑣𝐸 [(−
𝜕

𝜕𝑥1
{
4𝑢

𝑥1
} −

𝜕

𝜕𝑥2

{𝑥2}) 𝑢(𝑥, 𝑡)

+ (
𝜕2

𝜕𝑥1𝜕𝑥1

{𝑢} +
𝜕2

𝜕𝑥1𝜕𝑥2

{1} +
𝜕2

𝜕𝑥2𝜕𝑥1

{1} +
𝜕2

𝜕𝑥2𝜕𝑥2

{𝑢})𝑢(𝑥, 𝑡)]] 

𝑢 =

[
 
 
 
 

𝑥1
2 + 𝐸−1 [𝑣𝐸 [−∑

𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥, 𝑡, 𝑢)

2

𝑖=1

. 𝑢(𝑥, 𝑡) + ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥, 𝑡, 𝑢)

2

𝑖,𝑗=1

. 𝑢(𝑥, 𝑡)]]

]
 
 
 
 

 

Now, the recursive relation is given as below according to equation (3.9) 

𝑢0 = 𝑥1
2 

𝑢1 = 𝐸−1 [𝑣𝐸 [−∑
𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥, 𝑡, 𝑢0)

2

𝑖=1

. 𝑢0 + ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥, 𝑡, 𝑢0)

2

𝑖,𝑗=1

. 𝑢0]] = −𝑥1
2. 𝑡 
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𝑢2 = 𝐸−1 [𝑣𝐸 [−∑
𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥, 𝑡, 𝑢1)

2

𝑖=1

. 𝑢1 + ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥, 𝑡, 𝑢1)

2

𝑖,𝑗=1

. 𝑢1]] = 𝑥1
2.

𝑡2

2!
 

𝑢3 = 𝐸−1 [𝑣𝐸 [−∑
𝜕

𝜕𝑥𝑖
𝐴𝑖(𝑥, 𝑡, 𝑢2)

2

𝑖=1

. 𝑢2 + ∑
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝐵𝑖,𝑗(𝑥, 𝑡, 𝑢2)

2

𝑖,𝑗=1

. 𝑢2]] = −𝑥1
2.

𝑡3

3!
 

………… 

 

Finally, we approximate the analytical solution 𝑢(𝑥, 𝑡) as follows 

𝑢(𝑥, 𝑡) = 𝑢0 + 𝑢1 + 𝑢2 + 𝑢3 + ⋯…… ..         

              = 𝑥1
2 − 𝑥1

2. 𝑡 + 𝑥1
2.

𝑡2

2!
− 𝑥1

2.
𝑡3

3!
+ 𝑥1

2.
𝑡4

4!
+ ⋯      

 = 𝑥1
2 (1 − 𝑡 +

𝑡2

2!
−

𝑡3

3!
+

𝑡4

4!
+ ⋯…… . ) 

𝑢(𝑥, 𝑡) = 𝑥1
2. 𝑒−𝑡    
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