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ABSTRACT: The linear Gaussian state space model, also known as dynamic linear model 

in the Bayesian literature, has become one of the standard parametric modeling forms with 

parameters changing over time in the time series analysis. It provides a unified and flexible 

framework for describing, modeling and forecasting a wide array of time series and other 

types of longitudinal data. There are several studies which have been concerned with 

describing the seasonal pattern of admission to hospital for children with asthma, and have 

also explained the relationship between unexpected medical contacts and the end of the 

summer holidays. In this paper we are interested to use asthma chronic disease data for 

constructing a dynamic linear model and investigate the behavior of this model also, we 

are interested to make one step ahead forecasting. 

KEYWORDS: Time series, State space model, Dynamic linear model, Local level model, 

Seasonal dynamic model. 

 

INTRODUCTION 

In the last century, one of the most important statistical models emerged which was 

concerned with modeling and forecasting with regards to time series data. This is called 

the dynamic linear model, as denoted by (DLM). The term dynamic is defined as a change 

which occurs in such a process due to changes in time. The dynamic linear model was 

initially designed in research related to aerospace science, and subsequently developed its 

applications to include several areas such as: engineering, economics, finance and 

medicine, this topic discussed extensively by Durbin and Koopman (2001) and Shumway 

and Stoffer (2006). The state space model originated in engineering. However, it has been 

applied to disciplines such as, statistics, medicine and economics. The state space model 

contains two equations: measurement equation,  𝑦𝑡 = 𝐹𝑡𝛽𝑡 + 𝑣𝑡   which describes the 

relationship between observed variable (yt) and unobserved variable (βt), and evolution 

equation  𝛽𝑡 = 𝐺𝑡𝛽𝑡−1 + 𝑤𝑡  that describes the dynamic of the unobserved state that 

evolves during time according to a Markov process of order one. vt and wt are sequence of 

independent variables with zero mean and variances Vt, Wt respectively. Note that the state 

vector βt may be containing trend and seasonal components. The prior distribution of state 

is supposed to be a Gaussian with mean vector m0 and covariance matrix C0.  
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The methodology of Gaussian state space model has been widely discussed by Harvey 

(1989), West and Harrison (1997) and Durbin and Koopman (2001). Under an assumption 

of Gaussian errors; maximum likelihood estimation (MLE) (usually performed by using 

Expectation Maximization (EM) algorithm Dempster et al. (1977)) is the most popular 

approach to infer unknown hyper parameters such as 𝑉𝑡 , 𝑊𝑡 , 𝐶0, 𝐹𝑡 , 𝐺𝑡 ,  which 

discussed widely by Shumway and Stoffer (1982). In addition, Kalman filtering, (Kalman 

(1960)) which is defined as a set of recursion equations is a common estimation approach 

for the states 𝛽𝑡. 
 

In the literature of the time series, the local level model also called a steady model, is 

defined as a special case of a linear Gaussian state space model, when both the design 

vector Ft and the evolution matrix Gt equal to one. 

State space mode 

Dynamic linear models are also named as State space models whose parameters varying 

with time. These models are described dynamic system by two parallel linked equations. 

The first one is called an observational equation which describes the linear relationship 

between a sequence of time series data {𝑌𝑡} and states {𝛽𝑡} at time t. The second equation 

is system equation which describes an evolution in the states between time t and previous 

time 𝑡 − 1. This relationship between both states is linear. The structure of the system 

equation which is based on Markova in property is where the vectors of states change 

linearly over time. In addition, a probabilistic approach is used for describing both the 

available data and the variation of parameters. The class of state space models is deemed 

to be helpful in regression and time series analysis. They are able to supply a flexible and 

unified framework to describe and model a wide range of time series and other types of 

longitudinal data in different disciplines. According to Migon et al. (2005) the DLM can 

be seen as a generalization of the regression models which enable changes in the parameters 

values throughout time by the introduction of an equation governing the temporal evolution 

of regression coefficients. The form of the state space model is defined by the following 

set of equations: 

                𝑌𝑡 = 𝐹𝑡
′𝛽𝑡 + 𝑣𝑡               𝑣𝑡~𝑁(0, 𝑉𝑡)                                                          (1) 

                                           

     𝛽𝑡 = 𝐺𝑡𝛽𝑡−1 + 𝜔𝑡            𝑤𝑡~𝑁𝑝(0,𝑊𝑡)                                                               (2) 

  

The initial information 𝐷0  provides to the expert the prior beliefs about state 𝛽0 that has a 

normal distribution with 𝑚0 mean and variance 𝐶0: 

 

                       𝛽𝑡~𝑁𝑝(𝑚0, 𝐶0)                                                                               (3) 

 

 𝑌𝑡 is a m x 1 vector containing a sequence of observations.  

 𝛽𝑡 is a 𝑝 × 1 vector consisting of unknown parameters (states). 

 Ft is a 𝑝 × 1 design matrix consisting of regression variables. 



European Journal of Statistics and Probability 

Vol.9, No.1, pp, 1-10, 2021  

                                                      Print ISSN: 2055-0154(Print),  

                                                                                                       Online ISSN 2055-0162(Online) 

3 
 

 𝐺𝑡 is a 𝑝 × 𝑝 matrix which describes the evolution in the states. 

 𝑤𝑡 is the term of evolution error. It describes the stochastic changes in the unknown 

parameters; and follows a p-variate normal distribution with zero mean and 

variance Wt.  

 𝑣𝑡 is a term of observational error. It represents a measurement and sampling error 

corrupting the observation of 𝑦𝑡  , assumed normally distributed to be distributed 

with zero mean and variance 𝑉𝑡 . 

Additionally, the error terms 𝑣𝑡 and 𝑤𝑡 at any time point t are represent mutually 

independent white noise. The above equations, which are described in the Gaussian state 

space model were identified Harrison and Stevens (1971) in the Bayesian approach. The 

quadruple quantities {𝐹𝑡 , 𝐺𝑡 , 𝑉𝑡 , 𝑊𝑡} are used for completely determining the dynamic 

linear model. The algorithm of the recursive Kalman filter is utilised for analytically 

inferring the unknown states when the value of these quantities is known. West and 

Harrison (1997) presented greater details for this procedure. The analytical approach within 

dynamic linear models is not available when the hyper-parameters {𝑉𝑡 , 𝑊𝑡} are not 

known. This issue can be solved by using several proposals for performing approximate 

inference in dynamic linear models using Bayesian methods based on simulation 

approaches, such as Markov chain Monte Carlo (MCMC) methods and sequential Monte 

Carlo (SMC) methodologies, also defined as particle filter, Gordon et al. (1993). The 

dynamic linear models can be employed to model univariate or multivariate time series. In 

addition, the ARIMA process which was defined within the linear time models Box and 

Jenkins (1976) can be represented as special case of the state space model when assuming 

the quadruple quantities {𝐹𝑡 , 𝐺𝑡 , 𝑉𝑡 , 𝑊𝑡} do not change with time. The state space model 

is called a Hidden Markov model when the variables of state are discrete. 

 

ANALYSIS OF ASTHMA CHRONIC DISEASE DATA 

   

Data description 

Since we deal with time series for count data, description the data in this paper is useful for 

understanding the features within it. In this part, we will present a brief description of the 

data used in this study. This data used in the study by Julious et al. (2011), considered to 

school-aged children without asthma were employed in the study as controls based on the 

assumption that viral infection is the essential factor in increasing the number of 

unscheduled medical contacts after returning to school. Many studies have illustrated that 

the number of medical visits for children with asthma reach a peak when returning to school 

after the summer holiday Storr and Lenney (1989), Grech et al. (2004), and Julious et al. 

(2007). The data were daily medical contacts for school aged children with asthma in 

England, during a period of seven years from 1999 to 2005. This data was collected and 

placed in the database of the General Practice Research (GPRD). Because of the difficulty 

of knowing the behavior of the daily time series and difficulty to observe its dynamic 

changes by using a graphic description of the data, we resorted to deal with the total weekly 
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medical visits instead of daily data over seven years. As a result, a dimension of the used 

time series in this report has been reduced from 2557 daily observations to 365 observations 

were represent the total weekly cases. 

Figure 1: Data description of weekly medical contacts for children with asthma in England 

 The original weekly data together with time series components are plotted in Figure1. In 

order to look at the dynamic in the data, we detect from the graph that the data set fluctuates 

around mean with a clear evidence of evolution over time. However, due to the Christmas 

day, the last week in each year exhibits more uncertainty around the mean. Another finding 

is that the weekly medical contacts in each year during seven years have a similar pattern 

of seasonality, but the level differs. Since we are dealing with the weekly data, we consider 

the seasonal cycle to be equal to 52 weeks. This means that the pattern of cases in any given 

week in the first year is expected to be repeating in the corresponding weeks in other years, 

subject to other sources of variation, such us local level. In order to specify whether there 

is clearly seasonal variability within the components of the time series, the decomposition 

of additive time series with frequency 52 is used for as shown in Figure 2. 

      

             Figure 2: The decomposition of additive time series. 
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As can be observed from this figure, the pattern of the data repeats the same frequency after 

52 weeks. Therefore, we expect to be an annual seasonality in our data. 

Results and discussion of the local level model 

As mentioned before the local level model is a class of a Gaussian state space form when 

the design vector and the evolution matrix equal one. In this section we are interested in 

constructing a dynamic linear model for our data set in order to describe changes in the rate 

of the medical contacts over time and then apply the recursive kalman filter for forecasting. 

In order to achieve this goal, the local level model and the seasonal dynamic linear model 

are proposed models to fit this data. The local level model is the simplest model in 

univariate time series. The observation 𝑦𝑡  is a function of state variable with a single 

parameter and a stochastic error. The quadruple {1, 1, 𝑉𝑡 , 𝑊𝑡} are used in the definition of 

this model. The local level model can be written in the following way: 

𝑦𝑡 = 𝛽𝑡 + 𝑣𝑡  ,           𝑣𝑡  ~ 𝑁 ( 0 , 𝑉𝑡 ) 

 𝛽𝑡 = 𝛽𝑡−1 + 𝜔𝑡 ,           𝜔𝑡 ~ 𝑁 ( 0 ,𝑊𝑡 ) 

For the implementation of the recursive Kalman filter for updating a state from time t − 1 

to t, and obtaining one-step forecasting of the observations, we assumed the prior 

distribution of states to follow a normal distribution with mean zero and variance 1000.The 

large value of the state variance indicates significant uncertainty in the initial belief of the 

weekly medical visits for infected children. In addition, the maximum likelihood method 

has been used to estimate the variance of observation and the transition covariance matrix. 

The log likelihood is 710.6584. Figure 3, shows the original data (solid points), the one 

week ahead forecasts based on the local-level model and the recursive Kalman filter (dotted 

lines with ticks), and the 95% forecast intervals (dashed lines). As we note the vast majority 

of the original data lies within the predictions interval except for some points over the 

series. Although, some of the forecast values are quite close to the real data, there are some 

observations far from the mean of prediction and closer to the interval. 

 

      Figure 3: Original data together with one-step forecasts and 95% confidence intervals. 
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In order to assess the quality and the goodness of fit of the model, we will analyze the 

residuals that generated by the fitted model. These residuals that obtained from the fitted 

model will achieve the assumptions of linearity and normality. This can be done by 

inspected graphically for residuals and by using the measures of the performance of the 

goodness of fit, such as the mean of squared residuals (MSE) and the mean absolute 

deviation of the residuals(MAD). If the fit is good, the values of MSE and MAD should be 

close to zero. 

Figure 4, shows the graphic description of the residuals generated from the fitted model. 

shown are the residuals in panel (a), a histogram of the residuals in panel (b), a normal Q-

Q plot in panel (c), and the autocorrelation function in panel (d). From panel (a), we see no 

obvious patterns, although there are some outliers and this indicates that there is a 

seasonality within the data. The histogram and the normal QQ in panels (b) and (c) 

respectively are used to check for normality assumption. From the histogram, we see the 

distribution of residuals is skewed in, the normal QQ shows that the residuals are quite 

close to normality except for residuals of the lower tail. The autocorrelation plot in panel 

(d) which is used to the independence test, displays some peaks at different lags that lie 

outside the standard bounds  ± 1.96 /√𝑛 ; this means the residuals are not independent. 

The values of the two performance measures MSE and MAD are calculated from the 

residuals 0.9988 and 0.6883 respectively. Finally, all the above results for the residuals 

indicate that the level model is not suitable for fitting the data. 

 

 
            Figure 4: Diagnostics of on the residuals generated from the local level model. 

 

Results and discussion of the seasonal dynamic linear model 

A seasonal time series is a time series exhibiting some a seasonal or cyclic pattern. The 

seasonal components are described by a harmonic component which is defined as a 

sinusoidal function. The statistical expertise represents a way to choose the harmonic 

components; moreover, the fundamental harmonic which is defined as the first harmonic 
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will be necessary for describing the seasonality in the data series. The Fourier series is used 

to represent the seasonal component within the state space approach. For more details, see 

Harvey (1989) and West and Harrison (1997). The seasonal dynamic linear model is the 

second proposed model for this data. As mentioned before the period of the data is 52. To 

describe the seasonality in the data, we used five harmonic components, because it is 

difficult to deal with the full seasonal form DLM which need 52 harmonic components for 

implementing. The observation equation and the transition equation for the model can be 

written as follows: 

𝑦𝑡 = �́�𝑡 𝛽𝑡 + 𝑣𝑡    ,         𝛽𝑡 = 𝐺 𝛽𝑡−1 + 𝜔𝑡  , 

where the design vector F and the evolution matrix G are defined as: 

𝐹 = 𝐸2 = ( 1,1,0,1,0,1,0,1,0,1,0,1 )′ =   ( 1, 𝐸′2 , 𝐸′2 , 𝐸′2 , 𝐸′2 , 𝐸′2 , 1)’ 

 

𝐺 = 𝐽(𝜔) =

(
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0
⋮
0
0

𝐽(𝜋/26)
⋮
0
0

 

…
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…

0
⋮

 𝐽(5𝜋 26⁄ )
0

      

 0
 ⋮
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The single harmonic component model can be written as DLM 

𝐹 =  𝐸2 = (1, 0)’    ,    𝐺 = 𝐽(𝜔) =  (
cos𝜔 sin𝜔
−𝑠𝑖𝑛𝜔 𝑐𝑜𝑠𝜔

) 

Where  𝜔 = 
2𝜋𝑟

𝑐
  , 𝜔 ∈  (0 , 𝜋)  is defined as a frequency of the time series and rth ,  r = 

1, ...., h is called as the number of harmonic in the model. However, the dynamic linear 

model with ω = π which is defined as the Nyquist frequency can be written as F = 1, G = 

−1. 

The harmonic component is defined in the evolution matrix by J(φ) which is responsible 

for the seasonal variation, however, the last element in the transition matrix is -1 which 

correspond to the Nyquist frequency π. The observation variance and the evolution 

covariance matrix are the same as before in the first model, however, the distribution of the 

prior state is a normal 𝛽0 ~ 𝑁 (( 0,0,0,0,0,0,0,0,0,0,0,0 )
′, 1000𝐼12)                                                                               

where I is the identity matrix. The log likelihood is 710.6584. 
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      Figure 5: Original data together with one-step forecasts and 95% confidence intervals. 

Figure 5, shows the one-step predictions (dotted lines with ticks) with 95% predictive 

intervals (dashed lines) against the original date (solid points). We can see that all data lies 

within the predictive interval. Moreover, it can have been observed that there are some 

observations of the data series that are closed to their forecast mean, others somewhat 

further away. 

The analysis of residuals obtained by the seasonal dynamic linear model with period 52 is 

used in order to assess the quality and the goodness of fit of the model. The graphic display 

and the performance measures were utilized to do it. 

Figure 6: Diagnostics of on the residuals generated from the seasonal dynamic linear 

model. 

Figure 6 presents the graphic description of the residuals generated from the seasonal DLM 

where the time plot of the residuals, a histogram of the residuals, a normal QQ plot, and 

the autocorrelation function in are shown panels (a), (b), (c), and(d) respectively. 
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From panel (a), we see no obvious pattern in the residuals. The histogram and the normal 

QQ in panels (b) and (c) respectively are used to check for normality assumption. From the 

histogram, we observe that the distribution of residuals may be approximately normal, also 

the normal QQ shows that the residuals are quite close to normality except for extreme 

values in the tails. For the independence test, the autocorrelation function in panel (d) 

shows some peaks at different lags especially at the second lag which means that the 

residuals are correlated. The values of the performance measures MSE and MAD are 

calculated as 0.1324 and 0.2548 respectively. 

In order to make a comparison between the two proposed models in terms of quality of 

forecasting as well as getting a clear vision for the variations within the data series, we 

looked at the first 106 observations. Figure 7 displays the original data (solid line with 

circles) together with one-week forecasting by using the local level model (ticks) and the 

seasonal dynamic linear model (solid points). It can be seen that there are more forecasts 

close to observations by using the seasonal dynamic linear model than the local level 

model. Furthermore, the seasonal dynamic linear model has smaller values of the 

performance measures compared to the local level model. 

 

                Figure 7: Data against one-week forecasting by using two proposed models. 

CONCLUSION 

Attention has been directed in this paper to constructing the dynamic linear model for 

asthma chronic disease data and investigate the behavior of the DLM. The local level model 

and the seasonal dynamic linear model, with period 52, have been proposed to fit the 

asthma data. In fact, the results appeared that there are more forecasts close to observations 

when using the seasonal dynamic linear model and has smaller values of the performance 

measures. Based on the results of the one-step ahead forecasting, the seasonal dynamic 

linear model has a good performance than the local level model. 
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